
SlAM J. COMPUT.
Vol. 6, No. 1, March 1977

OPTIMAL POLYPHASE SORTING*

DEREK A. ZAVEf

Abstract. A read-forward polyphase merge algorithm is described which performs the polyphase
merge starting from an arbitrary string distribution. This algorithm minimizes the volume of informa-
tion moved. Since this volume is easily computed, it is possible to construct dispersion algorithms
which anticipate the merge algorithm. Two such dispersion techniques are described. The first
algorithm requires that the number of strings to be dispersed be known in advance; this algorithm is
optimal. The second algorithm makes no such requirement, but is not always optimal. In addition,
performance estimates are derived and both algorithms are shown to be asymptotically optimal.

Key words. Sorting, tape sorting, merge sorting, polyphase sorting, tape merging, optimal
merging, optimal polyphase dispersion, blind dispersion, polyphase dispersion, Fibonacci numbers,
generalized Fibonacci numbers, Zeckendorf theorem, generalized Zeckendorf theorem

1. Introduction. This paper presents a mathematical analysis of the struc-
ture of the polyphase sort with special emphasis on those properties which are
related to the performance of the sort. This analysis will enable us to construct a
polyphase sorting algorithm with optimal performance characteristics. We will
also construct a near-optimal polyphase sort which is more suitable for applica-
tions. Finally, we will investigate the asymptotic performance of both of these
algorithms.

Although the polyphase sort has been in use for over a decade, comparatively
little work has been done in the direction of optimizing its performance. In an
early unpublished paper [7], Sackman and Singer developed methods for
predicting the performance of the polyphase merge and showed empirically that
in certain cases the performance of the usual method of implementing the
polyphase sort could be greatly improved. Independently, Shell [8] developed
similar techniques and used them along with some empirical observations to
construct an optimal polyphase sorting algorithm. D. E. Knuth [5] has also
investigated the optimal polyphase sort and several of his results have been
incorporated into this paper.

2. The polyphase merge. We will begin with a brief discussion of the
polyphase merge which will serve primarily to introduce our terminology. Further
details, as well as information on internal sorting and string merging, which we will
not discuss, may be found in the books of Flores [2] and Knuth [5].

Let us suppose that we are given a collection of records containing various
kinds of information and let us further suppose that some linear ordering has been
defined on this collection. To sort the records is to arrange them into a sequence
which is increasing with,respect to the ordering relation. One method of accom-
plishing this is by means of merging, First, the collection of records is partitioned
into a number of small groups of records which are each sorted to form strings of

* Received by the editors April 24, 1974, and in revised form January 15, 1976.
"l" Computer Science Department, Stanford University, Stanford, California 94305. This research

was supported in part by National Science Foundation Grant MCS 72-03752 A03, by the Office of
Naval Research under Contract NR 044-402, and by the IBM Corporation.

2 DEREK A. ZAVE

records. Second, the sorted strings are merged to form larger sorted strings, and so
on, until a single sorted string containing all of the records is formed.

In practice, merge sorts are employed when there are more records to be
sorted than may be accommodated by a computer’s main storage. Groups of
records are sorted into strings using the available main storage. The strings are
then "dispersed" to some secondary storage medium such as mass storage or
magnetic tape. The string merging operations are performed as transfers of
information from one part of secondary storage to another.

The polyphase sort is a merge sort which is characterized by the manner in
which the dispersed strings are merged. Let us suppose that there are T_-> 3 tape
units which are numbered from zero to T-1. We define the distribution
numbers S’ for 1,. ., and n _-> 1 by

S]= 1 for 1-<i_-<t,

(2.1) S St for n > 1, and

S’=S’_-a1+$7-1 forn>l and 2-<_i-<_t.

From this definition it is easily shown that for n > 1, we have

(2.2) $7 < S-<..- -< S’.
Suppose for some n -> 1 that $7 +. + S’ strings have been dispersed to the

tapes in the following fashion:

tape: 0 1 2 t

strings" 0 S7 S’ St.
We will call this configuration the perfect stage n dbstribution and the sum

(2.3) S" $7+’" +S
will be called the stage n perfect number.

Example 2.1. The following table provides some values of the distribution
numbers and peffectnumbers when T= 5 (t= 4):

n $7 S S S S

1 1 1 1 1 4
2 1 2 2 2 7
3 2 3 4 4 13
4 4 6 7 8 25
5 8 12 14 15 49
6 15 23 27 29 94
7 29 44 52 56 181
8 56 85 1.00 108 349
9 108 164 193 208 673
10 208 316 372 401 1297

Suppose that we start with the perfect stage n distribution. If we merge
together one string from each of the tapes 1,- , t, then we will obtain a single
string which may be written to unit zero. If n 1, then this operation will merge all

OPTIMAL POLYPHASE SORTING 3

Of the strings since each tape contains exactly one string. If n > 1, then, in view
of (2.2), we may perform this operation $7 times after which we will arrive at the
distribution

tape: 0 1 2 t

strings" S 0 S-S S’-S

From the formulas (2.1) we see that this distribution is the same as

tape: 0 1 2 t

strings S 0 S St_l

so that if we renumber the tapes t, 0, 1, 2, ., t- 1, then we obtain the perfect
stage n 1 distribution.

By repeating this process, we obtain the perfect distributions for stages n 2,
n 3, and so on, until we arrive at the perfect distribution for stage one. A single
merge will then produce the final sorted string. This method of merging a perfect
number of strings is called the polyphase merge.

In practice, the distribution routine rarely produces a perfect number of
strings. In order to use the polyphase merge in this case it is necessary to include a
number of "dummy" (empty) strings in order to fill out the total number of strings
to a perfect number. There are therefore two choices which have to be made
before using the polyphase merge to sort x strings. First we must choose a starting
stage number n; any n for which x -_< S is eligible. Second, we must decide how
the Sn-x dummy strings are to be distributed among the x strings. Although
many methods have been proposed for distributing the dummy strings, most
authors recommend starting with the smallest possible stage number n; we will
refer to these approaches collectively as the standard polyphase sort.

Since the speed of a merge is usually limited by the transfer rate of the tape
units and the speed of the merge algorithm, we see that the time required to
perform the polyphase merge is approximately proportional to the total volume of
information that moves through the merge. In order to make this idea precise, we
assume that the dispersion routine produces strings of approximately the same
size; this size will be our unit of information, the unit string. The size of a string
formed by merging several strings is the sum of the sizes of the input strings and
the size of a dummy string is zero. We say that a string is moved when that string or
any string formed from it by a sequence of one or more merges becomes one of the
inputs for a merge. The volume of information moved by the polyphase merge is
then equal to the sum of the products of the size of each string of the starting
distribution and the number of times that string is moved. In this paper we will
show how this volume may be minimized.

3. The movement numbers. In general, the polyphase merge does not move
all of the S strings of the stage n perfect distribution the same number of times. It
is for this reason that the polyphase sort is much more difficult to analyze than
other merge sorting algorithms. However, much useful information is supplied by
the set of movement numbers M’(j) which are defined for n _-> 1, 1 _-< _-< t, and all

4 DEREK A. ZAVE

integers] by the relations

M(1) 1 for l_--<i _--<t,

M(/) 0

M’(j) M’-’(j- 1)

M’(j) M’_-_(j) +M’-’(j 1)

forj#l and l<=i-<_t,

for n > 1, and

forn>l and 2_-<i_-__-t.

We claim that M(j) is precisely the number of strings on tape unit of the stage n
perfect distribution which will be moved exactly j times by the polyphase merge.
For this to make any sense it is necessary that M’(j) be nonzero only if 1 _-< j -< n
and that S M’(1) +-.. +M’(n).

We will prove these assertions together by induction on n. When n 1,
everything is obvious since each of the tapes 1,. , t of the perfect distribution
contains exactly one string which will be moved by the polyphase merge exactly
once. Now suppose that n > 1 and that everything has,been proved for stage n 1.
For M(]) to be nonzero we must have, by (3.1), M’-I(j 1)#0 or i_->_2 and
M7_-1(]) # 0. These inequalities imply that 1 =<] 1 _-< n 1 or 1 =<] _-< n 1 which
both imply that 1 _-<j _-< n. We may show that $7 MT(1)+... +M’(n) by sum-
ming the last two formulas of (3.1) over] and by applying the corresponding
equality for stage n 1 and the last two formulas of (2.1). We recall that the stage n
polyphase merge is performed by merging S strings from each of the tapes and
then by applying the stage n 1 polyphase merge. A string on unit one which will
be moved] times will become part of a string on the output tape which will be
movedj 1 times. Since every string on the output tape contains exactly one string
from unit one and since the output tape becomes unit for the stage n 1 merge,
we see that unit one must contain exactly MT-I(j 1) strings that will be moved
exactly] times. If 2 <= _<- t, then a/" movement string on unit will either be moved
to the output tape or will remain on the tape. From similar considerations, we see
that unit must contain exactly M-I(j 1) "-1+M_ (1) strings which will be
moved exactly] times. This completes the proof.

Example 3.1. Table 3.1 lists some of the movement numbers in the case
t=4.

In this paper we will make use of a few sets of numbers which are defined
using the movement numbers M(]). We list the definitions:

(3.2)

M"(j) M’(j)+ +M(j),
S(j) M’(1) +... + MT(j),

S" (j) M" (1) +... +M" (j) S(j) +... + S’(j),

GT(]) ST(l) +... +
on(j) S" (1)+... + s"(j)= O’S(j)+... + O’S(j).

In addition, we have already defined

S S (n),

S"=S"(n)=ST+ "+St.

OPTIMAL POLYPHASE SORTING 5

TABLE 3.1

Movement numbers for 4

n=l

n=3

n--.4

n=5

M(j) Mij) M(j) M(j)

0
2

0 0
2 2 2 2
3

0 0 0
2 2 3 3
3 2 3 3 3
4
1 0 0 0 0
2 2 3 4
3 3 5 6 6
4 3 4 4 4
5

In a number of the form A’(j) the superscript n is the associated stage
number, the subscript is the number of a tape unit, and j is some number of
movements. A () is formed from A 7’(/’) by summing over 1,. , t and A ’ is
formed from A 7(j) by setting n. In a similar fashion we may form A from A ’or A" (j).

Except for the numbers G’(/’) and G"(j), which are used in connection with
the volume function, the various sets of numbers which we have defined express
some simple properties of the perfect stage n distribution:

M’(j) The number of strings on unit which will be moved exactlyj times.
M (j) The number of strings which will be moved exactly j times.
S’(j) The number of strings on unit which will be moved at mostj times.
S (j) The number of strings which will be moved at most j times.
S’ The number of strings on unit i.
S The total numbers of strings.
A set of numbers A (j) is said to be a t-array if the following relation is

satisfied for all integers n and j:

(3.3) A" (j) An-l(j 1) +... +An-t (j 1).

We will call a sum of this form a t-sum. When a t-array is represented as a table of
numbers, then we will let] index the rows and n index the columns. It is clear that
the t-array A "(j) is completely determined by its values on the vertical strip
1 t -< n =< 0 (or any other strip of width t). We will call this strip the initialization
region.

Most of the sets of numbers which we have defined can be expressed as
t-arrays. The t-array approach exposes many of the interesting properties of these
numbers which are obscured by the original definitions. Since all of these numbers

6 DEREK A. ZAVE

are defined in terms of the movement numbers, we will begin by showing that the
movement numbers may be defined as t-arrays.

For each 1,. , t we define the t-array A ’(j) by specifying that A i-t(0)
1 is the only nonzer(a element of the initialization region for A ’(]). We will show
that for all n _-> 1, 1 _-< _-< t and all] that A ’(]) M’(]). It is clear that the only
nonzero values in the columns n =-t are A-’(-1)= 1 and A-’(0)=-I for
1 _-< i---t. If we let denote the Kronecker delta, then for -t _-< n _-<0 we have

jA’(/’)=t0t0+t;"/__l and A(J’)--ti-0 tn--0 for l<--i<t. Therefore, for
1 t _--< n _--< 0, we have

/= j=At-l(j- 1)= 0-1t/1+1_0 tl-t0 A 1(/’)
and for 2 _-< _-< t,

n--1Ai_I(I)+A, l(j_ 1) sen-1 j n-lnj
oi--t--loO t-- 0 + 80--1)-1 -- 3-- lt/--ql

=i-o=Ai(l).
These relations correspond to the last two formulas of (3.1) and since they hold for
n andj in the initialization region, they can be extended to all values of n andj by a
simple induction argument using the recurrence relation (3.3). Since the only
nonzero values in the columns n i are A/1(1) 1, we see that the numbers A’(j)
also satisfy the first two relations of (3.1). We therefore conclude that M’(j)=
A’(j) for all n _-> 1.

Below we list the various t-arrays in which we will be interested and specify
the nonzero values in their respective initialization regions"

M’(j) MI-’(O)- 1

M"(j) M"(0) 1 for 1 t -< n < O,

S(/) sit(/) 1 for j _--> O,

S"(]) S’(j) 1 for 1 t --< n =< 0 and j _-> O,

(J) Gi-t(f) =j + 1 for j -> O,

G"(j) G"(j) j + 1 for 1 t _-< n -< 0 and j _-> 0.
It is not difficult to show that these t-arrays satisfy the definitions given in (3.2).

Example 3.2. Table 3.2 shows a portion of the t-array S’(j) when 2 and
t 4. In this case, the only nonzero elements of the initialization region are
S2(j) 1 for j _--> O.

TABLE 3.2
S2n(j)for 4

-3 -2 -1 0

0 0 0
0 1 0 0
0 0 0
0 1 0 0
0 1 0 0
0 0 0
0 0 0
0 0 0

2 4 6 7

0 0 0 0 0 0 0
0 0 0 0 0

1 2 2 2 2 1 0
2 3 5 7 8 7
2 3 6 11 1723

1 2 3 6 12 22 37
1 2 3 6 12 23 43

2 3 6 12 23 44

OPTIMAL POLYPHASE SORTING 7

4. Optimal merging. In this section we will examine some of the properties
of the polyphase merge when it is implemented using read-forward tape units.
(Read-forward tape units can be thought of as queues in which strings are written
at the end of the tape and are read from the beginning.) Of particular importance
is the close relationship with generalized Fibonacci numbers. These results will be
used to construct an optimal polyphase merge algorithm which has a number of
desirable characteristics.

From (2.1) it is easily shown that

S n-1St --" + St + 1 for 2 =< n =< t, and

$7 S’-1+. + $7 -t for n > t.

If we define Fn 0 for n < 0, F0 1, and Fn St for n => 1, then, from the above
relations, we have

(4.1) Fn Fn_I-+.. +Fn_

for n => 1. Because of the similarity of (4.1) to the defining recurrence relation for
the Fibonacci numbers, we will call these numbers F, the t-Fibonacci numbers.

The t-Fibonacci numbers play a central role in the problem of analyzing the
motion of the strings for the read-forward polyphase merge. Indeed, suppose that
the strings have been dispersed according to the perfect stage n distribution and
that the string positions on each tape are numbered from zero starting at the front
of the tape. If we perform the polyphase merge starting with stage n, then the
number of times m that a string in position p on one of the tapes will be moved is
computed by the following algorithm:

ALGORITHM 4.1. Simulate string motion.
Step 1. Letm=l,k=n-l, andq=p.
Step 2. If k 0, then terminate.
Step 3. If q < Fk, then go to Step 5.
Step 4. Let q =q-Fk and go to Step 6.
Step 5. Let m m + 1.
Step 6. Let k k- 1 and go to Step 2.
This algorithm simply follows the motion of the string as the polyphase merge

is performed. In particular, k + 1 is the stage number of the polyphase merge
k Slk+l,being performed. If q <Fk St then the string will be moved (and m

incremented), but its position on the output tape will be the same as itg position on
the input tape. If q >-Fk, then the string will not be moved but :a position will be
changed to q --Fk since Fk strings will have been removed from the tape. Since we
are simulating the polyphase merge, we always have q < Fk/ ---skt +1 (this may
also be shown by induction) so that q 0 when the algorithm terminates.

Let us define the sequence Sl, s2,’’’, Sn-1 as follows: we let sj 1 if, when
performing Algorithm 4.1, we perform Step 4 with k ; otherwise, we let sj 0.
Obviously, the number of times that the string in position p is moved is n-Sl-
Sz s,-1. From the mechanics of the algorithm and the fact that it terminates
with q 0, we find that

n-1

8 DEREK A. ZAVE

Since a string cannot remain on a tape for consecutive merges, we see that the
sequence Sl, , s,-1 cannot contain more than t- 1 consecutive ones.

We have shown that p may be represented as a sum of distinct t-Fibonacci
numbers in such a way that at most t- 1 consecutive t-Fibonacci numbers appear
in the sum. We will now study some properties of this type of representation.

We define a t-sequence to be a sequence Sl, s2, of zeros and ones with the
properties that only finitely many ones appear and that no t consecutive ones
appear. It will sometimes be convenient to assume that Sm= 0 for m _--< 0. The
length L (s) of a t-sequence s is defined to be the largest m for which Sm= 1 or zero
if Sm 0 for all m. If s and s’ are t-sequences, then we say that s < s’ if for some m

1) and s, s’ for all n > m. It is clear that(i.e. S ----0 and Smwe have S < S

this defines a linear ordering of the set of all t-sequences.
A t-sequence s represents a number F(s) in the sense that

F(s)= Z s.F.
n=>l

We have the following theorem concerning such representations:
THEOREM 4.1. Foreachp >- O, there exists a unique t-sequenceR (p)]’or which

p F(R (p)). Furthermore, ifp < p’, then R (p) <R (p’).
First we require some lemmas:
LEMMA 4.1. If S is a t-sequence]:or which L (s < n, then F(s < F,.
Proof. If L(s)= 0, then F(s)= 0 < Fn for all n > 0. Now suppose that s is a

t-sequence of length m > 0 and that the result has been proved for all t-sequences
of length less than m. Clearly there must be a k >_- 0 with m t + 1 _-< k < m for
which Sk 0. We form the t-sequence s by letting sj sj for] < k and sj 0 for
] _-> k. If k 0, then F(s’) 0 < Fk. If k > 0, then L (s’) < k < m so that by our
induction hypothesis we have F(s’)< Fk. Consequently, if m < n, then we have

F(S F(S’) -I- 2 s.iFl < Fk -I Fk+ -Jc -I-F
i>k

<--Fm_t+l+" .+Fm=Fm+I <Fn.
LEMMA 4.2. If S and s’ are t-sequences]’or which s < s’, then F(s < F(s’).
Proof. Let m be the largest integer for which Sm <S’m. We then have Sm 0

and s, s, for n > m. From Lemma 4.1 it follows that

m-1

F(s)= Z SkFk= Z SkFk+ E SkFk
k=>l k=l k>m

<Fm + Z SkF <- _, s ’Fk F(S’).
k>m kl

LEMMA 4.3. There are precisely F,, t-sequences]’or which L (s < n.

Proof. We will use induction on n. Clearly the result is true when n 1. If
n > 1, then we may partition the set of all t-sequences s for which L(s)< n into t
classes as follows: for each k with 1 =< k =< t, we define the kth class to be the set of
all such t-sequences s which have the property that s 1 for n- k <] < n (this
condition is vacuous when k 1) and S,-k 0. Assuming that the lemma has been

OPTIMAL POLYPHASE SORTING 9

proved for all n’ < n, we will show that for each k that the kth class contains fn-k
elements. If n- k < 0, then we must have So 1 for any s in the kth class and
therefore the kth class contains Fn-k =0 elements. If n-k->_0, then for any
t-sequence s in the kth class, we may construct a t-sequence s by letting sj sj for
j < n k and si 0 for] -> n k. It is easily seen that this construction defines a
bijection between the kth class and the set of all t-sequences s’ for which
L(s’)<n-k. Since the latter set contains Fn-k elements, so does the kth class.
Summing over k, we find that there are exactly F,,-1 +" + F,-t F t-sequences
s for which L (s) < n. [-!

Proof of Theorem 4.1. It is clear that the numbers Fn are unbounded.
Therefore, if p > 0 is given, then we can find an n for whichp < F,. By Lemma 4.3,
there are F t-sequences of length less than n which by Lemma 4.1 are mapped by
F into the nonnegative integers less than F,. By Lemma 4.2, this mapping is
injective and therefore, by pigeonholing, is surjective. Consequently, we can find
a t-sequence R (p) for which p F(R (p)). Uniqueness and the strict monotony of
the mapping R both follow from Lemma 4.2.

Remarks. Theorem 4.1 is an extension of a well-,known theorem of Zecken-
dorf which concerns the representation of integers by sums of Fibonacci numbers.
The extension given here is due to Knuth ([5, Exercise 5.4.2-10]) although our
proof is somewhat different. Lynch [6] has generalized this result and has shown
how generalized Fibonacci numbers may be used to control dispersion and
merging in the standard polyphase sort. There is another extension of Zecken-
dorf’s theorem which contains the others as special cases. Let r(n) be a positive
integer-valued function of n 1 which has the property that r(n) _-> 2 for infinitely
many values of n. We define the r-Fibonacci numbersf byf 0 for n < 0, f0 1,
and f,--fn-1 +’’’-F’fn-r(n) for n _-> 1. Every positive integer is uniquely rep-
resented by a sum of r-Fibonacci numbers f, with distinct subscripts n >- 1 which
has the property that if f,-l, ",f,-r(m) all appear in the sum, then so does f,,.
A proof may be constructed along the lines of our proof of Theorem 4.1 although
some care is required when r(n)= l. When r(n)= n for all n _-> 1 then the above
result implies the existence and uniqueness of representations in the binary
number system.

Let D(p) be the number of ones in the t-sequence R (p). In the discussion
following Algorithm 4.1 we showed that if a string appears in position p on some
tape of the perfect stage n distribution, then the polyphase merge will move the
string exactly n -D(p) times. Therefore, it is of some interest to determine those
values of p for which D(p) takes a given value.

Let] be a nonnegative integer. We define E(]) to be the smallest nonnegative
integer p for which D(p)=j. The following theorem and the corollary provide
methods of computing E(]):

THEOREM 4.2. E(0)=0. If]>0, then E(j)=E(j-1)+F.+k where k=
t(j-1)/(t-1)J.

Proof. We wiJl prove the theorem together with the fact that L(R (E(])))
] + k for] > 0 by induction on j. Clearly E(0) 0. Now suppose that > 0 and
define s =R(E(])), rn =L(s), and p=E(j)-Fm. Clearly D(p)=]-I so that
p ->E(/’-- 1). If we let k [(]- 1)/(t- 1)], then we must have rn ->] + k for
otherwise s would contain consecutive ones or would have less than] ones. It

10 DEREK A. ZAVE

follows that E(j)>=E(j 1)+Fj+k and to prove equality, it is sufficient to show
that D(E(- 1)+F.+)= j. We assume that everything has been proved for f<j.
If k 0, then we clearly have

E(j-1) FI + + Fj_x

(the sum being zero when j 1) and since j (t we have D(E(j- 1)+F+)= j. We
also observe that L(s)=j =j+k. If k >0, then let j’= k(t- 1)+ 1. Clearly j’<-_j
and we have k [(n-1)/(t-1)J forj’_-<n =<. From our induction hypothesis we
obtain

E(j- 1) +F-+ E(j’- 1) +F,+ +... +F+.
However, if we let k’= [(y’-2)/(t-1)], then L(R(E(j’-I)))=j’+k’-I=
j’+ k -2. Since j-j’ < t- 1, it follows that the t-sequence s’= R(E(j’- 1))
remains a t-sequence if we let s’,, 1 for j’+ k <= n <-j + k. It follows at once that
D(E(y-1)+Fi+) j and that L(s)=j+k. This completes the proof.

COROLLARY 4.1. For j > 0 and k defined as before we have

j+k

E(j)= Z Fm-1,
=/t

the sum having at most t terms.

Proof. The proof is by induction on j. When j 1 we have k 0 so the above
expression is F0+F-1 1 E(1). Now suppose that the corollary has been
proved for all j’ <j, in particular, for j’= k(t- 1). Since [(n- 1)/(t- 1)] k for
j’< n <=j we have from the theorem,

E(j) E(j’) +F,// +... +F/.

Applying the corollary with j’ and k’=/(j’- 1)/(t- 1)J k 1, we obtain

j’+k’ kt-1

E(j’)= Y’. Fro-1 E Fro-1
=k’t =kt-t

Fkt--1.
Since f + k + 1 kt + 1, it follows that

E(j) Ft +"" +F+ 1.

Finally, we observe that j + k kt 1 + (j 1) k (t 1) < 1 + (t 1) t so the sum
contains at most t terms. F1

If j > 1, then there are infinitely many positive integers p for which D(p) =j.
We have just shown how to find the smallest such p, so now we will show how to
find the others. We will do this by constructing an algorithm which computes,
given p > 0, the smallest p’ >p for which D(p’) D(p).

Let s R (p) and s’ R (p’). We already know that s < s’ if and only if we can
1, and s ;, s for k > m. Consequently, to find thefind an m for which s,, 0, s

smallest p’>p for which D(p’)= D(p), we must first find a suitable value of m.
Clearly the smaller the value of m that is chosen, the smaller the value of p’. There
are three conditions that m must satisfy: First there is the condition Sm= 0 which
was given above. Second, we must have s 1 for some k < m for otherwise we

OPTIMAL POLYPHASE SORTING 11

would have D(p’)>D(p). Third, we cannot have s,,+l s,,+t-1 1 for
otherwise any sequence s’ with s,,= 1 and S’k=Sk for k >m will not be a
t-sequence.

Therefore, let us choose m to be the smallest integer for which s,, 0,
Sin_ 1, and Sin+14;-’.’-11-Sin+t_ < t-1. This choice can always be made since
m L(s)+ 1 satisfies the requirements. If we define p’ by

p’ E(s +... + s_2) +F + Y sF
k>m

then it is easily verified that p’> p, that D(p’)= D(p) and that it is the smallest
integer to have these properties.

In order to use the formula above, it is necessary to know the representation
R (p) of p. The following algorithm computes p’ by combining the conversion of p
to R (p) (using a technique similar to Algorithm 4.1) and the search for m. The
algorithm is easily implemented on digital computers since it is fully arithmetic
and does not involve t-sequences.

ALGORITHM 4.2. Find the smallest p’ >p for which D(p’) D(p).
Step 1. Let q p and k 0 and choose some m for which p < F,,.
Step 2: If Fm q, then go to Step 4.
Step 3. Let rn rn 1. If m 0, then go to Step 10; otherwise go to Step 2.
Step 4. Let q’= q, m’ m, and k’= k.
Step 5. If m < t, then go to Step 7.
Step6. If q<Fm+l-Fm_t+, then go to Step 7; otherwise, let q

q-(Fm+l-Fm-t+l), rn =m-t, and k =k +t-1 and go to Step 8.
Step 7. Let q q- F,,, m m 1, and k k + 1.
Step 8. If rn 0, then go to Step 10.
Step 9. If Fm <- q, then go to Step 5; otherwise, go to Step 3.
Step 10. Terminate with p’= p q’ + Fm’/a +E(k k’- 1).
To understand this algorithm, let s R (p). If F,, _-< q in Step 2, then s,, 1

and the values of q, m, and k are saved. The check that q >-F,+I-F,,-t/I
F,, +. +F,,-t+2 determines whether or not s,, Sm_t+2 1 and s,,-t+l O.
Steps 6 and 7 decrement m in such a way as to bypass ineligible values of m, that is,
those for which Sm/l 1 or s,,+l 0 and s,,/2 s,,/ 1. The variable k
contains the number of nonzero values of s,, which have been encountered. At
completion, the last values of q, m, and k saved by Step 4 enable us to compute p’.

Example 4.1. First we list some values of Fn and E(n) for the case t 4:

n Fn E(n) n F. E(n)

1 1 1 9 188 1339
2 2 3 10 361 3921
3 4 7 11 693 8897
4 8 22 12 1340 18488
5 15 51 13 2582 54126
6 29 97 14 4976 122820
7 46 285 15 9591 255232
8 98 646 16 18489 747209

12 DEREK A. ZAVE

If we let p 3913 and let s R(p), then it is easily shown that

s={0, 1, 1, 1,0, 1, 1,0, 1, 1, 1,0, 1, 0, 0,...},

so the representation of p’ has the form

s’={1,1, O,O,l,l,l,O,l,l,l,O,l,O,O,...}

and it follows that p’= 3917.
We are now in a position to examine the problem of optimizing the polyphase

merge for an arbitrary initial distribution. Suppose that the dispersion routine
writes x 1, , xt strings to units 1, , t, respectively, and that the choice is made
to perform the polyphase merge starting with stage n. The only requirement on n
is that xi-<-S’ for each i. If this requirement is met, then it is only necessary to
include S’-xi dummy strings on each tape in order to obtain the perfect stage n
distribution. We have already observed that the number of times that a string is
moved depends upon its tape position. Therefore, the manner of placement of the
dummy strings has a direct influence on the volume of information moved.

It is quite obvious how to arrange the dispersed strings and the dummy strings
so as to minimize the volume of information moved. On each unit i, we place
M’(1) of the dispersed strings in the M’(1) string positions which will be moved
once, M’(2) strings into the positions which will be moved twice, and so on, until
we exhaust the x dispersed strings; we then place dummy strings in the remaining
S’-x string positions. In this way we insure that the dummy strings are in the
positions which will be moved the most.

One practical difficulty with the above approach is the problem of placing the
dummy strings if the dispersed strings are already on the tapes. With read-forward
tape units it is not permissible to write randomly on a tape. For this reason, we will
transform the above approach into a practical algorithm in which dummy strings
do not explicitly appear.

If S’(j-1)<x < S’](j), then, with the above scheme, there will be some j
movement string positions which contain dispersed strings and others which
contain dummy strings. We have not said how they are to be arranged. We
propose placing all of the j movement dispersed strings in front of all of the j
movement dummy strings on each tape unit. This method has the important
property that the pattern is preserved as the polyphase merge is performed. It is
not difficult to see that any time during the operation of the merge, any k
movement strings of nonzero length will be in front of any k movement dummy
strings on the same tape.

Another important consequence of this choice is that we are able to calculate
the positions of the j movement dispersed strings. Since these positions p have the
property that j n -D(p), see that the first of these positions is E(n -j) and that
the remaining positions are calculated by repeated application of Algorithm 4.2.
Since the pattern is preserved, the same observation holds throughout the
polyphase merge.

The algorithm which we will present is controlled by the two arrays C[i, j] and
P[j] (0 <-- <= t, 1 <- j <--_ n). C[i, j] will contain the number of strings on tape which
will be moved j times and P[j] contains the next j movement position on the input

OPTIMAL POLYPHASE SORTING 13

tapes. It is also convenient to have arrays for the numbers Fm and E(m), but we
will not mention these explicitly.

The inputs to the algorithm are the numbers Xl," ", xt of dispersed strings
on tape units 1, , and the starting stage number n of the polyphase merge to
be performed. (The next three sections of this paper are devoted to the proper
choice of these numbers.) In order to facilitate implementation, we will explicitly
mention the tape rewind operations required.

ALGORITHM 4.3. Optimal read-forward polyphase merge.
Step 1. [Initialization.] Let C[i,]]=M’(j)for l<-]<-n and l<-i<-_t. Let

C[0,/’] 0 for 1 _-</" _-< n. Let m n and u 0. Rewind all of the tapes.
Step 2. [Initialize C.] For each 1,..., t find the smallest] for which

x <-C[i, 1]+...+C[i,]]; let C[i,]]=x-C[i, 1] Ci,]- 1] and let C[i, k]=
0 for] < k -< n.

Step 3. [Test for termination.] If rn > 0, then go to Step 4. Otherwise, the sort
is finished. Rewind all of the tapes. The sorted records are on tape u’.

Step 4. [Initialize for stage m.] For /’= 1,..., rn let P[]]= E(m -]) if
C[i,]] > 0 fr some i; otherwise, let P[]] F,-I.

Step 5. [Test for the end of a merge.] Find the value of] which minimizes P[/’]
(1-</’-<_ m). If P[]] >--F,,,-1, then go to Step 9.

Step 6. [Merge some strings.] Merge one string from each unit u for which
C[i,]> 0 and write the resulting string to unit u.

Step 7. [Update C.] If rn > 1, then increment C[u,]- 1] by one. For each
u for which C[i,]] > 0, decrement C[i,]] by one. If each of these decrements

results in a value of zero, then let P[]]= F,,-1 and go to Step 5.
Step 8. [Update Q.] Using Algorithm 4.2, find the smallest p > P[/’] for

which D(p)= D(P[]]). Let P[]] =p and go to Step 5.
Step 9. [End of a merge.] Let m =m-l, u’= u, and u u+l mod T.

Rewind tapes u and u’ and go to Step 3.
In view of the discussion, this algorithm is reasonably straightforward.

However, we will comment on a few points. The computations required in Step 1
can be performed without any additional storage by careful use of the recurrence
relations (3.1). Our use of F,,_ in Steps 4, 5, and 7 is accounted for by the fact that

=ST-Fro-1 $1 which is the number of strings produced by the stage rn merge;
consequently F,-I is the first position which will not be used for this merge.

Although the computations required by the algorithm are formidable, they
do not really require much time. The bulk of the computation is performed in
Steps 5, 7, and 8 which are performed once for each string that is output. Since a
unit string will represent a large fraction of the storage utilized by the sort, it is
clear the time required will be insignificant when compared with the time required
for merging.

The storage requirements are not much larger than for other polyphase
merge algorithms. The only extra storage which is not required by other
algorithms is the storage for the arrays C and P and, possibly, the arrays
containing the numbers E(m) and Fm for a suitable range of m. We remark that
the additional storage required for these arrays when merging 100000 strings,
using ten tapes and the dispersion algorithm we will describe, should be less than
four hundred locations.

14 DEREK A. ZAVE

Remarks. Shell [8] has described an optimum polyphase sort which is
somewhat different from ours. He describes a method of generating the D(0),
D(1), D(2), directly and uses an array based on this sequence to control the
placement of the strings and the assumed placement of the dummy strings.
Unfortunately, this array becomes prohibitively large for large applications. An
account of Shell’s work also appears in [5, 5.4.2].

5. The volume function. Let us suppose that we have x =< S" unit strings
which we wish to merge with the stage n polyphase merge. Obviously, in order to
minimize the volume, we should place the unit strings into the positions which will
be moved the least and the dummy strings into the positions which will be moved
the most. Thus, if S (j) <= x <- S (j + 1), then unit strings should be placed in all of
the S (j) positions which will be moved j or fewer times and in x- S" () of the
+ 1 movement positions. When this is done, the volume of information which will

be moved by the merge is found to be

kM"(k)+(j+ 1)(x-S"(j)).
k=l

We will call the value of this expression the volume function and denote it by
V" (x). The expression may be simplified by observing that

(j + 1)S"(j) kM" (k) Y (j k + 1)M" (k)
k=l k=l

We may now write

(5.)

where S"(f) <- x <-_ S"(+ 1).

y, Y, M"(k) Y Y Mn(k)
k=l i=k i=1 k=l

Y, S (i) G"(j).
i=1

V (x) (j+ 1)x G (j),

In 4, we looked at the similar problem of optimizing the stage n polyphase
merge when it is known that tapes 1,. ., contain xl," , xt dispersed strings,
respectively. By similar reasoning, the volume of information moved in this case is

VI(X1)-}-""" q-

where each VT(xi) represents the contribution of tape to the volume. This
contribution is given by

(5.2) V’(x,) (ji + 1)xi- G’(j,),

where ji is chosen to satisfy S’(I’)Xi Sr(I’i -Jl- 1).
Obviously we must have

V"(x+. .+x,)<- Vi(xO+. .+ VT(x,).

We are interested in those distributions x1,..., xt for which we have equality.
Such a distribution is said to be optimal for stage n.

OPTIMAL POLYPHASE SORTING 15

THEOREM 5.1. A distribution x1," ",xt is optimalfor stage n ifand only if we
Scan find a j such that S’(j)<-xi <-_ i(1 + 1) for each i.

Proof. If the condition is satisfied, then optimality for stage n follows at once
from formulas (5.1) and (5.2) and the fact that G"(j) G’(j)+. + G’;(]).

Conversely, suppose that x1,’’’, xt does not satisfy the condition. We can
then find a] and two indices a and b such that xa < S(]) and Xb > S’(]). If we

by ’=define the distribution X’l, , xt Xa Xa + 1, X’b Xb 1, and xi xi for
a, b, then it is clear that

It follows that

V(xa)-)=] and

V(x) Vb(Xb) <=j + 1.

VT(x)+...+ v;’(x3 < VT(Xl)+...+ v’d(x,)
and therefore xl, , x cannot be optimal for stage n.

Example 5.1. We let t 4 as in our other examples and x 500. From the
table in Example 2.1, we see that the smallest value of n for which x <_- S is 9. Let
us evaluate V (x) for this value of n. Since S" (5) 338 < x < 534 $" (6), we may
apply formula (5.1) with j 5 to obtain

V"(x)=(]+ 1)x-G"(])=6 500-478= 2522.

This volume is the best possible volume obtainable with the stage 9 merge no
matter how the strings are dispersed. If we let n 10, then a similar calculation
shows that V (x) 2448 which illustrates how the choice of a larger stage number
than the minimum may improve the performance of the polyphase sort. We will
discuss this subject in 6.

We will conclude this section with two theorems concerning the volume
function which will be required later.

THEOREM 5.2. If x <= S, then V + (x) V (x) <-_ x.
Proof. We may assume that x > 0. Let j and k be the unique integers for

which

S"(j)<x <-_S"(j + 1) and S"+l(k)<x <-s"+l(k + 1).

From the recurrence relation for t-arrays, we see that S"(j+ 1)-< S"+I(j + 2), so
that

S"+a(k)<x<=S"(j+ 1) =< S"+I(j + 2)

which implies that k _<-j+ 1. From the recurrence relation, we also have
G(k 1)_-< G+l(k). We may now write

v"+l(x) V"(x)=(k + 1)x-G"+l(k)-(]+ 1)x +G"(])

=(k-j)x +G"(f)-G"+a(k)
<= (k -j)x + G"(j) G (k 1)
<- (k -j)x + (j k + 1)S"(j)

<-(k-j)x +(j-k + 1)x x.

16 DEREK A. ZAVE

THEOREM 5.3. Suppose that 0 <= X1 <----’’" <- Xt and that x <-S’]]’or each i. If
< S’]’oreachX , x is apermutation ofx, , xt which has theproperty thatx

i, then we have

VT(x)+...+ VT(x,)-< VT(x)+...+ v’;(x’,).

Proof. First we will prove the result for a simple interchange. Suppose that
1 -_< a < b -< t and that Xa <---- S’, xb <= $, and 0 -< xa < Xb. If Xa --< y < Xb, then let] and
f be the unique integers for which

S(j) <- y < S(j + 1) and S’(j’) <-_ y < S’(j’ + 1).

Since S,(k)<-_S’(k) for all k, it is clear that j>=j’ and therefore

V(y + 1)- V(y)-j’+ 1 j+ 1 Y(y + 1)- vT,(y).

By summing over y, we obtain

V(xo) V(Xa) <= V:(X) V?,(X)

which may be rewritten as

V(Xa) -[" V(Xb V(Xb)-’[- V(xa).

The general result is proved by permuting the numbers xI,..., x into
xl, , xt by a series of interchanges which successively place the proper values
into positions 1, , t and by applying the above result at each step. It is clear that
we only change the numbers y and Yb in positions a < b when Yb < Y. Also, since
Ya <----S <= S, we never place a number which exceeds S’ into any position i.

6. Optimal dispersion. In much of the literature on polyphase sorting, it is
assumed that the best starting stage number when merging x strings is the smallest
n for which x-< S". This method generally gives nice looking results when the
usual polyphase merge algorithms are used. However, when an algorithm such as
Algorithm 4.3 or the optimum polyphase sort of Shell [8] is employed, it is found
that better results may be obtained by choosing large values of n. In this section we
will investigate the problem of finding the value of n which minimizes V (x).

A good starting point is the following lemma on t-arrays.
LEMMA 6.1. LetA denote one ofthe t-arrays M, S, or G. Letjand d be positive

integers and let n (j, d) denote the smallest integer n >-_ 1 for whichA (j) >A,+d (j).
Then the following are true:

(a) If n >- n (j, d), then A "’(j) _-> A"’+a (j).
(b) Ifj’ >j, then n (j’, d) >- n (j, d).
Proof. It is easily verified that

(6.1) A -’(0) A(0) > 0 A (0) A)(0)

and that for j >_- 1,

(6.2) 0 _--< A 1-t(j) A o(j) _<A l(j).

OPTIMAL POLYPHASE SORTING 17

It is clear that n (, d) always exists since A (j) is zero for n sufficiently large. From
(6.1) it follows that

A I(1)>A2(1)>=A3(1)>-A4(1)>=.
so that n (1, 1)= 1 and (a) is true for n (1, 1).

We will now show that if (a) is true for n (, 1), then it is true for n (j, d) for
> 1 and for n(+ 1, 1). Let d > 1 be given and let rn => 1 t be the smallest such

integer for which A’() >Am+d(). It is clear that m +d > n(], 1). We will show
that An(j)>-An+d(j) for n >m. This is certainly true if n >-_n(j, 1). Also, if
rn _-<_ n < n (, 1), then we have

A (j) >-A" (j) > A"+a (]) An+d(]).
Since n (, d)_>-m, we see that (a) is true for n (, d). From the recurrence relation
for t-arrays, we have

An/l(] + 1)-An(] + 1) An(j)-An-’(j).

Consequently, if we let d t in the above argument, we see that we may choose
n(] + 1, 1)= m + t and that (a) is true for this choice. The validitv of (a) now
follows by induction.

To prove (b), let j _-> 1 and let n n (] + 1, d). From the recurrence relation for
t-arrays, we have

O>An/d(j+ 1)-A’(j+ 1)= E (An/d-k(j)--An-k(j))
k=l

so that A n-k () >An/a-() for some k with 1 -<_ k _-<. t. If n k ->_ 1, then n k ->_
n(], d) so that n > n(j, d). If n- k __-<0, then we must have n +d- k > n(], 1) so
that

A l(j)>=An-k(j) >An+’d-k(j)>--_A +d(j)

and therefore n (, d) 1 -< n. We have thus shown that n(+ 1, d) _-> n (j, d) and
(b) follows.

The lemma is particularly useful in the following form:
COROLLARY 6.1. Let A denote one o]’ the t-arrays M, S, or G. Then the

[ollowing are true:
(a) ffA (j) <A ’(j) for some 1 n < n’ and i <- 1, then A (j’) <-_ A n’(j,) for

allj’>-_j.
(b) IfA (j) >A’(j) for some 1 <= n < n and y >= 1, then A (j’) >- A’(j’) for

all ’ with 1 <-_ j’ <-_ j.
Proof. To prove (a) let d n’-n. Certainly n < n(], d) so it follows that

n < n (f, d) for all]’ ->_], and the result follows from the definition of n (j’, d). This
also proves (b) since (b) is the contrapositive of (a).

THEOREM 6.1. I]’ n < n and V" (x > V"’(x]’or some x <- S, then there exists
a j <n[orwhich G"(]) < G"(j).Furthermore, ifx < y <-S, then Vn(y) > Vn’(y).

Proof. Clearly x > 0. Let] and k be the unique integers for which

Sn(j)<xSn(j+l) and Sn’(k)<x<-_S"’(k+l).

18 DEREK A. ZAVE

We observe that] < n. By assumption

(j + 1)x-G"(])= V"(x) > V"’(x)=(k + llx-Gn’(k)
which reduces to

Gn(j) < Gn’(k +(j kIx.
In .order to prove that G’ (/) < G"’(j) we will show that (/- k)x <-_ G" (/)- G"’(k).
If] k, then there is nothing to prove. If] > k, then we have

(j k)x <= Y. sn’(i) Gn’(/) Gn’(k).
i=k+l

Similarly, if/" < k, then

k

(j k)x (k -j)x <= ., sn’(i) G’’(j) Gn’(k).
=/+1

Now suppose that there is a smallest y with x < y =< S for which V (y)<-
Vn’(y). Let j’ and k’ be the unique integers for which

sn(j’) < y <= sn(j + 1) and sn’(k ’) < y <- sn’(k + 1).

Since V (y- 1)> vn’(y- 1), we find that

’ / 1 V (y) V (y 1) Vn’(y) Vn’(y 1) k’ + 1

from which it follows that]’ < k’. On the other hand, since G (]) < G (j), we can
find an m_-<j for which Sn(m)<Sn’(m). By (a) of Corollary 6.1, we see that
S (m’) <-_ sn’(m’) for all m’ _->_ m. Since j’ + 1 >] _-> m, it follows that

y <= sn(j’+ 1)<=sn’(j’+ 1)<--sn’(k ’) < y

which is impossible. This completes the proof. l
COROLLARY 6.2. Let N(x) be the smallest integer n which minimizes V (x).

Then N(x) is an increasing function of x.
Proof. Suppose that N(x)> N(x + 1) for some x and let a N(x) and b

N(x + 1). Since b < a, we must have V (x) < Vb (x). Also, since x + 1 _-< So <-_ S, it
follows from Theorem 6.1 that V (x + 1)< Vb (x + 1) which implies that
N(x+l)#b.

Remarks. Most of these results were first proved by Knuth [5, Exercise
5.4.2-14], however, our proof of Theorem 6.1 is somewhat different. Shell [8] has
observed Corollary 6.2 empirically.

In the remainder of this section, we will solve the problem of determining the
range of values of x for which N(x) takes a given value. We will begin by
examining some of the more subtle properties of the numbers G (]).

LEPTA 6.2. For each t >-_ 2, them exists a number n with the property that
G (j) < Gn+l(j) for some j with 1 <=j < n, ifand only ifn >= nt. In particular nz 8,
n3 5, n4 4,. and nt 3 for t >= 5.

Proof. If Gn(j) < Gn+l(j) for some j with 1 =<j <n, then we can find a j.’ _-<j
for which S (j’) < Sn+ (/,). By (a) of Corollary 6.1 we find that S (k) -_< Sn+l(k for
k _->] _->j’ and consequently G" (n 1) < Gn+l(n 1). It follows at once that such a

OPTIMAL POLYPHASE SORTING 19

/" exists if and only if G" (n- 1)< Gn+l(n- 1). Furthermore, if this inequality
holds for n, it holds for n + 1 since, by (a) of Lemma 6.1, we have G"-k (n- 1)_-<
G"-k+l(n- 1) for k 1,..., and it follows from the recurrence relation for
t-arrays that

Gn+2(n)-Gn+l(n) Gn+l(n- 1)-Gn-t+l(n- 1)>0.

The following table will serve to verify the values given for nt:

t G"’-l(n,- 2) G"’(nt- 2) G"’(nt- 1) G"’+l(nt- 1)

2 58 56 109 114
3 20 20 48 56
4 11 11 32 40

_->5 t-1 t-2 4t-5 5t-9

LEMMA 6.3. For each n >-nt, let j. denote the smallest integer j for which
G" (j) < G + (i)" We then have

Proof. First we will show that j, _-< j, + 1- Assume that for some k <j, we have
G"+l(k) < G"+2(k). We may write

Gn+l(k)-Gn(k) Gn(k- 1)-Gn-t(k- 1)

(G"+l(k- 1)-G-t+(k- 1))

+(G"(k-1)-G"+l(k-1))
Jr-(Gn-t+l(k-j)-G"-t(k- 1)).

The first parenthesized term is equal to G"+2(k)-G"+l(k) and is therefore
positive. The second term is nonnegative since k <],. Since G"+l(k) < G"+2(k) it
follows from the recurrence relation for t-arrays that G"+l-m(kl)<
G"/2-’(k 1) for some m with 1 _-<m _-<t. From (a) of Lemma 6.1 it follows that
G"-t(k 1)-< G"-’/l(k 1) so the last parenthesized term is nonnegative. We
have therefore shown that G"(k)< Gn+l(k) which contradicts the minimality of..

Since G" (],)< G"+I(],), we may show as in the proof of Lemma 6.2 that
+2,,G"+1(], + 1) < t1,, + 1) and therefore],+ --<], + 1. Finally, since G"+t (],+,) <

G"+t+I(f,+t), it follows that G"+t-k (],+t- 1) < G"+t+a-k (,,+,- 1) for some k with
1 _-< k _-< t. Consequently,],, _-<], +t-k ----<],,+t 1. This completes the proof.

LEMMA 6.4. Define the numbersNtbyN2 19,N3 6, andNt nt,for t "->4. If
n >- Nt and] >-_ O, then

2G"(j)-< G"(j+ 1)+ G"+’(j 1).

Proof. We will show that the above inequality holds for all but finitely many
values of n _-> 1 and] >=0. The condition on n is sufficient to exclude these
exceptions. We define the t-array D by

D"(j) a"(j + 1)+ G"+’(j 1)-2G"(j).

It is not difficult to verify that the nonzero elements of the initialization region for

20 DEREK A. ZAVE

D are

D(j)=(t-1)j-t forj>_-i and

D"(- 1) 1 for 1-t<=n <-0.

We observe that D(1) =-1 is the only negative element for the initialization
region. Tables 6.1 (a), 6.1 (b), and 6.1 (c) each display a portion of the t-array D for

TABI.E 6. l(a)
ProofofLemma 6.4 (t _>- 4)

0

1
2

0
-1 0
t-2 -1 -1 t-1

TABLE 6. l(b)

ProofofLemma 6.4 (t 3)

0 4 6

j=0

2
3
4

0
-1

3

3 2
0 3 5

-1 -1 2 8
0 --1 0 9

4 0 -I 8

t _>- 4, 3, and t 2, respectively. By inspecting these tables, it is clear that there
are no negative values of D" (]) with n >-0 other than those displayed. Since the
negative entries only appear in the columns for which n < Nt, if follows that
D" (j) _-> 0 when n -> Nt. 13

THEOREM 6.2. If n >=Nt and if we define
c.=G"(j.)-G"+(].-1),

then the following are true"
(a) S"(j.)<=c. <-S"(j. + 1),
(b) S"+a(].. 1)-<c,, <S"+X(j,,),
(C) Vn(cn) vn+l(cn)
(d) V (c -+- 1)> V"+a(c. + 1) if c. < S",
(e) c. <c.+.
Proof. From the definition of]. we know that G" (j. 1) ->_ G"+a(]. 1). We

therefore have

s"(j. G"(j. G"(i. 1 < G"(j. ’"+v .u. l

=c. < G"+’(/.)-G"+(i.-) S"+’(j.).

From Lemrna 6.4,

c, G"(],)-G"+I(],- 1)_-< G"(], + 1)-G"(I’,)= S"(/’, + 1).

OPTIMAL POLYPHASE SORTING 21

22 DEREK A. ZAVE

Also from Lemma 6.4,

s"/(j.) O"/(j.)- O/(y. 2) _-< G(L) O"/(j.) c..

This completes the proof of (a) and (b).
From (a) and (b) we have

Wn (cn) =(]n + 1)Cn Gn(]n)

--]’nGn(]n)-(]in + 1)Gn+l(] 1)

=jc -G+(j- 1)= vn+(C)
which is (c). To prove (d) we first observe that from (a) and (b) we have
V"+l(c,, + 1)- V"+(cn)=j,, and Vn(c, + 1)- Vn(c,,)>=j,, + 1 if c, < Sn. From (c)it
follows that

V" (c,, + 1)- vn+l(Cn "1" 1)>_-1 + V" (c,,)- vn+l(cn) 1.

By Lemma 6.3 we have j, jn+l SO by (a) and.(b),

Cn <sn+l(jn)Sn+l(jn+l)Cn+l
which is (e). This completes the proof. [3

COROLLARY 6.3. c,, --> oo as n --> .
Proof. This follows from (e) and the fact that c, is an integer.
For each t => 2, we define the sequence L1, La, as follows: If => 3, then we

let L, S for n < Nt and L,, c for n->Nt. If t 2, then we let L,, S" for
n -< 15, L6 2573, L7 3954, L18 6527, and L, c for n ->Na 19.

THEOREM 6.3. The sequence L1, L2,’" is strictly increasing and has the
property that V + (x >= V" (x if and only if x <= L,.

Proof. First we will show that the sequence is strictly increasing. We already
know that S < Sn+l for all n => 1 and that c, < c,+1 for all n _>-Nt. These observa-
tions leave us with only a few special cases to consider.

When t >= 3, we must show that when n Nt 1, we have S L, < L,+I
Cn+l. When t => 5 we may show from the appropriate t-arrays that S2 2t- 1 and
c3=3t-2 so that L, <L,/I since Nt 3. When t=4, we have Nt =4 and
L3-" S3-- 13<22 =Ca--L4. For t= 3, we have Nt =6 and L5 S5= 31 <32
6 L6. For the remaining special case 2, we have L15 S 15 1597 < 2573
L6, L16<L17<L18, and L18 6527 < 10488 c19-- L19

To prove the second part of the theorem, it is sufficient, in view of Theorem
6.1, to show that V /I(L) >= V" (L) for all n _>- 1 and that V /I(L.,+ 1) <
V"(L,, + 1) whenever Ln <S. If n <nt, then G"(])>= Gn+l(]) for all] with
0 =< < n, so by Theorem 6.1, we have V /I(L.) => V (L,). We also note that
L, S for n < nt. When n >= Nt, then everything follows from Theorem 6.2. Since

nt Nt for => 4, this proves the result for => 4. To extend the result to the case
t= 3, we observe that in this case we have L5 S5 and VS(Ls) 107 < 108
V(L).

When t 2, there are a number of special cases to consider. First we note that
L,, S" for 8 =< n -< 15. By direct computation, We may verify that

vS(ts) 331 < 343 V9(L8),
V9(L9) 600 < 614 VI(L9),

OPTIMAL POLYPHASE SORTING 23

We also have

Vl(Llo) 1075 < 1092 Vla(L0),
via(L11) 1908 < 1935 V12(Lll),
vlZ(L12) 3360<3396= V13(L12),
V13(L13) 5878 < 5901 V14(L3),
Va4(L14) 10225 < 10240 V15(L14),
V15(L15) 17700< 17726= V16(L15),
V16(L16) 30342 < 30343 V17(L16),
vlV(Lav) 48950= V18(L17),
V18(L18) 85819 < 85820 V19(L18).

V16(L16 + 1) 30357 > 30356 V17(L16 + 1),

V17(L17 -k- 1) 48965 > 48963 V18(L17 -+- 1),

V18(L18 + 1) 85835 > 85834 V19(L18 + 1),

which completes the proof of the theorem.
Two consequences of this theorem are easily proved.
COROLLARY 6.4. N(x) is the smallest integer n for which x
COROLLARY 6.5. If V"(x) <- V"+(x), then V"’(x)<-_ vn’+l(x) for all n’>=n.
Remark. Corollary 6.5 answers in the affirmative a conjecture of Knuth [5,

Exercise 5.4.2-15].
Table 6.2 provides the values of L, for t 2, , 7 and n 1, , 19. Since

such a table is easily prepared, we are able to provide a very simple dispersion
algorithm.

TABLE 6.2

L,,]’or 2 <= <= 7 and ln-<_19

t=2 t=3 t=4 t=5 t=6 t=7

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

2 3 4 5 6 7
3 5 7 9 11 13
5 9 13 13 16 19
8 17 22 28 19 23

13 31 34 42 52 26
21 54 75 60 72 87
34 95 108 153 97 114
55 172 243 215 282 147
89 279 358 268 385 167
144 534 455 778 480 639
233 819 1196 1033 554 791
377 1634 1562 1248 1995 921
610 2400 4033 3909 2485 1016
987 4958 5378 4969 2900 4396
1597 7028 6455 5840 10577 5250
2573 14952 18560 19408 13096 5978
3954 20582 22875 23917 15335 6498
6527 44898 64188 27556 17028 30163
10488 60297 88058’ 95802 69843 35027

24 DEREK A. ZAVE

ALGORITHM 6.1. Optimal polyphase sort for x strings.
Step 1. Find the smallest n for which x _-< L,,.
Step 2. Choose a for which S (/’) -<_ x -<_ S (/" + 1).
Step 3. Find integers x,. , xt for which x x +... + xt and S’(/’) <_- x _<-

S’(j+l) for 1,..., t.
Step 4. For each 1,. , write xi strings to tape i.
Step 5. Use Algorithm 4.3 to perform the polyphase merge on the distribu-

tion x,..., xt starting at stage n.
Remarks. Since Steps 2 and 3 of the above algorithm and Steps 1 and 2 of

Algorithm 4.3 both require tables of .the numbers M’(j), some of the operations
of these steps can be combined. The above algorithm should be compared with
Shell’s optimum dispersion algorithm [8] which is directed by a table of numbers
closely related to the numbers L,,. The functions V’(x) share many of the
properties of the function V" (x) and most of the results of this section can be
carried over to these functions. Unfortunately, the analogues of the numbers j,
are in general different for each i; otherwise the next section would not have to
have been written.

7. Blind dispersion. In practice, it is very difficult to predict the number of
strings that a dispersion routine wi$1 provide. However, Algorithm 6.1 requires
that this number be known before the strings are written to the tapes. This brings
us to the problem of blind dispersion, that is, dispersion without knowing the
number of strings in advance.

We begin by observing that no solution to the blind dispersion problem will in
general be optimal. Indeed, solutions which require rearranging the contents of
the tapes will require additional string motion which will result in a solution
which is at best optimal. Therefore, let us consider a solution in which the strings
stay on the tapes once they are written. Let us suppose that t 2 and that we have

dislersed S= 144 strings optimally. Since N(144)= 10 and V(144)= 1075 <
1088 V(144), it is clear that the only optimal distribution is for stage 10 when
there are S 55 strings on tape one and S= 89 strings on tape two. Let us see
what happens when we add another string. Since N(145) 11 and V (145)
1100(1143= V1(145), the best distribution of 145 strings is one which is

0
optimal for stage 11. However, snce S >52=$1 (8)+1 and <96=
Sa(8)- 1, we see that there is no way of arriving at a distribution which is optimal
for stage 11 by adding one string to our original distribution. This pathology was
first discovered by D. E. Knuth.

It is not difficult to see that any blind dispersion technique which rearranges
the contents of the tapes can be transformed into an equivalent (or perhaps better)
method in which the rearranging is performed after all of the strings have been
dispersed. The effectiveness of such a technique depends on how close the
distribution, prior to rearranging, is to an optimal distribution. We remark that
one kind of rearrangement which incurs no extra cost is that of renumbering the
tape units. Theorem 5.3 shows that a monotone distribution provides the best
renumbering possible. However, since the distributions which we will consider
will be monotone or can be made monotone, we will have no use for this
technique.

OPTIMAL POLYPHASE SORTING 25

In the remainder of this section, we will construct a nearly optimal blind
dispersion technique which requires no tape rearrangement. This dispersion
technique can be used by itself or in conjunction with some rearrangement
algorithm.

Suppose that n => Nt. We define rn (n) to be the largest integer m for which
/’,, =/’n. From Lemma 6.3 we see that m(n)< n + and that jm =/’,, for n _--< rn --<
re(n). For 1,..., we define

B’ min {Si (1,,)ln<-m <-_m(n)+ 1}

and

B =B+.-.+B.

THEOREM 7.1. For n >--Nt we have
(a) B’<-_B’+1 forl <-_i <-t;
(b) BT=<B=<’" =<B’;
(c) "< < tSi(]n 1)<--Bi Si (1,,)]:or 1 <

n n+l(d) S’+I(j- 1)<-Bi S (j) for 1<-i t,
(e) B <-c, <Bn+t.
Remark. Statements (c) and (d) imply that the distribution B’,..., B’ is

optimal for both stage n and stage n + 1.
Before we prove the theorem we require a lemma"
LEMMA 7.1. If n >= Nt, then for 1,. , t we have

S+l(j 1) <- S’(jn).

Proof. We will begin by showing that for n >= 1 we have

(7.1) ST(j) S’] +(f 1) >= G"(] 1 G"+(f 1

with only finitely many exceptions. We define the t-arrays A for 1, , t and
D by

A ’(j) S’(j) S’+ a(j 1),

D"(j) G"(j 1)-G"+’(j 1).

It is not difficult to verify that the nonzero elements of the initialization regions for
the t-arrays A1,..., At are

AI-t(]) 1

Ai-t- l(j) --1

A (j) -1

At(0) At(1) 1.

Also, the nonzero elements of the initialization region for the t-array D are

D(j) t-(t- 1)j for j >- 1.

Tables 7.1(a) to 7.1(g) each display portions of the t-arrays A-D for various
ranges of and i. By inspection, we see that the only negative entrie outside of the

for l_-<i<t andj_->O,

for 1 <i -<t and j_-> 1,

for 1 -<_ < and j ->_ 2, and

26 DEREK A. ZAVE

TABLE 7. l(a)

ProofofLemma 7.1 (t >_- 4, t)

-1 0 2

j=O

2

0
-1 0
-1 t-2 -1 0

TABLE 7.1(b)
ProofofLemma 7.1 (t=3, 1)

1-t 0

j=O

TABLE 7. l(c)
ProofofLemma 7.1 (t -->_4, <i <t)

i-t- i-t 0

j=O

2

0 0 0
-1 0
-1 0 t-3 -1 ->0 _->1

TABLE 7. l(d)
ProofofLemma 7.1 (t 3, 2)

-2 -1 0 2

j=O

2

0 0
-1 -1
-1 1 0 -1 1

TABLE 7. l(e)
Proofo[Lemma 7.1 (t 3, 3)

-1 0 2 4 6

y=O

2
3
4

0
-1 0 1 1 1
-1 -1 0 2 3
-1 3 0 -1 0 1 5
-1 5 2 2 2 -1 0 6

OPTIMAL POLYPHASE SORTING 27

28 DEREK A. ZAVE

OPTIMAL POLYPHASE SORTING 29

initialization region are those displayed. Except in the case 2, we see that
(7.1) holds for all n >-N, and 1,. , t. From the definition of ,, we see that
G"(],, 1) G+(],, 1) and therefore by (7.1) we have S’(I",,)>-S’+(], 1). In
the exceptional case we have n N, 19 and]9 15 so we may verify directly
that S9(15)= 6050 > 5270= S(14). This completes the proof. [3

Proofof Theorem 7.1. If] =/’+, then re(n) m(n + 1) so that (a) is obvious.
If this is not the case, then by Lemma 6.3, we must have],+] + 1 so that
S’+l(jn) >= S’;+(jn+l). Also, since m(n + 1)_-< n + t, we see that S’+l(jn <--ski(in+l)
for n + 2 _-< k _-< m (n + 1) + 1; this follows from the fact that S’ +’ (j,) is a term of the
t-sum which computes sk(j,,_,). We have therefore shown that B"< S7+1(],,)_<
B’+1, which is (a). Statement (b) follows at once from the fact that S’;(])<-_... <-
S’;(]) for all n >_- 1 and] >_- 1.

To prove (c) and (d) we first observe that the definition of B implies that
B’;<-_S’;(I’,,) and B’;<=S’;/(],,). It is also clear that S’;(],,-1)<=S’(j,,) and
S’+(.i,,-1)-<_S’+(],). From Lemma 7.1, we have S’;+(], 1) <- S’(/’). Finally
by reasoning similar to thatused in the above paragraph, we have S’(],,- 1) -<_
S(],,) for n + 1 <-k <-_m(n + 1) and $7+1(] 1) <-S(],,) for n +2_-<k <-re(n)+ 1 if
re(n) > n. From these inequalities, it follows at once that S’;(I’, 1) _-<B’ and that
S’;+(],, 1)-<B’ which completes the proof of (c) and (d).

By (c) we have B" _-< S" (])_<-c. If we let n’= re(n)+ 1, then it is clear that
],,], + 1,],-1],, and n’ _-< n + t. Therefore, by (a) and (c) we have

c. <= c.,_ < S"’(].,_) S"’(].,- I) <-_B"’<-_B"+’

which establishes (e) and completes the proof of the theorem. [-1

From the theorem, two important properties of the distributions B, ,
are apparent. First, we may arrive at the distribution B’+1,. ,ur"+lt by simply
adding strings to the distribution B,. , B"t. Second, if we are dispersing for
stage n and we reach the distribution BT,. , B"t, then we may begin dispersing
for stage n + 1 since the distribution is optimal for both stages. Clearly we can base
a blind dispersion algorithm on these properties of the numbers B. However,
since we will be making several refinements, it is of value to examine the general
structure of such an algorithm.

We define a quota scheme for polyphase dispersion to be a family of
nonnegative integers O", O,’" Ot, n 1, 2,..., which have the following
properties for n _-> 1 and 1 _-< _-< t"

0"<-07+...+07 and O"oo asnoo.

Following is the dispersion algorithm which is directed by the quota scheme.
The counters x 1, , xt contain the numbers of strings which have been written to
tapes 1, , t. Upon completion, the values of x 1, ",x, and n are the parame-
ters for initializing Algorithm 4.3.

ALGORITHM 7.1. Quota-directed polyphase dispersion.
Step 1. Letn=landxi=yi=0fori=l,...,t.
Step 2. If there are no more strings to disperse, then terminate the algorithm.

30 DEREK A. ZAVE

Step 3. If Xl "q-" -[- Xt Qn, then let n n + 1 and yl yt 0 and
repeat this step.

Step 4. Choose some for which x < y. If this choice cannot be made, then
go to Step 6.

Step 5. Write a string to tape unit i, let x x + 1, and go to Step 2.
Step 6. Find the smallest j for which X <ST(j) for some i. Let Yi--

min (Q’, S’(j)) for i= 1,..., t. Go to Step 4.
Informally, this algorithm disperses for stage n keeping xi <- Q’ for each

until Xl+’"+xt Q" and then begins dispersing for stage n + 1. When the
algorithm is dispersing for stage n, the strings are written in such a way as to
minimize the growth of V’(x)+... + V’(xt).

Since the choice of made in Step 4 is arbitrary, the distribution Xl,. "’, xt
may be uncertain when the algorithm switches from stage n to stage n + 1. For this
reason, the first value of j chosen for stage n + 1 by Step 6 may vary thereby
causing the volume of the sort to vary. This uncertainty disappears if Q’=
Q+. + Q’ or if it is known that when we switch from stage n to stage n + 1,
then the distribution is optimal for stage n + 1. Indeed, in the first case the
distribution is completely known and in the second case we know that j is the
smallest integer for which Xl +" + xt < S+I(j). The quota scheme which we will
consider has one or the other of these properties for each n.

When the quota scheme has these properties, then Algorithm 7.1 may be
transformed into a simpler table-directed algorithm. The tables have the entries
nk, qk, ql,’’k ",qtk for k > 1 and are constructed as follows: We initialize the
counter k to zero and perform Algorithm 7.1 with an unlimited supply of strings;
after each time that Step 6 is performed, we increment k by one and let n k --n,
kq Q and q/k Yi for each i. The simplified algorithm follows"

ALGORITHM 7.2. Simplified quota-directed polyphase dispersion.
Step 1. Let k 1 and x X O.
Step 2. If there are no more strings to disperse, then terminate the algorithm.
Step 3. If Xl /" "/ xt qk, then let k k + 1.
Step 4. Choose some for which xi < q ki. If this choice cannot be made, then

let k k / 1 and go to Step 3.
Step 5. Write a string to unit i, let x x + 1, and go to Step 2.

kAt termination, the parameters for the polyphase merge algorithm are n
and Xl,’",xt. Since the required tables may be prepared in advance, this
algorithm provides a very compact method of dispersing for the polyphase sort.
For most applications, the maximum value of k should never exceed forty.

We will now present the rules for constructing the quota scheme for the blind
polyphase dispersion algorithm.

1. If n >-Nt and if B’ < S’;(I’,,) for some i, then we let

Qn B and Q Bi for 1,. , t.

2. If n >-_ Nt and if B’ S’;(I’) for each i, then we let

O’= min (S7(1",, + 1), s+l(jn) B7+1)
for i= 1,..., t and we let

O min (cn, O7+"" + 07).

OPTIMAL POLYPHASE SORTING 31

3. If t-> 3 and 1 _-< n < Nt, then we let

0n=S’’ and O7=S’ fori=l,...,t.

4. If t 2 and n < Nt 19, then we let

On=S and Oi=Si forn_-<15andi=l,...,t

and, in addition, we let

l 16 t16 2573, 017 3845, 0TM L18 6527,

I6= S6(15)= 986, O6= S6(15)= 1596,

O7= S8(13)= 1383, O7= S7(14)= 2462,

O8= Ss(16)= 2567, Q18= S8(16)= 4163.

To show that these rules define a quota scheme, we will begin by showing that for
n ->_ Nt, we have

B <_Qn <_Bn+l and B’]<=Q’<=Br]+1 for 1,..., t.

These relations are obvious when rule 1 is applied. If rule 2 is applied instead, we
have, from Theorems 6.2 and 7.1,

B n+lS](In) <- Q] <Bi for j 1,. , t and

B Sn(jn)<-O <-0’+" "+O’]<=Bn+l.
For t -> 3, we must show that when n Nt 1, we have S _-< 0"+1 and
for 1, , t. Clearly, it is sufficient to show that S-<B’ for each i. For t 3, we
have Nt 6 and

S=7<12=B, S=11<19=B62, S=13<27=B.
Similarly, for 4 we have Nt 4 and

S=2<3=B, S=3<5= O,
$33 4<6 =B, S]=4<7= O.

For t _-> 5, we have Nt 3 and using the t-array representation, it may be shown
that G (2) 2t + (n 1)(t- 1 n/2) for 1 _-< n -< t from which it follows that
G3(2) <. < Gt-l(2) Gt(2) so that m(3) t- 2 since/’3 2. Using t-arrays, we
may also show that S/(2)-<... _-< S(2) for each so that S2(2)-< S/3(2)= B3 for
each i. The proof that rule 4 also contributes to a quota scheme is straightforward
once we observe that when 2 we have

S5=610, S5=987, B9=3588, B9=6050.
We have already seen how the numbers B and B’,..., B’ can be used to

describe blind polyphase dispersion so rule 1 requires no explanation. Rule 2
represents a refinement in which O is pushed to the largest value not exceeding
for which we can switch from stage n to stage n + 1 with a distribution which is
optimal for both stages. Rule 2 will be used for each n for which jn+l jn + 1.
Rules 3 and 4 simply fill out the quota scheme for small values of n. The speciial

32 DEREK A. ZAVE

assignments in rule 4 were chosen subjectively to insure reasonably good perfor-
mance.

If we are dispersing using the quota scheme just described, it is clear that
when the number of strings x is large, then we will switch stages with a distribution
which is optimal for both stages. Consequently, the volume of the sort will be
vV’(X)(x) for some integer N’(x) when x is sufficiently large. Since Qn -<c,, for
n =>Nt, it is clear that N’(x) >=N(x). On the other hand, since c, <B"/t <-_ O/, we
see that N’(x) < N(x) + t.

The blind polyphase sort which we have described is almost as good as the
optimal sort of Algorithm 6.1; when the number of strings is in the range of the
size of most applications (say, less than a thousand), the two sorts are almost
always equivalent. When the number of strings is large, it can be shown that the
two algorithms are equivalent infinitely often. Indeed, this happens for S (],,)
strings every time that]+ =/’, + 1. In the next section we will show that the two
algorithms are also asymptotically equivalent.

Example 7.1. Table 7.2 displays a portion of the simplified quota scheme for
the case 4.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

TABLE 7.2

Simplified quota schemefor 4

k k qk qk k k k
q2 q3 q4

4
2 7 1 2 2 2
3 9 2 3 3
3 13 2 3 4 4
4 21 3 5 6 7
4 22 4 6 7 8
5 30 4 7 9 10
5 34 4 8 11 13
6 36 4 8 11 13
6 71 10 17 21 23
6 75 13 22 26 28
7 100 13 23 30 34
7 108 14 27 37 44
8 122 14 27 37, 44
8 241 34 57 71. 79
8 243 44 77 92 100
9 338 44 78 101 115
9 358 50 94 128 151
10 423 50 94 128 151
10 455 50 100 144 178
11 472 50 100 144 178
11 1156 151 266 345 394

8. Asymptotic performance. In this section, we will study the performance
of the algorithms which we have described when the number of strings is large.
There are two volumes which we are interested in estimating. First there is the
volume of the optimal polyphase sort of 6,

V(x)= v’()(x),

OP’[][MAL POLYPHASE SORTING 33

and, second, there is the volume of the blind polyphase sort, when x is large, this is

V’(x) v"X(x).
We will show that when x is large, both of these volumes are asymptotically equal
to

x logt x + 1/2x logt logt x + O(x).

The reader who is not familiar with asymptotic methods may find [1] or the first
chapter of [4] to be helpful.

Our starting point is an interesting connection between the movement
numbers and the theory of probability. Let Y l, Y2," be independent random
variables which each take on the values 1, 2,..., t with equal probability t-1.
Simple calculations will show that each Yi has an expectation (t + 1)/2 and a
variance r2= (t2- 1)/12. For positive integers rn and k we define

(8.1) p(m,k)=prob(y+... +yt, m).

LEMMA 8.1. For n >-- 1 and j >= 1, we have M’](j) tip(n,]).
Proof. Let q(z)= z + z 2 +... + z for the real variable z. We will begin by

showing that

(8.2) Z Mt’(j)z q(z)j.

Since the only nonzero values of M(1) are M(1) 1 when 1 _<-n <_-t, we see that
(8.2) is true when] 1. Furthermore, given (8.2) and the fact that M-(])= 0
when n <= k, we may write

2 M’(j+l)z"= 2 M-k(])zn
n>l n=>l k=l

E z E M’-(J)z"-
k=l

Z z’q(z)1=q(z)i+’
k=l

so that (8.2) follows by induction. From the form of q(z), we see that the
coefficient of z in q(z) is precisely the number of ways that n may be written as
the ordered sum of j integers, not necessarily distinct, chosen from the set
{1, 2,. , t}. Since this number is precisely tp(n, j), the proof is complete.

Techniques for estimating probabilities of the form (8.1) are well known. For
our purposes, the best such approximation follows from a theorem of C. G. Esseen
which is given on page 241 of [3]:

e-/ (1 Ol(S) + O2(S) Q3(S) q..O4(S) (_)P(m’ k o" i-+ k k’3/z + k2 -}.+ 0

where we have written s (m-Ixk)/r’]- and where O(s), O2(s) O3(s), O4(s)
are polynomials in which the coefficients depend only on the moments of Yi which,
in turn, depend only on t. It turns out that all of the centralized moments of yi of

34 DEREK A. ZAVE

odd order are zero. This leads to some simplifications; in particular 01(s)=
O3(s) 0 and 02(s) takes on the simplified form c($4-6s 2 -t- 3) in which c depends
only on t. Using the estimates

e -s2/2 1 -1/2s 2 + O(s4),
O(s) 3c + O(s 2 + $4),

e-S2/2O4(s)=O(1),

we obtain the approximation

@(k1 3k--) (k- $4 Sk.)p(m,k)= (1-s2/2)+ +0 +k-+
which may be written in the form

+ 3c- f jj 0(1

572 j.

To simplify subsequent calculations, we will use the symbol ,(z) to represent
generically an nth degree polynomial in z in which the coefficient of z" is positive
and in which all of the coefficients are functions only of t. Two distinct appearances
of the symbol in the text need not represent the same polynomial. With this
convention, we now have

(8.3)
p(m,k) trx/Trk

1 (.l+(m-tzk))k;l’]l2(m tzk) + 0
k 5/2

LEMMA 8.2. We have

(8.4) tz l-:2(n i]) + o(l + (n tx])8

Proof. From the last two formulas of (3.1), we have

M’(j) MT-’(j 1) +..-+MT-’(j 1)

so that

M"(j) tMT-’(j- 1) + (t- 1)MT-(j 1)+... +MT-’(j- 1).

Therefore, by Lemma 8.1, (8.3), and the facts that

(j_l)1/2=+2j/2+O
+o

OPTIMAL POLYPHASE SORTING 35

we have

t-/M"(j) (t-i + 1)t-/MT-i(j 1)
i=1

t-1 (t-i+l)p(n-i,j-1)
i=1

t-1 1 3/2

+1)
2 n ixj + tx

tr
_rT---

"
(t-i+ 1)- .

i=1 1

+O(1
]5/2

which is easily reduced to the form (8.4). 1-1
LEMMA 8.3. We have

Ix 2(n -Ixj)
(8.5) Vr]’t-G"(Y) trx/ (t- 1)2 j

Proof. From our definitions we have

k

G(]) E S(/’) E E M(i)
k=l k=l i=1

.1+ (n
+0

.2

j--1

(j-k + 1)M(k) (k + 1)M"(j-k).
k=l k=O

Using this formula and Lemma 8.2, we obtain

]-1

t-/Gn(j) E t-/(k + 1)M"(j-k)
k=O

(1 2(n IXj + Ixk).

(j-1 m+(n_j+.k,8)+ 0 t-(k + 1))s/k o (/-k

In order to simplify the above approximation, we need to be able to estimate sums
of the form

j-1 k -kS(a, b) k=O(j k)t
for a =0, 1,-.., 9 and b 1/2, 3/2, 5/2. Let us write rn i_x/J-1. If] is
sufficiently large, then we will have k < (3/2)k for all k > m and a 0, 1, , 11.
From the binomial expansion, it is clear that for k _-< m, we have

1 lbk (k2)=--+.-x+O(i-k)b Jb I

36 DEREK A. ZAVE

It is also clear that

kat-k s(a) + 0((3/2t)"),
k=0

where

s(a)= kat-k.
k=0

We therefore have

k bka+l] j-1 k
s(a,b) Y. \jb + jb+l It-k+ Y’. t-k

k=0 k=m+l(f--k)b

ka+2 -k

.----+ .+ +O (3/2t)+

since the second sum is O((3/2t)) and the last sum is 0(1/]+). Since (3/2t) is
0(1/]+) for each b, we may replace the above error estimate by O(1/]+). The
conclusion of this lemma now follows from the facts that

s(O) t/(t- 1) and s(1)= t/(t- 1)2.
COROLLARY 8.1. If n --j O(1), then

O
1

t-a(l
(-

+

Po@ This is a simple consequence of the lemma.
CooA 8.2. Let] be defined as in 6; we then have n-] O(1).
Proof. We recall that] is the smallest integer] for which G (])< G+(]).

From the estimate (8.5), we obtain

t-(a"+(]l (+O .
With understood to be the appearing above, let a be the real number which
satisfies (n-a) 0. If] [a] + 1, then clearly (u-M) is less than some
negative quantity which is independent of n and if] N [a] 1, then (n -M) is
larger than some positive quantity which is independent of n. For] in the range
taJ-l][q]+, we have n-]=O(1) and the error estimate above
becomes O(]-z)so that the first term of the estimate dominates. It follows that
lies within this range for large n and the proof is complete.
TNOM 8.1 V(x)=x logx +x log logx +O(x).
Proof. Let c G (])- G+(]- 1) be defined as in 6. From Corollaries

8.1 and 8.2 it is easily shown that

/x t .--1- o(.).(8.6) t-J"c" crx/ t- 1

OPTIMAL POLYPHASE SORTING 37

If x is sufficiently large, then for n =N(x) we have Cn_ <X <=C Let j be the
unique integer for which S,‘ (/’) < x =< S,‘ (] + 1). From Theorem 6.2, it is clear that
j,‘-I- 1 -<j -<j,‘. Using the formula

V(x (j + 1)x 6,‘ (j)

we may write

(8.7) V(x)-x logtx=x(j+l-logtx)-G,‘(y).

From (8.6) we have

logtc,‘ j,‘ 1/2 logt j,‘ + O(1)

and therefore, since 0<-j,‘-j,‘-i <- 1,

j + 1 logt x <j + 1 logt c,‘_

=j + l-j,, +1/2 log, j,‘_x + O(1)

--<j,‘ + l-j,‘ +1/2 logtj,‘ 4-O(1)

=1/2 logt/,‘ + 0(1).

Similarly,

j + 1 logt x _-->] + 1 log, c,‘ 1/2 logt],‘ + 0(1)

and we have shown that

(8.8) y + 1- log, x 1/2 log, j,‘ + O(1).

Comparing Corollary 8.1 and (8.6) we see that

G"(j) O(c,‘_,)= O(x).

From (8.8) and the fact that j,‘- 2-<y <j,‘, we have

j;1 logtx 1 +O(j; logtj,‘)

so that

logtj,‘ -logt logt x O(j- logtj,‘)= 0(1).

Putting everything together, (8.7) becomes

V(x)-x logtx =1/2x logtj,‘ +O(x)

1/2x logt logt x + O(x)
and the proof is complete.

COROLLARY 8.3. V’(x)= x logt x +1/2x logt Iogt X + O(x).
Proof. In 7 we showed that N(x)<=N’(x)< N(x)+ t. From Theorem 5.3, it

follows that

0 <= V’(x)- V(x) Vt’(X)(x) Vtv(X)(x)<-(N’(x)-N(x))x <=(t-1)x

so that V’(x)- V(x)= O(x) and the result follows from the theorem.
It is well known .(see 5.4.4 of [5]) that the best possible volume for a merge

sort which performs p-way merges is x logp x + O(x). For this reason, a tape sort

38 DEREK A. ZAVE

with T tape units has an optimum value of x logr-1 x + O(x) since such a sort can
perform at most T-1-way merges. A tape sort with T tape units which has a
volume asymptotic to x logr_ x is said to be asymptotically optimal. Theorem 8.1
and Corollary 8.3 imply that both the optimal polyphase sort and the blind
polyphase sort are asymptotically optimal.

Remarks. The optimal polyphase sort appears to be the first known example
of an asymptotically optimal read-forward tape sort. Other examples will appear
in [9]. Several asymptotically optimal read-backward sorts are known (see, for
example, 5.4.4 of [5]) but these sorts have volumes of the form x 1OgT-1X + O(X)
which is smaller than the volume we have derived for the optimal polyphase sort.
One wonders if the volume x logt x + 1/2x logt logt x + O(x) can be improved upon
for read-forward sorts or whether it represents some theoretical minimum. A
simplified self-contained analysis of the optimal polyphase sort, which is probably
suitable for students, appears in [10].

9. Concluding remarks. Two questions concerning the optimal polyphase
sort remain open for investigation. First there is he problem of estimating the
amount of time the algorithm spends waiting for tapes to rewind and second there
is the problem of optimizing the read-backward polyphase sort.

The rewind time is significant since both the blind and the optimal polyphase
sorts perform large numbers of tape rewind operations. Of course we may suppose
that the total amount of rewinding corresponds to the volume of information
moved. However, the polyphase merge rewinds two tapes simultaneously so it is
conceivable that a highly unbalanced situation may arise in which one of the two
tapes being rewound would be considerably longer than the other. This might
cause the total rewind wait time to vary from the volume of the merge to twice that
volume.

In the read-backward polyphase sort, the tape units act as stacks so the
direction in which a string is written is reversed when the string is moved.
Therefore, strings which will be moved an odd number of times must be writteia in
the opposite direction from strings which will be written an even number of times.
For this reason, strings are no longer interchangeable so the dispersion routine
must concern itself with the details of placing the dummy strings.

In this paper, we have limited the discussion to the traditional polyphase
merge in which the appointment of the output tapes is cyclic. The polyphase
merge, however, is just a special case of the class of single-output read-forward
merge algorithms. Some information about these techniques can be found in the
exercises for 5.4.2 and 5.4.4 of [5]. It is known for example that in certain
special cases, the optimal polyphase sort can be beaten by other methods of
merging. In {9] it is shown that a large class of single-output read-forward merge
algorithms also give rise to asymptotically optimal sorting algorithms.

Acknowledgments. This paper would have been a pale shadow of itself had I
not encountered a preprint of the first half of [5]. Professor Knuth also read an
early draft of the paper and made several valuable suggestions. This research was
conducted while I was employed at Sperry UNIVACin Roseville, Minnesota, and
began as a study of possible sorting procedures for the DMS 1100 Schema
Description (DDL) translator which I was then implementing. I am indebted to

OPTIMAL POLYPHASE SORTING 39

Mr. E. H. Moulton for many valuable conversations and to Mr. A. G. Reiter, Dr.
H. C. Gyllstrom, and M. D. Thompson, for allowing me to pursue this subject
when I should have been doing something else.

REFERENCES*

[1] N. G. DE BRUIJN, Asymptotic Methods in Analysis, North-Holland, Amsterdam, 1970.
[2] I. FLORES, Computer Sorting, Prentice-Hall, Englewood Cliffs, N.J., 1969.
[3] B. V. GNEDENKO AND A. N. KOLMOGOROV, Limit Distributions for Sums o]’ Independent

Random Variables, Addison-Wesley, Reading, Mass., 1954.
[4] D. E. KNUTH, Fundamental Algorithms, The Art of Computer Programming 1, Addison-

Wesley, Reading, Mass., 1968.
[5],Sortingand Searching, The Art of Computer Programming 3, Addison-Wesley, Reading,

Mass., 1973.
[6] W. C. LYNCH, The t-Fibonacci numbers and polyphase sorting, Fibonacci Quart., 8 (1970), pp.

6-22.
[7] B. S. SACKMAN AND T. SINGER, A vector model]’or merge sort analysis, PartL Polyphase merge

sort, paper presented at the ACM Sort Symposium, Princeton, N.J., November, 1962.
[8] D. L. SHELL, Optimizing the polyphase sort, Comm. ACM, 14 (1971), pp. 713-719; Corrigen-

dum, Comm. ACM, 15 (1972), p. 28.
[9] D. A. ZAVE, A note on merge sort analysis, in preparation.
10],Asimplified analysis ofthe optimalpolyphase sort, IEEE Trans. Software Engineering, to

appear.

* The references consist of only those books and papers which are referenced in the text. An
extensive bibliography on computer sorting has been prepared by R. L. Rivest and D. E. Knuth which
appears in Computing Reviews, 13 (1972), pp. 283-289.

SlAM J. COMPUT.
Vol. 6, No. 1, March 1977

SINGLE MACHINE JOB SEQUENCING
WITH PRECEDENCE CONSTRAINTS*

DONALD L. ADOLPHSONf

Abstract. We consider the problem of sequencingN jobs on a single machine when each job has a
known processing time and a known deferral rate and a general precedence relationship exists among
the jobs. The problem is to find the minimum cost sequence which is consistent with the precedence
relationship. This problem has been solved in certain special cases obtained by restricting the form of
the precedence graph. The results of this paper constitute a proper generalization of all previously
solved special cases. These results are used to derive an alternate effficientapproach to the case in which
the precedence graph is a rooted tree, as well as an algorithm for attacking the general problem having
an arbitrary acyclic precedence graph. The general algorithm has an O(n3) time bound and though it
only gives partial solutions in some instances, the class of problems that it completely solves is a proper
superset of the corresponding classes for all previous polynomial time algorithms.

Key words, job scheduling, precedence relations, graphs, networks, trees, analysis of algorithms

Introduction. We consider the problem of scheduling a set of jobs N=
{1, 2, , n} to be processed on a single machine. We assume that each job j has a
known processing time tj and a known deferral rate vj. For a given permutation a
of N, the finish time of job/’, denoted F.(a), is the processing time t. plus the
processing times of all jobs k which precede j in the ordering associated with the
permutation a. The total cost of job j relative to the permutation a is vi F.(a).
The objective is to find a permutation a of N, such that the total cost, given by
C(o) zjn__x/.)j" Fj(o)is minimized.

If the n jobs are independent, then the optimal ordering may be determined
by computing the ratio vi/t for each job and then ordering the jobs from largest to
smallest ratio. This result is due originally to Smith [8]. In this paper, we consider
the above problem with the additional stipulation that a precedence relationship
exists among the jobs. The precedence relationship may be represented by a
directed acyclic graph G in which a directed path from node to node j indicates
that job must precede job j in any feasible ordering. The problem now is to find
the feasible ordering with the lowest cost. The special case in which G is a
collection of rooted trees has been solved satisfactorily by Horn [5], by Adolphson
and Hu [1], and in a slightly different context by Garey [3]. The results of [1] have
been extended by Knuth [6] to the case where G is a series-parallel graph.
Various other special cases have been treated by Sidney [7].

In this paper we study the general problem with an arbitrary acyclic prece-
dence graph. In 1 we prove a theorem which is a generalization of the main
results of [1], [3], [5] and [6]. In 2 we reexamine the rooted tree case and show
how the main theorem leads to an O(n log n) algorithm. The approach here is
entirely different than that of [1] in which another O(n log n) approach is given.

* Received by the editors January 3, 1975, and in final revised form February 20, 1976.
f Department of Finance, Business Economics and Quantiative Methods, University of Washing-

ton, Seattle, Washington 98105.

40

SINGLE MACHINE JOB SEQUENCING 41

The algorithm given here has the advantages that it may require less storage and it
is more easily generalized to an algorithm for the arbitrary acyclic graph case. The
general algorithm is not guaranteed to give a complete solution but the class of
problems that it does solve is a proper superset of the corresponding classes for all
previous polynomial time algorithms. This extension is given in 3 along with a
verification of an upper bound of O(n 3) on the time complexity of the problem.
Section 4 provides a comparison of the results of this paper with results of other
works on the same problem.

1. Basic results. In this section we establish the basic results which allow us to
transform the precedence graph, G, without changing the optimal sequence. In
order to do this we first need to introduce some terminology to be used throughout
this paper.

We say that precedes j, written j, whenever there is a directed path from
node to node j in G. If we also say that succeeds i. The set of all nodes
which precede node j is denoted by P(j) and the set of all nodes which succeed
node j is denoted S(j). These definitions can be extended to subsets of nodes as
follows" P(J)= UjjP(]) and S(J)= UjjS(j). Two nodes, and j are said to be
unrelated, written i-], if i#], i P(j) and]e P(i). This definition can also be
extended to sets of nodes as follows: I--J if If]J Q, I(’]P(J)= Q and
J fqP(I)= . If i-] and there is no node k such that i--> k and k->], then
immediately precedes j and j immediately succeeds i. The sets of immediate
predecessors and immediate successors of node] are given by P(]) and S(j),
respectively. When it is convenient we will assume that the graph G has been
augmented by a dummy initial node, 0, which precedes all other nodes and/or by a
dummy terminal node, n + 1, which succeeds all other nodes of G. We will assume
that Vo=-, v,+ =0% to tn+l 1. The notation for vi, ti and ri can also be
extended to subsets of nodes in the following manner: v Y.ij vi, t it, and
t’j-- Vj/Ij.

The following lemma establishes necessary but not sufficient conditions for a
sequence c to be optimal.

LEMMA 1.1. Let a be an optimal sequence with subsequence I immediately
followed by subsequence J. IfI.-- J, then r >- rj. IfI-Jand rt rj, then the sequence
a’ obtained by interchanging I and J is also optimal.

Proof. The importance of the assumption that I---J is that the sequence a’
obtained by interchanging I and J is also feasible. Since a is an optimal sequence,
C(a) <= C(a’). In other words, in changing from a to a’ the total increase in cost,
vi tj, must be as large as the total decrease in cost, vj ti. Dividing both sides by
tl tj yields r >- r. If rI rj, then the total increase equals the total decrease so that
C(a’) C(a). Q.E.D.

The following theorem provides justification for two important transforma-
tions of the precedence graph. This theorem constitutes a generalization of the
main results of [1], [3], [5] and [6]. Intuitively the theorem tells us that if ri is
relatively large, then we want to schedule job as soon as possible.

DEFINITION. A node/" is maximal if

(1.1) max {rk" k S(fi(j)) LJ if(j), k : S(])}.

42 DONALD L. ADOLPHSON

THEOREM 1.2. ffj is maximal, then there exists an optimal sequence contain-
ing the subsequence (i, j) for some P(j).

Proof. Let c be an optimal sequence and let k be the node immediately
preceding j in a. If k P(j), nothing remains to be proven. If k S(P(j)), then
since k S(j) we know that k---j. Hence from Lemma 1.1

(1.2) rk -->ri.

Together (1.1) and (1.2) imply rk ri so that from Lemma 1.1 we can interchange
k and j to obtain another optimal sequence in which node j appears earlier in the
sequence.

If k C: S(P(]))U P(]), then let K be the maximal subsequence immediately
preceding j in a such that

(1.3) K f-I [S(P(j)) U P(j)] .
Then if node immediately precedes K in a, we know that i S(P(f))U P(j).
Therefore {i}-- K and from Lemma 1.1

(1.4) r >- rK.

Also, from (1.3) we see that K---{j} so that

(1.5) r => r..
Together (1.1), (1.4) and (1.5) imply rc =ri so that by Lemma 1.1, we can

interchange K and {} to obtain an optimal sequence in which appears earlier in
the sequence. After a finite number of interchanges, we must eventually find an
optimal sequence satisfying the conditions of the theorem since] is always moved
closer to the beginning. O.E.D.

If node] is maximal and P(])= {i}, then the theorem tells us that there is an
optimal sequence in which] immediately follows i. If this is true then we may think
of jobs and] as a single job with processing time ti + ti and deferral rate vi + vi.
This transformation changes the total cost of the optimal sequence but since it
adds the fixed cost vi t to all sequences, the optimal sequence does not change.
This transformation is summarized below:

T1. If node] is maximal and P(j)= {i}, then we may condense node] into
node i.

There is another transformation justified by Theorem 1.2 which may not be
as obvious. Suppose node] is maximal but IP(J){ > 1. Then we do not know which
node in/5() immediately precedes in an optimal sequence. Suppose however
that all immediate predecessors of] have the same set of successors. Then
Theorem 1.2 tells us that there must be an optimal ordering in which] precedes all
other successors of P(j). An example of this is shown in Fig. 1.I. The original
graph is given in Fig. 1.1 (a) and an equivalent transformed graph is shown in Fig.
1.1(b). The transformation may be summarized as follows:

T2. If node j is maximal, IP_(y)I > 1, and S(i) S(fi(j)) for all e/5(j), then let
j precede all other nodes of S(P(])) in the precedence graph.

SINGLE MACHINE JOB SEQUENCING 43

(a)

FG. 1.1

By taking advantage of the natural symmetry of the single machine sequenc-
ing problem, we can think of sequencing jobs from last to first instead of from first
to last. In this case, jobs with small ratios will tend to be scheduled as late as
possible. The analogue of Theorem 1.2 is stated below without proof since the
proof is entirely analogous to the proof of Theorem 1.2.

DEFINITION. A node] is minimal if

(1.1’) rj =min {rk" k e P(S(])) t_J S(]), keeP(i)}.

THEOREM 1.2’. If node] is minimal, then there exists an optimal sequence
containing the subsequence (], i) for some S(]).

The transformations analogous to T1 and T2 are summarized below:
TI’. If node] is minimal and S(])= {i} then we may condense node] into

node i.
T2’. If node] is minimal, I(])1 > 1, and P(i) P((])) for all e q(]), then let

] succeed all other nodes of P(S(])) in the precedence graph.
We conclude this section with three examples using the four transformations

developed in this section.
Example 1. Consider the graph shown in Fig. 1.2 with values vj, ti given by

each node. All arcs are directed from left to right. We will use the notation

(j) IS(P(1)) U P(j)]- S(j)

throughout these examples.
Initially we may apply T1 at nodes 2 and 5 and apply TI’ at node 6. As a result

of these transformations, node 5 is condensed into the dummy initial node 0; node
6 is condensed into the dummy terminal node 8; and node 2 is condensed into
node 1 so that the ratio for node 1 becomes rl (2 + 25)/(1 + 1) 27/2. At this
point T1 may be applied at nodes 3, 4 and 7. Finally T1 may be applied at node 1.
From this sequence of T1 and TI’ transformations we see that the optimal
sequence is 5-4-7-1-2-3-6.

44 DONALD L. ADOLPHSON

25,

2,1

21,1

oo,

24, 1

FIG. 1.2

Example 2. The previous example made no use of T2 or T2’. This example
shows the need for these transformations. Consider the graph of Figure 1.3(a). It
can be verified that neither T1 nor TI’ can be applied to this graph. However
r5 max {rk" k 5} and S(1)= S(2)={4, 5, 6} so that T2 may be applied. The
resulting graph is shown in Figure 1.3(b). An optimal sequence 3-2-1-5-4 is then
found by applying TI’ at node 1, and T1 at nodes 5, 4, 2 and 3.

FIG. 1.3(a)

SINGLE MACHINE JOB SEQUENCING 45

3,1

FIG. 1.3(b)

One purpose of T2 is to increase the number of nodes satisfying I,(i)l 1. For
example, TI’ may not be applied at node 1 in Fig. 1.3(a) since i(1)[> 1, but it can
be applied at node 1 in Fig. 1.3(b).

Example 3. This example shows that in some cases none of the transforma-
tions T1, T2, TI’ or T2’ apply. The problem shown in Fig. 1.4 is due to Horn [5].

4,1

FIG. 1.4

Node 3 satisfies the conditions of Theorem 1.1 but since I/5(3)! > 1, T1 cannot
be applied. In addition, T2 cannot be applied since S(1) S(2). Similar remarks
apply to node 2 and transformations TI’ and T2’.

2. The rooted tree case. In this section we examine efficient methods of
implementing the job sequencing algorithm when the graph Gis a rooted tree or a
collection of rooted trees. We discuss in some detail an implementation which can
be extended in a natural way to the case of an arbitrary acyclic graph.

For our purpose, we define a rooted tree to be a graph such that for each node
j 6 N, IP(J)I 1. The single immediate predecessor of node j is called the father of
j. An immediate successor of j is called a son of j. Any successor is called a
descendant and any predecessor is called an ancestor. The only transformation

46 DONALD L. ADOLPHSON

needed for this case is a specialized version of T1 which is given below.
T3. Condense node] into node whenever

(i) is the father of
(ii) rj >- ri,

(iii) rj max {rk: K is a descendant of i}.
First, we note that the algorithm must be capable of sorting n ratios so that a lower
bound on the computation is O(n log n). There are two approaches to the
problem, each of which achieves this lower bound.

The first approach is to scan the nodes of the tree from the leaves to the root.
In other words, we never examine a node until we have examined all of its sons.
An O(n log n) implementation using leftist trees to represent priority queues has
been given by Adolphson and Hu [1]. The approach of working from the ends of
the graph is also implicit in the work of Garey [3].

An alternate approach is to scan the .nodes from largest ratio to smallest ratio.
This approach may require less storage if appropriate data structures are em-
ployed and it can more easily be extended to testing for transformations T1, T2,
TI’, T2’ on an arbitrary graph.

Using this approach it is helpful to think of the condensing of nodes in terms
of set union operations. In this context the sets correspond to the chains of nodes
from the original graph which have been condensed into a single node in the
current graph. The algorithm is initiated with n + 1 singleton sets corresponding to
nodes 0, 1, , n. After n set unions, the algorithm terminates with a single set
consisting of all nodes 0, 1,. , n.

In the description of the algorithm which follows, the chain of nodes
beginning with node will be denoted by Bi. The last node in B will be denoted by
E. F/gives the father of node i, initially; at termination, F/gives the immediate
predecessor of job in the optimal sequence discovered by the algorithm. F0 is a
pointer to the last job in the sequence.

The algorithm to be presented may be justified as follows. At each step we
find the node in the current graph having the largest ratio. The conditions of T3
must hold for this node so we proceed to condense it into its father in the current
graph. In order to find the father in the current graph we need to find the first node
in the chain of nodes containing the father in the original graph. The large node is
then condensed into the current father and the process is repeated. The input to
the algorithm is v, t and/7/.

The rooted tree algorithm.
Step O. Vo - -o, to - 1, (r - l.)i/ ti, O, n)

(Ei-i and Bi ={i}, =0, 1,. ., n)
Step 1. Let j be the remaining node with the largest ratio. If j 0, go to Step

4. Otherwise, delete j from the list, k <-F., and FIND such that k Bi.
Step 2.

ti ti + t
r <--vi/t

SINGLE MACHINE JOB SEQUENCING 47

Step 3. Bi Bi l-J Bi
Go to Step 1.

Step 4. Fo Eo.
Before analyzing the algorithm, we present a numerical example. Consider

the tree with vj, tj given by each node in Fig. 2.1. This example is due to Horn [5].

FIG. 2.1

We summarize the computations in the following manner.

Iteration 1

Iteration 2

Iteration 3

Iteration 4

j 8

=)>]Fs< <-- 5

ki=5=5 JE58
[Bs,-{5, 8}

]=4 Ir-7/2
k= 1=F4l

El - 4
i=1

BI{1, 4}- 18/5
/ 6

:,F6<-- 4k =4

[E,6i=1
B, {1, 4, 6}

]=1

k

i=0
Eo <-- 6

.Bo <-- {0, 1, 4, 6}

48 DONALD L. ADOLPHSON

Iteration 5

Iteration 6

Iteration 7

Iteration 8

/" 2

:ffF26ki=0=0 |Eo*-2
(Bo *-{0, 1, 4, 6, 2}

] 5 Jr0
k=l]F52
=0 lE*- 8

B0 -{0, 1, 4, 6, 2, 5, 8}

f 3 It0
F3 <--. 8

k 1
Eo3

i--0 /
(Bo{0, 1,4, 6, 2, 5, 8, 3}

ro--/’=7 IF7 <--" 3
k 4:=
i-0 /E-7

no,-0, , 4, 6, e, 5, 8, 3, 7
Step4. i=0

F0 <-- 7.

The optimal sequence 0-1-4-6-2-5-8-3-7 is then determined by walking through
the list F and reversing the order.

It is not difficult to show that the algorithm is O(n log n). The total time spent
on Step 2 is clearly O(n). Step 1 involves deleting an element from a priority
queue as well as accounting for the change in value of ri at the preceding iteration.
Both of these operations require at most O(log n) steps if a heap is used to
represent the priority queue. Since Step i is executed n times, the total amount of
time spent, on priority queue operations is O(n log n). Finally we examine the
total time involved in set processing. Step 1 requires n FIND operations and Step
4 requires an additional trivial FIND. Step 3 involves n UNION operations. Thus
the set processing involves n UNION operations with n + 1 intermixed FIND
operations. This is precisely the problem studied by Hopcroft and Ullman [4], and
more recently analyzed by Tarjan [9]. It is shown by Tarjan that the total time
required is O(n log n) or better using appropriate versions of the set-union
algorithm. Hence the total time required is O(n log n).

3. The general algorithm. In this section we extend the ideas of the preceding
section to develop an efficient method of testing for and applying the reduction
transformations. There are some important differences which should be noted
between the algorithm for the general graph as opposed to the algorithm for the
rooted tree. First of all, the algorithm of this section is not guaranteed to find the

SINGLE MACHINE JOB SEQUENCING 49

optimal sequence. The algorithm terminates when either the optimal sequence is
found or when none of the transformations can be applied. The example shown in
Fig. 1.4 is an example of the latter. A second difference is that we need to scan the
nodes of the graph in both directions. That is, we scan the nodes from largest to
smallest looking for applications of T1 and T2 and then we scan the nodes from
smallest to largest looking for applications of TI’ and T2’. A third difference is
that not all transformations can be detected in a single scan of the nodes so that we
need to continue scanning the nodes until all nodes have been condensed into the
dummy nodes or until we are able to scan the nodes in both directions without
applying any transformations.

Before describing the details of the algorithm and verifying an O(n 3) bound
on the time complexity, we shall give an outline of the algorithm.

The general algorithm.
Step O. Compute ratios rj vj/t and initialize working matrices.
Step 1. Scan the nodes from largest to smallest ratio checking for T1 and T2.

Apply the appropriate transformation whenever possible.
Step 2. Scan the nodes from smallest to largest ratio, checking for TI’ and

T2’. Apply the appropriate transformation whenever possible.
Step 3. If all nodes have been condensed, then output the optimal sequence

and stop.
If no transformations are applied at Steps 1 and 2, output information about

condensed nodes and stop.
Otherwise, return to Step 1.
The algorithm described here uses four n x n working matrices. Given an

adjacency matrix for the precedence graph G we can generate matrices A [aq]
and A [q] where

{ 1 P(j), 1 P(j),
aq and q

0 otherwise 0 otherwise.

Both matrices can be constructed in no more than O(n3) time. (See [2].)
The algorithm will use a matrix B [bq] to keep track of subset relationships

among sets of successors. The elements of the matrix are defined as

]S(j)- S(i)[if S(i)
_

S(j),
bq

-1 otherwise.

A matrix B’= [bi] is defined in an analogous manner to keep track of subset
relationships between sets of predecessors. The matrices B and B’ will be used in
checking for transformations T2 and T2’ respectively. Each element bq can be
determined from a single pass through row and row j of A so that the total time
required to construct B and B’ is O(n 3).

Since both T1 and T2 operate on maximal nodes we need an efficient method
of finding maximal nodes. One way to accomplish this is to scan the nodes from
largest to smallest. Every time a node k is scanned but not condensed we
increment a counter, C(i), for all eP(k)U{k}. If/" is the largest node not yet

50 DONALD L. ADOLPHSON

scanned, then the current values of C(i) represent the number of nodes in
S(i)U{i} having a ratio strictly greater than rj. If C(i)> C(/’) for some node

P(j), then there must be a node k S(i) U {i}- S(j)-{j} with rk > rj; hence j is
not maximal. On the other hand if C(i)= C(j) for all i P(j), then every large
node succeeding also succeeds/" so that j is a maximal node. Some problems may
arise if several nodes have the same ratio, but these problems can be avoided if we
wait until all nodes with a given ratio have been scanned before we increment the
counters.

Using the above procedure, the time required to scan a node and determine if
it is maximal and perform the associated increments is O(n). If the current node j
is maximal, we can determine if [P(/)[1 in O(n) time. If IP(y)I > 1, then we can
check for transformation T2 by scanning column] of A and row k of B for some
k P(]). If T2 is to be applied then bik must be zero (indicating S(i)= S(k))
whenever aij 1 (indicating i P(])). This check also requires O(n) time. Thus
the total time spent on checking for T1 and T2 is O(n) for each node scanned. The
same result clearly holds also for TI’ and T2’.

In carrying out the transformations, we assume that the matrices remain n x n
matrices and a list of rows and columns to be ignored will be maintained. This
means that each time a matrix entry is checked we must check to see if it should be
ignored. This multiplies the work only by a constant factor.

A T1 transformation requires no change of the A matrix but some care is
required to update the A matrix. Consider the partial graph shown in Fig. 3.1.

(b)

FIG. 3.1

Note that both k3 and k4 are in S(/’) in Fig. 3.1(a). However, k3 S(i) and
k4 S(i) in Fig. 3.1(b). The reason for this is that kl (or k2) is a successor of and a

SINGLE MACHINE JOB SEQUENCING 51

predecessor of k3. In general we need to find the set of nodes K defined by

K S(S(i)-{]}).

K can be determined in O(n) time by making a single pass through each row of A
corresponding to a node in S(i)-{]}. We may now update row of A by the
following

0

if dik 1
if jk 1

aik

otherwise.

or
and kK,

The matrix B may be updated after a T1 transformation as follows. If T1 is
applied at node], node/" is removed from all successor sets containing node j. For
an arbitrary node i, the cardinality of S(i) is now determined by

IS(i)[-lS(i)[-a,.
Consider an element bik of B. If bik => 0, then the new bi is given by

big IS(k)l- Is(i)l -[S(k)l- ak --(IS(i) ai)
IS(k)l- Is(i)[- ak + ai

bik ak) +
On the other hand, if bik --1, then this will change only if S(i)- S(k) {j} in

which case the new bik will be zero. The above condition occurs only if bki 1,
aij 1 and akj 0. In either case we see that the time required to update an
element of/3 is bounded by a constant so that the amount of time required to
update the entire matrix is bounded by O(n2). An analogous procedure may be
used for B’ which also requires O(n 2) time.

We see from the above discussion that the time required to update the
working matrices whenever T1 is applied is bounded by O(n2). A similar
argument clearly holds for TI’. Since each T1 or TI’ transformation reduces the
number of nodes, the number of the T1 and TI’ transformations is O(n).
Therefore the total amount of time spent updating the working matrices after T1
and TI’ transformations is bounded by O(n3).

When a T2 transform is made, the following three sets are affected:
1. I P(]),
2. {j},
3. K S(I)-{j}.
Each of these three sets can be constructed in O(n9) time or less. The changes

which take place are"

1. S(i)= {j} for all I,
2. P(k)= {j} for all k K,
3. P(k)-P(k)U{j} for all k eKUS(K),
4. S(j) ,- S(j) UKU S(K).
The first two changes require changing a single row and column of A. The

third and fourth involve changing a single row and column of A. The third change
also requires changing row j of B’ since P(j)_P(k) for all k KUS(K). The

52 DONALD L. ADOLPHSON

fourth change also requires changing column j of B since S(k)S(j) for all
k K S(K). Since each element of B or B’ can be constructed from A in O(n)
time, and O(n) elements are changed, we see that the total updating time in a T2
transformation is O(n2).

In order to complete the analysis we need to establish a bound on the number
of T2 transformations which can occur. Let D be the set of nodes having more
than one immediate successor. First we note that a T1 or TI’ transformation can
never add a node to D. Next we note that we only apply T2 if P(j)_ D and
I/(j)l _-> 2. After the T2 transformation, the whole set/5(j) containing at least two
elements is removed from D. The only node which could be added to D after the
transformation is j. In any case the cardinality of D will strictly decrease so that the
number of T2 transformations is bounded by O(n). A similar argument holds for
T2’ transformations. We can therefore conclude that since no more than O(n 2)
time is spent on any T2 or T2’ transformation, the total time spent on T2 and T2’
transformations is O(n3).

The number of iterations of the main loop of the program is bounded by the
number of transformations which has been shown to be O(n). The number of
nodes scanned in any iteration is bounded by 2n O(n). It was shown earlier that
the amount of time spent checking a single node for a T1 or T2 transformation is
O(n). The total amount of time spent adjusting priority queues was shown in the
previous section to be O(log n) per node if appropriate data structures are used.
Therefore the total amount of time spent scanning the nodes and maintaining
priority queues is"

O(n)[O(n)+ O(log n)]= O(n) O(n)= O(n).
The analysis of the set processing changes very little from the analysis of the
previous section. Therefore we can conclude that the total time for the algorithm
is bounded by O(n3).

The algorithm given here is not necessarily the most efficient. We have
verified an upper bound of O(n 3) but it may be possible to,reduce this somewhat
through the use of appropriate data structures. The limiting factor may well be the
time required to generate the transitive closure and/or the transitive reduction of
G. The time complexity of these processes is shown to be equivalent to the time
complexity of Boolean matrix multiplication and the same bound may very well
apply to the algorithm here. The best bound known for those problems is
O(n1g27). (See [2].) These questions are left here as open questions to the reader.

4. Comparison with other results. In this section we shall investigate and
partially characterize the class of sequencing problems which can be solved by the
algorithm of the preceding section. The results will be compared with other work
on this sequencing problem.

An instance of the sequencing problem discussed in this paper is given by a
triple (G, v, t) where G is an acyclic graph, v and t are real functions over the
nodes of G. We will let P1 be the class of problems solved by the algorithm of [1] or
[5]; we will let P2 be the class of problems solved by the algorithm of [6]; we will let
P3 be the class of problems solved by the algorithm of [3]; and we will let P4 be the
class of problems solved by the algorithm of the preceding section.

SINGLE MACHINE JOB SEQUENCING 53

The subset relationships among these four sets is illustrated graphically in
Fig. 4.1 where a directed path indicates a subset relationship. We see from this
figure that P1 - Pz - P4 and P1

_
P3 --- P4 but Pz P3 and P3 Pz. The relation-

ships are elucidated in the discussion which follows.

FIG. 4.1

The algorithms of [1] and [5] are designed to operate on rooted trees and it
can be shown that (G, v, t) P1 if and only if G is a collection of rooted trees. The
algorithm of [6] is designed to work on series-parallel graphs and it can be shown
that (G, v, t) 6 P2 if and only if G is a series-parallel graph. Since any collection of
rooted trees can be converted to an equivalent series-parallel graph by adding
dummy initial and terminal nodes, Px-P2. The algorithm of [3] is the only
previous work which deals directly with an arbitrary acyclic graph. It is shown in
[3] that (G, v, t) P3 whenever G is a collection of rooted trees so that P

_
P3.

We see from the above that P2 and P3 both include P1. The triple shown in
Fig. 4.2 is an example of a series-parallel graph which cannot be solved by the
algorithm of [3]; hence P2 P3.

8,

FIG. 4.2

If we change 04 to 13 in Fig. 1.4, then we have an instance of the sequencing
problem which can be solved by the algorithm of [3] even though the graph is not
series parallel; hence P3 P2.

_As was mentioned earlier, Theorem 1.2 and its analogue, Theorem 1.2’,
constitute a generalization of the main results of [1], [3], [5] and [6]. Hence P4
includes all of the other sets. Furthermore, the example of Fig. 1.2 cannot be
solved by any of the previous methods so that P4 properly includes all other
classes.

Another way to compare the results is to examine the class of graphs such that
the sequencing problem is solved for any functions v and t. This class is known to
be collections of rooted trees for P1 and series parallel graphs for P2. This class is

54 DONALD L. ADOLPHSON

not known for P3 although it is shown that the class includes collections of rooted
trees but does not include all series-parallel graphs. It has been shown that this
class of graphs for P4 includes all series-parallel graphs. Furthermore, the graph of
Fig. 1.3, which is not series-parallel, may be solved for any v and t functions so
that the class of graphs, which are always solved by the algorithm of this paper,
properly includes the class of all series-parallel graphs. The problem of charac-
terizing completely these graphs is left here as an open problem.

In summary we have proven a result (Theorem 1.2) which constitutes a
proper generalization of all previous results on the single machine sequencing
problem with precedence constraints. We have used these results to give an
efficient algorithm for the rooted tree case and an O(n 3) algorithm for the general
case which determines the optimal sequence for a broad class of problems but not
for the whole class of sequencing problems considered here. It is the opinion of
this author that the general problem is polynomial complete, but this question will
also be left as an open question for the reader.

REFERENCES

[1] D. ADOLPHSON AND T. C. Hu, Optimal linear ordering, SIAM J. Appl. Math., 25 (1973), pp.
403-423.

[2] A. V. AHO, M. R. GAREY AND J. D. ULLMAN, The transitive reduction of a directed graph, this
Journal, (1972), pp. 131-137.

[3] M. R. GAREY, Optimal task sequencing with precedence constraints, Discrete Math., 4 (1973), pp.
37-56.

[4] J. HOPCROFTAND J. D. ULLMAN, Setmergingalgorithms, this Journal, 2 (1973), pp. 294-303.
[5] W. A. HORN, Single-machine job sequencing with treelike precedence ordering and linear delay

penalties, SIAM J. Appl. Math., 23(2) (1972), pp. 189-202.
[6] D. E. KNUTH, Private communication.
[7] J. B. SIDNEY, De.composition algorithms for single-machine sequencing with precedence relations

and deferral costs, J. Operations Res. Soc. Amer., 23 (1975), pp. 283-298.
[8] W. W. SMITH, Various optimizers for single stage production, Naval Res. Logist. Quart., 3 (1956),

pp. 59-66.
[9] R. E. TARJAN, Efficiency o]’a good but not linear set union algorithm, J. Assoc. Comput. Mach., 22

(1973), pp. 215-225.

SIAM J. COMPUT.
Vol. 6, No. 1, March 1977

SMALLEST AUGMENTATIONS TO BICONNECT A GRAPH*

ARNIE ROSENTHAL and ANITA GOLDNERf

Abstract. We provide an O<lvl+lEI) algorithm which, given a graph G, finds a smallest set
of edges which, when added to G, produces a graph with no cutpoints.

Key words, graph augmentation, biconnected graph, block-cutpoint graph, graphical
connectivity, linear time algorithms

1. Introduction. A graph which cannot be separated into two or more
disjoint subgraphs by the removal of any single point and the edges incident to
it is said to be biconnected. Any graph can be biconnected by the addition of
appropriate lines. A set of edges such that G U is biconnected is called a
biconnection of G. We present here a fast algorithm to find a smallest
biconnection of an arbitrary graph. This problem is one of a class of graphical
augmentation problems investigated by Eswaran and Tarjan [2].

The speed of an algorithm is described by its time complexity. Let x be
some variable whose value is related to the "size" of the problem, e.g., the
number of vertices of the graph, in an algorithm that concerns graphs, and let
f(x) be a function of x. The time complexity of an algorithm is O(f(x)) (read,
"order f(x)") if there exists a constant k such that the algorithm can be
performed in kf(x) steps or less. Note that if a finite sequence of O(f(x))
algorithms were run, the total time would still be O(f(x)).

Given a graph with vertex set V and edge set E, we show our algorithm to
be O(I V +

DZFINITIONS. A graph G (V, E) is a finite set of vertices (points), V, and
a finite set of edges (lines) E. The edges are unordered pairs (u, v) of distinct
vertices. Two vertices u, v which comprise an edge are said to be adjacent; this
is denoted u-6 v, or simply u -v. The degree of a vertex is the number of
vertices adjacent to it. This is written do(v), or just d(v). A path in G from Vl
to v, is a sequence of edges (Vl, /)2),’’’, (/)n--l, /)n), such that the vertices
vl," ", v, are distinct. A cycle is a path (vl,/)2)," , (v,_a, v,) together with
the edge (vn, va). G is connected if and only if every pair of vertices of G is
joined by a path in G. G is a tree if G is connected and acyclic. The maximal
connected subgraphs of G are its components. A forest is a graph the compo-
nents of which are all trees. A degree-1 vertex of a forest is called a leaf; all
vertices of degree 2 or more are interior; vertices of degrees 0 and 1 are
exterior. A vertex v of a connected graph G whose removal disconnects G is a
cutpoint. If G has no cutpoints, then G is said to be biconnected. A maximal
biconnected subgraph of G is a block.

Central to the algorithm is the concept of the block-outpoint graph ,of a
graph G, denoted bc(G). Each block and each cutpoint of G is represented by
a vertex of bc(G). We call the vertices of bc(G) which represent blocks its

* Received by the editors August 7, 1975, and in revised form March 2, 1976.

" Department of Computer and Communications Sciences, University of Michigan, Ann Arbor,
Michigan 48104. This work was supported in part by Grant AFOSR 71-2076.

55

56 ARNIE ROSENTHAL AND ANITA GOLDNER

b-vertices, and those representing cutpoints its c-vertices. (If v is a point of
bc(G), 7 will sometimes be used to denote the corresponding block or cutpoint
of G.) Two vertices u, v of bc(G) are adjacent if and only if a is a cutpoint
contained in the block 7 or vice versa. It can easily be shown [3, p. 37] that
bc(G) is always a forest; it will be known as the bc-tree of G when G is
connected.

We shall biconnect a graph G indirectly, by biconnecting bc(G), and
adding "corresponding" edges to G. Let x (, k) where and k are exterior
b-vertices of T. Then will denote an arbitrary edge added to G which
corresponds to x in the sense that (u, v), where u and v are noncutpoints
belonging to /’, k respectively. (A block corresponding to an exterior vertex
must contain a noncutpoint. Thus we have defined a bar notation for vertices,
and one with a somewhat different interpretation for edges).

An endblock of a graph is a block which contains exactly one cutpoint. We
note that a block of a graph G is an endblock if and only if the corresponding
b-vertex of bc(G) is a leaf of bc(G).

Notation.
V The set of vertices of a graph G.
E The set of edges of a graph G.
bi(G) The smallest number of lines needed to biconnect G.
G + x The graph (V, ELI {x}), where G (V, E).
G-v The maximal subgraph of G not containing the vertex v.
GUA The graph (V, E A), where G (V, E) and A is set of edges.
Be A biconnected graph containing G as a subgraph.
LT The number of leaves of T, a tree.
q(G) The number of blocks of G, excluding G itself.
CT The set of c-vertices of the bc-tree, T.
u v Vertices u and v joined by an edge of G.
d(v) The degree of vertex v in G.
bc(G) The block-cutpoint graph of G.
In [2], Eswaran and Tarjan prove a lower bound on the number of edges in a

minimal biconnection of a graph G and that the bound can always be attained [2,
Thms. 6, 7]. Their results may be stated in the following way.

Let G be a graph with n components, and let T bc(G). Let x denote the
smallest integer not less than x. Then bi(G)=maxocT[dT(v)-l+(n-1),
q(G)+ [LT/2]].

In the following, we provide our own proof that this bound on the size of a
biconnection can be attained, and we construct a linear-time algorithm based
on the method of our proof. We first state two lemmas. Their proofs are
straightforward, and hence omitted.

2. Theorems and proois.
LEMMA 1. Let G be a graph with n components, and let S be a set of edges

such that G IA S is connected. Then S has a subset S’ of n- 1 edges such that
G (.J S’ is connected. Furthermore no set offewer than n 1 edges will connect G.

Let q(G) be the number of components of G (not including G itself)
which are already blocks.

SMALLEST AUGMENTATIONS 57

LEMMA 2. Let T= bc(G),. G not connected. Let G’= G + x, where x is an
edge joining two of G’s components. Let T’=bc(G’). Then q(G’)+ [LT/2] >-
q(G)+ [LT/2]--1. (The proof distinguishes three cases, depending on the
number, 0, 1, or 2, of biconnected components to which x is incident. We note
that equality obtains whenever neither end of x is a cutpoint).

We proceed by (Theorem 1) verifying the result of Eswaran and Tarjan for
connected graphs satisfying the condition

(,) dT(V)-- 1 <-- [-] for all v CT.

Next (Theorem 2), we verify it for all connected graphs, and finally
(Theorem 3), for all possible graphs.

We will need to consider two types of connected graphs. In the first, the
degree of all c-vertices in T is bounded by [LT/2] + 1. These graphs can be
biconnected by adding edges which join appropriate pairs of endblocks,
according to the Path Algorithm of Theorem 1. (See Fig. 1.) In the second
type, some cutpoint has a large enough degree in T to violate). The graph is
biconnected (as is explained more precisely in Theorem 2) by first linking the
"surplus" blocks of v* (e.g., el, e2, e3 in Fig. 2) so that v* no longer violates

), and then proceeding as in the first case (adding e4 and e5 in the example).
In disconnected graphs, we first connect the graph by adding edges to

exterior vertices of the bc-tree. Then the scheme above is executed.
We prove two lemmas about trees.
LEMMA 3. In any tree Twith vertex set V, LT 2+ovmaX [0, dT(V)--2].
Proof. Let T have n vertices, n _-> 2. Then T has n- 1 edges. Therefore,

ovdT(V)=2(n--1). If v is a leaf node, max[O, dT(v)-2]=O=dr(v)-2+ 1.
If v is not a leaf, max[0, dT(V)--2]= dT(v)-2. Hence, max[0, dT(v)-2]
dT(v) 2n +LT 2(n 1) 2n +LT LT-- 2, giving us the desired result.
LIMMA 4. Suppose LT> 2. Then T can contain at most two vertices Zl, z2

satisfying

(* *) dT(t) --1 ->_ [-].
If it contains two, then no other vertex has degree greater than 2, and the relation
is satisfied with equality.

FIG 1. Biconnection of a graph by the method of Theorem 1

58 ARNIE ROSENTHAL AND ANITA GOLDNER

e4

\\,e2
e3

/

e5

FIG. 2. Biconnection of a graph by the method of Theorem 2. (After the addition of el, e2, e3,
the altered bc-tree is the graph of Fig. 1, before biconnection.)

Proof. Suppose Z l, Z2 satisfy). Then, by Lemma 3,

(d(Zl)- 1) + (d(z2)- 1)_->2[-Z] -->LT 2+ max [0, d(v)- 2]

=2+(d(z,)-2)+(d(z2)-2)+ ., max[O,d(v)-2].
19Z1,Z2"

Using the first and last of the above expressions, we get, after simplifying,

O=> Y’, max [O, d (v 2].
DCZI,Z2

Therefore, d(v)_-<2 for all v but z,, Z2.

In view of Lemma 4, in any tree it is possible to find a path P which
includes any vertices that satisfy condition and any given vertex b*, and
two leaves.

THEOREM 1. Let G be a connected graph such that

(,) dT(V)-- l <-- [] for all v CT.

Then G can be connected by the addition of [LT/2] lines.

Proof. The proof is by induction on [LT/2]. If [LT/2] equals zero, the
graph is already a block, so the theorem holds. Suppose the theorem holds for
all G such that [LT/2] <=k, some k =>0. Suppose that for some G, [LT/2]
k + 1. We show that by the addition of one line via the Path Algorithm
below, we can obtain a graph G’ such that LT’--LT--2 and (,) holds so that
G’ can be biconnected using the induction hypothesis. (The proof of Theorem
1 will be continued.)

PATH ALGORITHM. Let T be given. (See Fig. 3.)
Step 1. Find a path P- (al, a2)," ", (a,,_l, a,,), (a,,, b*), (b*, a,,+),

’’, (ap-1, ap) such that
A1. a, and ap are leaves of T.
A2. Any c-vertex satisfying with equality is on P.
A3. b* is a given b-vertex of T.

(Lemma 4 assures us that such a path may be found in any tree.)

SMALLEST AUGMENTATIONS 59

Step 2. Form T’ from T as follows: Merge all b-vertices and degree-2
c-vertices on P into a single b-vertex, given the name b*. Let b* be adjacent to
exactly those c-vertices which are adjacent to at least one vertex on P and to at
least one vertex not on P. Note that for each c-vertex v of P which is not
merged, dr,(V) dr(i;)-1. For c-vertices not on P, dr,(v) dT(t)).

What modification of G corresponds to performing the Path Algorithm on
T?

PROPOSITION 1.1. T’ is the block-cutpoint tree of G’-G +, where x
(a, ap) and is a corresponding edge of G’.

Proof. First notice that the blocks of G’ are indeed "B*" (the union of $

and of all blocks of G corresponding to b-vertices on P), and those blocks
corresponding to b-vertices not on P. Its cutpoints are all those cutpoints of G
which are adjacent to at least one block not represented on P. So there is a
one-to-one correspondence betweeen points of T’ and the set of blocks and
cutpoints of G’. (The block B* corresponds to b*).

By the construction, the vertex b* of T’ is adjacent to exactly those
c-vertices corresponding to cutpoints of G’ contained in B*. Each of those
c-vertices is in turn adjacent in T’ only to b* and to the b-vertices correspond-
ing to its other blocks in G’. Furthermore, if v is a c-vertex of T not on P, then
v w if and only if v T" w, which holds if and only if t3 is in in G, and hence
in G’.

al

(a) T

a2

(b) T’

FIG. 3. (a) A single application o]:thePath Algorithm; (b) the derived bc-tree

60 ARNIE ROSENTHAL AND ANITA GOLDNER

Since each adjacent pair of points in T’ corresponds to a block-cutpoint
relationship in G’, T’ is indeed bc(G’).

POeOSITIOY 1.2. L,= L-2, i.e., [L,/2] [L/2]- 1.
Proof. The proof is obvious.
PO’OSITIOY 1.3. If * holds in T then it holds in T’.
Proof. Suppose for some z T’, d,(z)- 1 > [L,/2]. Then by Proposition

1.2, d,(z)-1 > [L/2]- 1. Changing the relation to "greater than or equal"
we obtain (a) d,(z)- 1 >- [L/2]. By assumption, holds for z in T, i.e., (b)
d(z)-1 =< [Lr/2] [L,/2] + 1. Putting (a) and (b) together, we get d(z)-
1 <= d,(z)-1, so d(z)<= d,(z). Since d(z)>= dr,(Z) if z is a c-vertex, we must
have d(z) d,(z) [Lr,/2] + 2 [L/2] + 1. Thus z satisfies with equal-
ity in T. But by A2 of the Path Algorithm, z is on P, so d,(z)- d(z)-1, a
contradiction.

Proof of Theorem 1 (continued). Since, by hypothesis, G’ can be bicon-
nected by the addition of [L,/2] lines, the original graph, G, can be bicon-
nected by the addition of [Lr/2] lines, and the induction hypothesis holds for
all k. Q.E.D.

We may now go on to consider arbitrary connected graphs.
Tol 2. A connected graph G with bc-tree T can be biconnected using

max,c.[dT(V) 1, [LT/2] edges.
Proof. The idea is to reduce G to a graph which satisfies (,) and can be

biconnected by the Path Algorithm. (The proof of Theorem 2 will be con-
tinued.)

PROPOSITION 2.1. Let fl(G)=-maxv [dT(V)-- 1, [LT/2]]. Let 6
maxv[O, dr(v)-l-[Lr/2]]=(G)-[Lr/2]. By adding 26 edges we can
obtain a graph G’ which satisfies the condition dr,(v)- 1 _-< [Lr,/2], for all
c-vertices, v.

Proof of proposition. If 0, the result is immediate. Suppose > 0. Let v*
be a maximal degree c-vertex, and let , be the number of components of
T-v* which contain only one degree-1 vertex of T. (Call such components
v*,chains). We show that y_->2+2. There are d(v*)-y components which
each contain at least 2 leaves, so L-> y+2(d(v*)- y). Thus y->-2d(v*)-L>=
2(d(v*)- 1 [Lr/2]) + 2 26 + 2.

PROPOSITION 2.2. By collapsing 26 + 1 v*-chains cl, ", c2+1 of T into a
single degree-1 vertex b *, adjacent to v *, we get the bc-tree T’ of G’=
GU{eI,’’’, e28}, where each ei is an edge incident to endblocks of the compo-
nents of G-g* corresponding to ci and ci+l.

Proof. b* will correspond to the block of G’ composed of the 2 + 1
components of G-0* joined by the e’s. One must verify that this is indeed a
block, and that the changes made to G and T to get G’ and T’ match up
appropriately. We omit the details. Note that the tree T’ has Lr, Lr-26 and
dr,(v*) dr(v*)- 26.

PROPOSITION 2.3. In the new tree, T’, v* does not violate (*).
Proof. dr(v*)- 1 [Lr/2] + 6 from the definition of 6, and the assumption

6 > 0. Therefore, dr(v*)- 1- 26 [Lr/2] 6 [(Lr- 26)/2]. Therefore,
dr,(v*)- 1 [Lr,/2].

PROPOSITION 2.4. dr’(v’)>-dr,(v) for all other v. Thus, no vertex v violates
(.) in T’.

SMALLEST AUGMENTATIONS 61

Proof. Suppose for some v’, dT,(V’)-- 1 > [LT,/2], in violation of). From
Lemma 3,

LT >= 2 + dr(t)’) 2 + dr(t) *) 2

(dT(V’)-- 1)+(dT(V*)-- 1)

But 2[LT/2] >=LT, SO we have a contradiction.

Proof of Theorem 2 (continued). We have now realized our original inten-
tion, of reducing G (via its bc-tree) to a graph which can be biconnected using
Theorem 1. Thus we can biconnect G by adding 28+ [LT,/2]
28 + [LT/2] 8 8 + [LT/2] fl(G) edges, as desired, proving the theorem.

To finish the job, we consider an arbitrary, possibly disconnected graph,
G. (Versions of both Theorem 2 and the following theorem appear in [2]).

THEOREM 3. Let G be a graph with n connected components, n >= 1. Then

bi(G)=max [dr(v)- l, q(G) + f-] -(n- l)] +(n-1).
veC7.

Proof. We can connect G by the addition of n- 1 lines (cf. Lemma 1),
which we may choose to be incident at noncutpoints of blocks corresponding to
exterior vertices of T. Then if G’ is the graph so obtained, and T’= bc(G’),

(i) maxoc, [dT,(V)- 1] maxoc, [dT(V)- 1], and
(ii) [LT,/2] =q(G)+ [LT/2] (n --1), by Lemma 2 applied n-1 times.

Theorem 2 says G’ can be connected by

max [dr,(v)= 1, [_L]] =max [dT(V)-1, q(G)+ [-]-(n-1)]VCT’ VCT

edges. G may thus be biconnected by maxoc,[dT(v)-l, q(G)+ [LT/2]-
(n --1)] + (n --1) edges. Since this is exactly the lower bound obtained in [2], it
is indeed bi(G).

3. The bieonneetion algorithm.
Let A denote the augmenting set.
1. A:= .
2. Find the connected components {G (V., Ei)}.
3. Find the set {Ti} of bc-trees of the Gi’s.
4. For j 2 until # (components)

begin
T := T (_J T. + x, where T (’1 T. and x is an edge joining
exterior points of T and T.
G1 := Gt_JGi+2, where $ is an edge corresponding to x
A := A CI {X}

end
(G is now a connected graph such that G G. T is its bc-tree.)

62 ARNIE ROSENTHAL AND ANITA GOLDNER

5. Find all vertex degrees in T1. Let v
Find L.

6. If dT-(v*)> [L/2] + 1 then
begin

* be a highest degree c-vertex in T1.

6 := dT-,(v*)-([LT-,/2] + 1).
Find a set of 26 + 1 v*-chains of T1.
(Proposition 2.1 asserts that such v*-chains exist.)
Let Xl,’", x2 be any 26 edges which will interconnect all
these leaves.
G := G1 [-J{1, ", 326},
A := A t0 {a," 326}.
Replace the block thus created in T1 by a single edge from v*
to a leaf.

end.
Let T denote the tree resulting from steps 1 through 6.

7.1. Choose b* to be a b-vertex.
7.2. While T is not a single b-vertex begin

7.21 Find v*, a highest degree c-vertex in T.
7.22 If dT.(v*) [LT/2]+I, find the other c-vertex of maximal

degree, if any, and call it w*.
7.23 Find a path P= (no, al), (al, a2),"’, (ap-a, ap) in T, going

through v*, b*, and w* (if it exists), where ao, ap are leaves.
(Such a path exists, by Lemma 4).

7.24 G := G+(do, ip).
7.25 Update T so it is again the bc-tree of G. (See Path Algorithm,

Step 2.)
7.26 A := A U {no, }.

end

4. Data structure considerations. We now describe an implementation that
will run in time O(V[+ El). We direct our attention to step 7 since linear-time
algorithms for the other steps are already established.

T is represented as a tree rooted at b*. The left-son, right-brother form
shov;,n in [4, p. 333] is one appropriate data structure. (See Fig. 4). Along those
lines, we assume for each node the following pointers:

(a) father
(b) first_son
(c) brother
(d) last_son.
Note that we can use father pointers to traverse the tree between any

vertex and the root. Each vertex effectively has a list of sons, obtained by using
the first-son and brother pointers. We will find it convenient to have for each
vertex a pointer (last_son) to its last son, for the purpose of concatenating the
lists of sons of two merged vertices.

We need to distinguish between b- and c-vertices. We create a logical
value, block(v), which is true if and only if v is a b-vertex.

SMALLEST AUGMENTATIONS 63

bl

b*

C2

b2 [73 b4

Logical data structure
of a tree T

bl

FIG. 4

Cl

(s) /

(s)

b3

(s)" son link
(B): brother link

Actual data structure for T

We will also find it handy to have an array # active_sons(v), that holds the
number, as of the most recent update, of sons of v. An array of stacks stack(i),

1,..., VI, contains stacks of vertices believed to be of degree i.
Finally, we include a logical array, denoted flag(v), which is true if and

only if v is b* or has been merged with it. The existence of this variable lets us
dispense with changing father pointers of sons of merged vertices. A vertex has
b* as its current father if and only if flag(father(v)) is true.

To form P, then, we need only:
1. Follow father pointers from v* until we reach a vertex flagged as part

of b*, flagging appropriate vertices along the way and making the others sons
of b*.

2. Follow son pointers from v* until a leaf is reached.
3. Follow son pointers from b* (avoiding the son we visited traveling up

from v* in step 1 till a second leaf is reached. (If two vertices of degree L/2
exist, v* will be set equal to the one which occurs lower in the tree.)

When a vertex w is flagged, we do not scan through the list of sons of
father(w) to delete w, since that could require repeated long searches and
increase the complexity of the algorithm. Instead, we delete it if and when it is
visited during the search for an unflagged son later on.

For the purpose of precisely analyzing the complexity of the algorithm, we
now present a set of procedures to accomplish step 7 of the Biconnection
Algorithm.

(Assume the existence of a procedure, lower(a, b), the values of whose
arguments are vertices of a tree, T. Lower(a, b) simply starts at vertex b and scans
upwards in the tree using father, pointers. If a is found before the root is reached,
the values of variables a and b are exchanged. Assume also the existence of a
procedure highest_degree_c-vertices(v*, w*), which finds the highest degree

64 ARNIE ROSENTHAL AND ANITA GOLDNER

c-vertices as in Lemma 4, setting w* to null if there are not two c-vertices
satisfying the condition: dr(v)- 1 [LT/2] .)
procedure step_7"

integer proeeflure another_son(v);
comment returns u, the first unflagged brother of v, and resets pointers to
skip over flagged sons of v;

w := first_son(v);
u := brother(w);
while u null and flag(u) true begin (1)

u := brother(u);
brother(w) := u;

end;

procedure visit(v);
adjust #active_sons of v and if necessary, of b*, to reflect the
shrinking of the path--in particular, for v a degree-2 c-vertex on P, let
active_sons(v) 0;
if block(v) or # active_sons(v) 0 then begin

flag(v) := true;
add sons of v to list of b*’s sons;
comment note that when a first_son is visited, the another_son proce-
dure is called to delete flagged nodes at the beginning of the brother
chain. This is used later to prove the linearity of the algorithm;
it v =first_son (father(v)) then begin

first_son(father(v)) := another_son(father(v));
adjust last_son pointer if necessary;

end;
else begin

comment come here if and only if v is a c-vertex that will not be
absorbed into b*;
if b* father(v) then make v a son of b*;

end;
procedure upward(v);

while flag(v) false begin
visit(v);
vforbid := v;
v := father(v);

end;
procedure downward(r, leaf);

leaf := r;
v := first_son(r);
it v*= vforbid then v := another_son(r);
while v null begin

visit(v);
leaf := v;
v := first_son(v);

end;

(3)

(2)

SMALLEST AUGMENTATIONS 65

comment the following while loop performs the algorithm of step 7, by
calling the above procedures;

while # active_sons(b*) 0 begin
highest_degree_c-vertices(v*, w *);
it w* null then lower (v*, w*);
begin

upward(v*);
downward(v*, leaf1);
downward(b*, leaf2);

end;
end;

Analysis. We give the time order of complexity of each step in the
Biconnection Algorithm.

(i) The connected components can be found in linear time [3].
(ii) The bc-tree, T, can be found in O(] V] + IE])time, using the algorithm

of Tarjan [1].
(iii) The vertex degrees of T are found by counting the edges of each

vertex, which can be done in O(IEI) time.
(iv) Total time spent finding highest degree c-vertices is O(]V]). Initially

we perform a radix sort (Knuth [4]) to obtain lists LIST(i) of vertices which
have exactly active sons. At each iteration it takes constant time to remove a
vertex v from the highest numbered nonempty list, say LIST(I). If #
active_sons(v) =/" then we may immediately output v. The test fails only if a
son of v has been deleted since v was placed in LIST(j). (This can be done
only]V[times.) In this case v is placed in LIST (# active_sons(v)).

(vi) If there is a vertex v* whose degree exceeds [LT/2] + 1, it can be
removed by adding 26 2(d(v*)-([L./2] + 1)) edges, which is at most O(] V]).

(vii) We note that each repetition of step 7.2 decreases the number of
edges of T by at least 1. So the total number of repetitions is at most IE[. If the
program had no loops, this would establish O(]EI) as its order. Four loops must
however be considered. Three of these are indicated by marginal numbers in
the program.

(1) In another_son. The body of the while loop will be executed at most

IV times during the call to step_7. Another_son is called by visit, to delete the
first_son of a node, and by downward(b*, leaf2). Each execution of the while
loop will cause a particular node to be bypassed during all subsequent execu-
tions, so each node will be associated with at most one execution.

(2) In downward. Each "execution of this while statement corresponds to
the traversal of the edge joining some vertex v and first_son(v). Each down-
ward execution causes the deletion of all edges from c-vertices to b-vertices
along its path; hence for every two edges traversed, at least one disappears.
Thus downward will visit at most 21E nodes, during the execution of step_7.

(3) In upward..The same observations apply as for downward. The while
loop is executed a total of at most 2]E] times, considering all executions of
upward.

The fourth loop occurs in the procedure lower(a, b), which is not given
explicitly here. However, since we are merely scanning upward in the tree from

66 ARNIE ROSENTHAL AND ANITA GOLDNER

vertex b, the time order of complexity is the same as that of procedure upward.
Thus step_7 is a sequence of steps, all of which are O(I VI) or O(IEI), and

the algorithm is O(V + IEI), as claimed.
A natural generalization of the biconnection problem is to attach a weight

to each possible edge (v, w)E which could be part of an augmentation, and to
seek a minimum weight biconnection. For the trivial case of all vertices
adjacent to a single v*, finding a minimum weight biconnection is equivalent to
finding a minimum spanning tree for V-v*.

The general weight problem appears intractable. Karp and Cook have
shown the existence of a large class of unsolved problems (called NP-complete)
such that a polynomial-time algorithm for one could be converted into
polynomial-time algorithms for all. (See Aho [1] for a discussion of this class
and its other implications.) Eswaran and Tarjan [2] have shown that finding a
minimum weight biconnection of an arbitrary graph is NP-complete. Spira [5]
has shown that even if the domain is restricted to connected graphs of degree
3, the problem remains NP-complete.

REFERENCES

[1] A. AHO, J. HOt’CROFT AND J. ULLMAN, Analysis and Design of Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.

[2] K. ESWARAN AND R. TARJAN, Augmentation problems, this Journal, 5 (1976), pp. 653-665.
[3] F. HARARY, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
[4] D. KNUTH, The Art of Computer Programming, vol. 1, Addison-Wesley, Reading, Mass., 1969.
[5] P. St’irmA, Personal communication.
[6] R. TARJAN, Depth first search and linear graph algorithms, this Journal, (1972), pp. 146-159.

SIAM J. COMPUT.
Vol. 6, No. 1, March 1977

POLYNOMIAL COMPLETE CONSECUTIVE
INFORMATION RETRIEVAL PROBLEMS*

LAWRENCE T. KOU’

Abstract. A set of queries O is said to have the consecutive retrieval property with respect to a set
of records R if there exists an organization of the record set (without duplication of any record) such
that for every qi 6 O, all relevant records can be stored in consecutive storage locations [5]. In practice,
this property does not appear very often. Hence, either duplication of records is allowed so that
pertinent records corresponding to any query are always stored consecutively or storing the pertinent
records corresponding to a query in several blocks ol consecutive storage locations is necessary so that
each record is stored only once. The former gives rise to the problem of minimizing the duplication of
records and the latter gives rise to the problem of minimizing the number of blocks of consecutive
storage of relevant records. The computational complexity of each of these two problems is studied in
this paper and both of these problems are shown to be polynomial complete in the sense of Cook [2]
and Karp [8].

Key words, consecutive retrieval, cost graph, incidence matrix, Hamiltonian path, polynomial
complete

1. Introduction and summary. A set of queries O is said to have the
consecutive retrieval property with respect to a set of records R if there exists an
organization of the record set (without duplication of any record) such that for
every qi O, all relevant records can be stored in consecutive storage locations. In
linear storage systems (e.g. tape, surface of drum), if the query set O has the
consecutive retrieval property with respect to the record set R, then storing the
pertinent records in consecutive storage locations will provide a file organization
requiring small storage space and efficient retrieval time. Let the query set
Q be {ql, q2,’" ", q,,,} and the record set R be {rl, r2,..., r,,}. The relationship
between O and R is conveniently represented by an n m 0-1 matrix B. The
(i, j)th entry of B is 1 iff record ri is pertinent to query qj. This matrix is called the
record-query incidence matrix.

ql

rill

B r 1

q2 q3 qm

1 0 1

1 0 1

0 1 1

0 1 0

* Received by the editors December 24, 1974.

" IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.

67

68 LAWRENCE T. KOU

It should be clear that O has the consecutive retrieval property with respect
to R iff there exists a permutation of the rows of B such that the l’s in each column
appear in consecutive positions. The problem of finding such a permutation, if it
exists, was first solved by Fulkerson and Gross in their study of incidence matrix
and interval graphs [4]. A different solution was given by Eswaran in his study of
consecutive information retrieval [3]. If B is n m and m is bounded by a
polynomial of n, algorithms that have time bound O(p(n)) for some polynomial p
can be found in [3] and [4].

However, not all pairs of O and R have the consecutive retrieval property
[3], [5], [6], [7]. As a matter of fact, in most practical cases, the pair (Q, R) does
not have the consecutive retrieval property. Hence, in practice, either duplication
of records is allowed so that pertinent records corresponding to any query are
always stored consecutively or storing thepertinent records corresponding to a
query in several blocks of consecutive storage locations is necessary so that each
record is stored only once. The former gives rise to a problem of minimizing
storage space (minimizing duplication of records) subjected to a fixed retrieval
time and the latter gives rise to a problem of minimizing retrieval time (minimizing
blocks of consecutive storage) subjected to a fixed storage space. These two
problems can be stated formally as follows:

(A) The problem of minimizing the duplications of records:
Given an n tn incidence matrix B, let Q {r Ibq 1 } for 1 =<j =< m. Find the

minimum length sequence x in the alphabet R ={r, r2,"" ", r,,} such that for
every j 1, 2, , m, there is a consecutive subsequence of x consisting of exactly
all the elements in Qi.

(B) The problem of minimizing the number of blocks of consecutive storage of
relevant records:

Given an nm incidence matrix B, find a permutation of B such
that the total number of blocks of consecutive l’s in the columns of B
is minimized.

It is shown in this paper that both of these problems are polynomial complete.
Loosely speaking, it implies that if one can find an efficient algorithm to solve one
of these two problems then many known difficult problems (e.g., Hamiltonian
circuit problem, job scheduling problem, traveling salesman problem, to name a
few) would all have efficient algorithms to solve theman unlikely event. In view
of these negative results and the increasing need for efficient file organization
techniques, good heuristic approaches for the problems seem to be necessary and
acceptable.

2. Cost graph of incidence matrix. A cost graph referred to here is simply a
complete digraph (all selfloops are ignored in this paper) with nonnegative integer
cost associated with each edge in the graph. Given an n tn incidence matrix B,
the cost graph G of B is the complete digraph with the set of vertices V--
{l, 2,..., n} and the set of edges E ={[i, j]li j, i, j V} together with a cost
function F: E- I (I is the set of nonnegative integers) such that for all [i, j] 6 E,
f([i, j]) ’= bi * bi where bii is the (i, j)th entry in B and is a binary operation
defined by 0 0 0, 0 1 0, 1 0 1 and 1 1 0. Generally, a cost graph G is
denoted by G (V, E, f).

CONSECUTIVE INFORMATION RETRIEVAL PROBLEMS 69

Example 1. Given

1 1 0 1 0

0 1 1 1 0
B--

0 0 0 1 1

1 0 1 0 1

The cost graph G is shown in Fig. 1.

2

FIG. 1. CostgraphforB in Example

For any incidence matrix, there is a unique cost graph associated with it.
However, not every cost graph has a corresponding incidence matrix. A simple
exercise will show that the cost graph in Fig. 2 has no corresponding incidence
matrix. Given a cost graph G, if there exists an incidence matrix B whose

FIG 2. A costgraph corresponding to no incidence matrix

associated cost graph is G, then G is said to be 0-1 matrixrealizable. A cost graph
G (V, E, f) is said to be symmetric if f([i,]]) f([/’, i]) for j and i, j V. The
following two theorems give sufficient conditions for cost graphs to be 0-1 matrix
realizable.

70 LAWRENCE T. KOU

THEOREM 1. Let G, (V,.E, f) be a symmetric cost graph with n vertices,
n >-_ 3. fledges [1, 2] and [2, 1.] havecostn 1 while every otheredge has costn 2,
then there exists an n x m, incidence matrix B, such that

(i) B, realizes G,;
(ii) m,, n(n 1)/2 + 1;
(iii) each row of B, contains n- 1 l’s.
Proof. The proof is given by induction on n. For n 3, let

1 0 1 0

B3-" 0 1 0 1

0 0 1 1

Now assume the theorem holds for n k. Then, for n k + 1, consider

B+I= - 0-6 -11 1 1

where I is a k k identity matrix.
Part (i).

f([1, 2]) -,+1 bls * bzs (by definition)
s=l

bls*b2s- ms"+l bls,b2
s=l s=mk+l

(k 1)+ 1 (by the induction hypothesis (i) is true for n k)

=k.

Similarly,]’([2, 1])= k.
For l <=i <-_k, l <-_] <=k, #], and [i,]]#[1, 2] or [2,1],

f([i,]])= "’.+1 bi * bj (by definition)
s=l

bis*bjs + m+ bis ,b,s
s=l s=mk+l

(k 2) + 1 (by the induction hypothesis (i) is true for n k)

=k-1.

Furthermore, for all 1, 2,. ., k,

f([k + 1, i])= "+’ bk+l * bi (by definition)
s=l

bk+ * bi + "+ bk+ls * bis
=mr, +1

0+(k- 1) (by the construction of row k + 1)

CONSECUTIVE INFORMATION RETRIEVAL PROBLEMS 71

f([i, k + 1])= ttl bis * b(k+l)s
s=l

(by definition)

m+lbis * b(k+l)s + bis -t- b(k+l)s
s=l s=mk+l

=(k-l)+0 (by the induction hypothesis (iii) is true for n k

Hence, for n k + 1, Bn realizes G,,.
Part (ii),

mk+a mk + k

k(k- 1)
=+l+k

2

(k + 1)k
------/ 1o

2

and by the construction of row k + 1)

(by the induction hypothesis (ii) is true for n k)

Hence, for n k + 1, m, n(n 1)/2 + 1.
Part (iii). In Bk+l, for 1 _--< _--< k, row contains k 1 l’s in the first mk entries

due to Bk and contains one 1 in the last k entries due to Ik. So for 1 --< _--< k, row of
Bk+l contains k l’s. Row k + 1 contains k l’s by construction. Hence, for
n k + 1, each row of Bn contains n- 1 l’s.

The proof by induction is thus completed.
Remark. If the cost graph is such that the only two edges that have individual

cost n 1 are [i,]] and [], i] instead of [1, 2] and [2, 1], simply interchanging row 1
and row 2 respectively with row and row] will give a realization of the
corresponding new cost graph.

THEOREM 2. Let G (V, E, f) be a symmetric cost graph with n vertices,
n >- 3. Let u be a positive integer, 1 <-_ u <= n(n 1)/2. If S {[il, jl], [jl, ia], [i2,]2],
[j2, i2],""", [i,,j,], [],, i,]} is a set of 2u edges which have cost u(n-2)+ 1 each
’while every other edge in G has cost u (n 2), then there exists an n x m incidence
matrix B such that

(i) B realizes G;

(ii) rn=u n_+l
2

(iii) each row in B contains u(n- 1) l’s.
Proof. Let Gk, 1 <-- k <= u, be a symmetric cost graph with n vertices such that

only edges [ik,]k] and []k, ik] have cost n 1 each while every other edge has cost
n- 2. By Theorem 1, Gk is 0-1 matrix realizable. Let Bk be the incidence matrix
constructed for Gk as in Theorem 1. Now consider

B =(B1 B2 Bu).

The corresponding cost graph of B is obviously the superposition of cost graphs
G1, G2,"’, Gu (since the cost functions are additive). The theorem follows
immediately from the construction of B and Theorem 1.

72 LAWRENCE T. KOU

3. Hamiltonian paths in the cost graph of an incidence matrix. Let B be an
n x rn incidence matrix and G (V, E, f) be the corresponding cost graph. A
Hamiltonian path in G is a simple path in G that includes every vertex exactly
once. A Hamiltonian path in G can be specified by a sequence of n vertices,
(il, i.,. , in), where the il, i2," in are all distinct. The cost of a Hamiltonian
path in G is the sum +ver the costs of the edges on the path. The following lemmas
give the relationship between the cost of a Hamiltonian path in G and the total
number of consecutive l’s in the columns of B.

LEMMA 1. Let B be an n x m incidence matrix and G (V, E, f) be the
corresponding cost graph. Then the cost ofthe Hamiltonian path (1, 2, , n) is k if
and only if the total number ofblocks ofconsecutive l’s in the columns orb is k + c,
where c is the number of l’s in the n-th row of B.

Proof. Let N be the total number of blocks of consecutive l’s in the columns
of B and N be the total number of blocks of consecutive l’s that end at row of B.
Obviously,

N=NI +N2+" "+Nn.

By the definition of the associated cost graph, it should be clear that, for
1 _-< 1 < n, N ki in B iff f([i, + 1]) ki in G. On the other hand, Nn c.
Hence,

the costof the Hamiltonian path (1, 2, , n)

=f([1, 2])+f([2, 31)+’’" +f([n- 1, n])

=N1 +N2+" 4-Nn-1

The proof is thus completed.
LEMMA 2. Let B be an n x m incidence matrix and G (V, E, f) be the

corresponding cost graph. Then G has a Hamiltonian path of cost k if and only if
there exists an n x n permutation matrix P such that the total number of blocks of
consecutive l’s in the columns ofPB is k + c, where c is the number of l’s in the n-th
row of PB.

Proof. Since each Hamiltonian path (il, i2,"" ", in) in G corresponds in a
one-to-one manner to a permutation of rows in B, the proof of this lemma follows
immediately from Lemma 1.

4. Polynomial completeness of general consecutive retrieval problems. Let
NP be the class of languages that can be accepted by a nondeterministic polyno-
mial time bounded Turing machine. A language L1 is polynomially reducible to a
language L2 (written as L1 oc L2) iff there exists a deterministic polynomial time
bounded Turing machine which will convert each string x in the alphabet of L1
into a string y in the alphabet of L2 such that x L1 iff y L2. A language L is
polynomially complete iff L is in NP and every language in NP is polynomially
reducible to L. A problem that requires a yes or no answer can be considered as a
language such that a string x is in the language iff an instance of the problem that
has a yes answer is encoded into the string x. A yes or no problem P1 is said to be

CONSECUTIVE INFORMATION RETRIEVAL PROBLEMS 73

polynomially reducible to a yes or no problem P2 iff the corresponding languages
La, L2, respectively, are such that L L2. A yes or no problem is polynomially
complete iff the corresponding language is polynomial complete. The reader is
referred to [1], [2] and [8] for the discussions of polynomial complete problems,
the polynomial reducibility and the encoding of problems onto Turing tapes.

In the following, several yes or no problems are introduced first and all of
them will be shown to be polynomial complete.

Problem 1. Given: an undirected graph G (V, E). (Without loss of gener-
ality it is assumed that VI I{1, 2,. , n}l n >= 3 and that G is not a complete
graph).

Question. Is there a Hamiltonian path in G?
Problem 2. Given: a cost graph G (V, E, f) and a positive integer u such

that
(i) V={1,2,...,n}andn_->3;
(ii) 1 <-u <-n(n- 1)/2;
(iii) there exists a set S of 2u edges in G, S={[ia,ja], [jl, ia], [i2,]’2],

[2, i2],""", [i,, j,], [ju, iu]} such that [p, q]e S f([p, q])= u(n 2)+ 1
and [p, q] E, [p, q]: S f([p, q])= u(n 2).

Question. Is there a Hamiltonian path in G such that its cost is u(n- 1)
(n -2)?

Problem 3. Given: an n x rn incidence matrix B and a nonnegative integer k.
Question. Does there exist an n x n permutation matrix P such that

(PB) k, where # (PB) denotes the total number of blocks of consecutive l’s in
the columns of PB?

Problem 4. Given: a finite set R ={rl, r2,’’’, rp}, a family of subsets F,
F {Ojll -</" <-- q, Oj R} and a nonnegative integer k.

Question. Does there exist a string x of length k in the alphabet R such that
for every] 1, 2,..., q there is a consecutive subsequence of x consisting of
exactly all the elements in Oi ?

Problems of whether a Hamiltonian path exists in an undirected or a directed
graph have been shown to be polynomial complete in [8]. Although the original
problems concerned Hamiltonian circuits rather than Hamiltonian paths, almost
identical proofs as those shown in [8] can be constructed to show that the
Hamiltonian path problem is polynomial complete. In the following, Problems 2,
3 and 4 are all shown to be polynomial complete.

THEOREM 3. Problem 2 is polynomial complete.
Proof. The language L corresponding to Problem 2 is certainly in NP. A

polynomial time bounded nondeterministic Turing machine can be constructed
such that it will guess a correct Hamiltonian path and then check if the cost of the
path is equal to u(n- 1)(n- 2). It remains to show that every language in NP is
polynomially reducible to L. Since Problem 1 is polynomial complete, it is
sufficient to show that Problem 10c Problem 2.

Let the undirected graph G (V, E) be an instance for Problem 1. A
polynomial time bounded deterministic Turing machine can be constructed to do
the following:

n(n- 1)
(i) set u

2

74 LAWRENCE T. KOU

(ii) construct a cost graph G1 (V1, El, f) such that V1 V and for j, if
the undirected pair {i,]} E, set f([i,]]) f([j, i]) u (n 2) + 1, else set
f([i,]]) f([/, i]) u(n 2).

G1 is an instance of Problem 2. Furthermore, by the construction of G1, G
has a Hamiltonian path (il, i2," ", in) if and only if the cost of the path in G1 is
u(n- 1)(n- 2). The proof is thus completed.

THEOREM 4. Problem 3 is polynomial complete.
Proof. The language L corresponding to Problem 3 is certainly in NP. A

polynomial time bounded nondeterministic Turing machine can be constructed to
guess a correct permutation matrix P and then check to see if (PB) k. Given
an instance of Problem 2, by Theorem 2, a polynomial time bounded deterministic
Turing machine can be constructed to set the value of k equal to u(n- 1)2 and
assign an n x rn incidence B such that

(i) B realizes G;

(ii) m=u +1
(iii) each row in B contains u(n- 1) l’s.

This is an instance of Problem 3. Furthermore, by the construction of B and
Lemma 2, there exists an n n permutation matrix P such that (PB)=
u(n 1)(n 2) + u (n 1) u (n 1)2 if and only if the cost graph G has a Hamilto-
nian path with cost equal to u(n- 1)(n- 2). Therefore, Problem 2 oc Problem 3.
The proof is thus completed.

THEOREM 5. Problem 4 is polynomial complete.
Proof. It is easy to see that the language L corresponding to Problem 4 is in

NP. In the following, it will be shown that Problem 1 oc Problem 4.
Let the undirected graph G={V,E} be an instance of Problem 1. A

polynomial time bounded deterministic Turing machine can be constructed to do
the following:

(i) setR=EUV;
(ii) set F={QI, Q2,...,Qn} where Q={{i,i}l{i,]}eE}U{i} for i=

1,2,...,n;
(iii) set k 1-n +Y=I Io 1- 21 1/ 1.

This is an instance of Problem 4. By the construction of Q’s, the following are
obvious:

(i) for all i, j(i j), Qi - 04;
(ii) for all i, j(i j), Oi f’l Oi {{i, j}} if and only if {i,]} e E.

Therefore, there exists a Hamiltonian path in G if and only if there exists a string x
of length k such that for 1, 2, , n the elements of Oi appear consecutively in
x. Hence, Problem 1 oc Problem 4. The proof is thus completed.

Remark. In Theorem 4, if 4 (PB) k u (n 1)a, then for any n x n permu-
tation matrix P’, 4e (PB) <- (P’B). Also, in Theorem 5, if the length of x equals
k 1-n+Yi=l Oil, then x is the minimum length string in the alpha-
bet R such that for j 1, 2,..., n elements of O appear consecutively in the
string.

CONSECUTIVE INFORMATION RETRIEVAL PROBLEMS 75

Acknowledgment. The author is obliged to Professor John E. Hopcroft for
reading the manuscript of this paper and for many valuable discussions. Special
gratitude is due the referees for their thorough review and, particularly for their
pointing out a mistake in the proof of Theorem 5 in the original version of this
paper.

REFERENCES

[1] A. V. AHO, J. E. Ho’crovw AND J. D. ULLMArq, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[2] S. A. Coo:, The complexity of theorem proving procedures, Proc. 3rd ACM Conf. on Theory of
Computing, May 1970.

[3] K. P. ESWARAN, Consecutive retrieval information system, Ph.D. thesis, Electrical Engrg. and
Computer Sci. Dept., Univ. of Calif., Berkeley, 1973.

[4] D. R. FULKERSON AND D. m. GROSS, Incidence matrices and interval graphs, Pacific J. Math.,
15 (1965), no. 3.

[5] S. P. GHOSH, File organization: The consecutive retrieval property, Comm. ACM, 15 (1972),
no. 9.

[6] Consecutive storage of relevant records with redundancy, IBM Res. Rep. RJ 933,
Yorktown Heights, NY, 1972.

[7], On the theory of consecutive storage of relevant records, Information Sci., 6 (1973).
[8] R. M. KARl,, Reducibility among combinatorial problems, Complexity of Computer Computa-

tions, R. Miller and J. Thatcher, eds., Plenum Press, New York, 1972.
[9] S. SAHNI, Some relatedproblemsfrom networkflows, game theory and integerprogramming, Proc.

13th Ann. Symp. on Switching and Automata Theory, Oct. 1972.
[10] R. SETHI, Complete register allocation problems, 5th Ann. ACM Symposium on Theory of

Computing, May 1973.
[11] J. D. ULLMAN, Polynomial complete schedulingproblems, ACM 4th Symp. on Operating System

Principles, October 1973.

SlAM J. COMPUT.
Vol. 6, No. 1, March 1977

ON THE COMPLEXITY OF LOCAL SEARCH
FOR THE TRAVELING SALESMAN PROBLEM*

CHRISTOS H. PAPADIMITRIOU AND KENNETH STEIGLITZ’I"

Abstract. It is shown that, unless P NP, local search algorithms for the traveling salesman
problem having polynomial time complexity per iteration will generate solutions arbitrarily far from
the optimal.

Key words, traveling salesman problem, local search, complexity, NP-complete

1. Introduction. The traveling salesman problem (TSP) can be stated as
follows: given r cities and (r-1)r/2 nonnegative integers denoting the distances
between all pairs of cities, we are required to find a tour, that is, a closed path
passing through each city exactly once, so that the total traversed distance is
minimal. Despite the simplicity of its statement, the TSP is apparently a very hard
problem and has attracted a large number of researchers. Although no efficient
algorithm for its solution has been found (and no nontrivial lower bound of its
complexity has been proved) a number of different lines of attack have been
proposed. A class of heuristics known as local search algorithms [5], [6], [11], [12]
have been particularly successful in generating good solutions for large problems
by a reasonable computational effort. A local search algorithm (to be more
formally defined later) starts with an essentially random tour and, by searching a
set of tours which are considered "neighbors" of the former, either finds a
neighbor with improved cost and uses it as a new starting point or, if this is not
possible, terminates. The solution generated by this technique is called a local
optimum. Tours of minimum length are referred to as global optima. Local optima
may or may not necessarily be global optima, depending on the particular
neighborhood structure used by the algorithm. Local search algorithms generat-
ing only global optima are called exact.

We will be particularly interested in the complexity of the problem of
searching the neighborhood of a tour in order either to find an improvement or
show this tour to be a local optimum. By "complexity of local search" the above
mentioned complexity is understood--and not the complexity of the whole
algorithm, which heavily depends on the number of iterations necessary. In
particular we will examine the computational requirements of local search
algorithms for the TSP, when certain restrictions are imposed on the quality of the
obtained local optima.

The notion of a combinatorial optimization problem with a numerical input
(COPNI) is introduced. This class, which appears to be a restriction of the subset
problems discussed by [10], includes several well-known problems such as the
TSP and instances of the problem of job scheduling with deadlines (JSD). A
particular COPNI is exhibited in which the minimal exact neighborhood, although

* Received by the editors September 24, 1975.
? Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08540.

This work was supported by the National Science Foundation under Grant GK-42048 and by the U.S.
Army Research Office--Durham under Contract DAHC04-69-C0012.

76

ON THE COMPLEXITY OF LOCAL SEARCH 77

exponential in size, can be searched in linear time. This counterexample shows
that the cardinality of the minimal exact neighborhood is not a lower bound for the
complexity of exact local search.

In fact, if the exact local search problem were of provably exponential
complexity, this would be a rather remarkable result, since exact local search for
the TSP is one of those tasks that are made very easy if nondeterministic
computations are permitted. In the light of this observation we can think of the
question, whether exact local search for the TSP can be done in a polynomial
amount of time per iteration, as a part of the presently unsettled P NP question.
In fact it is shown that, unless P NP, each iteration of an exact local search
algorithm for the TSP requires more than a polynomial number of steps.

A stronger result is also shown along the same lines. It is proved that, if a local
search algorithm requires only a polynomial amount of time per iteration, the
local optima thus obtained can be arbitrarily far from the optimum, unless, of
course, P NP. The above result suggests that a large class of efficient heuristics
[5], [6], [11], [12] yield local optima of no guaranteed accuracy whatsoever.

2. Combinatorial optimization problems with numerical input. The set of
nonnegative integers is denoted by Z+. For n Z/ we shall denote by r7 the set
{1,2,’." ,n}.

DEFINITION. A combinatorial optimization problem with numerical input
(COPNI) is a pair (n, F), where n e Z/ is the dimension of the problem and F, a
subset of 2’, is the set of feasible solutions. We will require that there exists at least
one feasible solution and that no feasible solution is properly contained in
another.

An instance of the COPNI (n, F) is a function (numerical input) c: ri -Z/. In
order to solve an instance c of the COPNI (n, F) we are required to find a feasible
solution f e F such that c(f) .rc(j) is minimal.

Note that the feasibility of a solution is not affected by the numerical input.
On the other hand the noncontainment requirement for the feasible solutions can
be easily seen to be equivalent to the condition, that for each f F there exists an
instance c for which f is uniquely optimal.

There is an interesting geometric interpretation of COPNI’s: every feasible
solution in F corresponds (in the obvious manner) to a vertex of the n-
dimensional hypercube. Hence the convex hull of these vertices is an equivalent
representation of the COPNI. Since an instance of the COPNI is essentially a
linear functional, it follows that solving an instance of a COPNI is equivalent to
minimizing a linear functional over the vertices of a convex polytope. For a further
discussion of this analogy, see [7].

(r) and with F beingExamples. The TSP with r cities is a COPNI with n
2

the set of all possible tours represented as sets of r intercity links.
The problem of job scheduling with deadlines (JSD) [4] is a COPNI. Here we

have a set ri of jobs and for each job] ti we have the deadline Dj and the
execution time T.. A subsetf of r7 is feasible if all jobs in ti -f can be executed on a
single processor within their deadlines, and no subset of t7 properly containing
ri-f enjoys this property.

78 CHRISTOS H. PAPADIMITRIOU AND KENNETH STEIGLITZ

In the case of JSD the values of c can be thought of as rewards obtained for
executing a job within its deadline, and our goal is to minimize the rewards lost. It
should be emphasized that, unlike the formulation in [4], the numbers {Dj} and
{T.} are not considered as a numerical input here.

The Steiner tree problem, the max flow problem, the minimal spanning tree
problem and many others can be formulated as COPNI’s.

DEFINITION. A neighborhood structure for the COPNI (n, F) is a function
N: F+ 21[

Informally, N assigns to each feasible solution f its neighborhood N(f). We
wlll also informally describe a local search algorithm for the COPNI (n, F) and the
neighborhood structure N as a deterministic algorithm with input (fo; c), where
fo F and c is an instance of (n, F). The algorithm is described below in terms of
the function IMPROVE (f, c) which, when invoked, returns some s N(f) such
that c(s)< c(f), if such an s exists, and returns ’no’ otherwise.

f:=fo;

while IMPROVE (f, c)--q= ’no’ do

f := IMPROVE (f, c);

return f

The output of this algorithm is called a local optimum with respect to N for
the instance c of (n, F). The performance of a local search algorithm depends on
the complexity of the function IMPROVE, the number of iterations (executions
of the while loop) and the quality of the local optima. The neighborhood structure
affects all the above factors. In particular N is exact if all local optima with respect
to N are also global optima. For example, if N(f)- F for all f F, N will be
trivially exact.

The following characterization has been adapted from [10]"
THEORE 1. In a COPNI (n,F) there exists a unique minimal exact

neighborhood structure given by

1Q(f) { s F: for some instance c, s is uniquely
optimal with f second to optimal

The exact nature of the map/Q for the case of the TSP is not known. In fact,
the results in [7] .suggest that there is no concise, algorithmic-oriented characteri-
zation of/Q for the TSP. However, the authors of [13] have shown that for an r city
TSP,/Q consists of sets of cardinality at least ((r- 2)/2)!. They continue by arguing
that the exponential size of N implies that exact enumerative local search for the
TSP must be inefficient. The following fact demonstrates that this argument is not
valid when nonenumerative (data-dependent) search is allowed:

FACT. There exists a COPNI (n, F) and an f Fsuch that N(f) is exponential
in size but can be searched in O(n time.

Proof. Consider the JSD with n odd, Di=(n-1)/2 for i-1, 2,..., n,
T1 (n 1)/2, and T. 1, f 2, 3, , n. The set of feasible solutions is

F={f}UF’,

ON THE COMPLEXITY OF LOCAL SEARCH 79

where f={2, 3,..., n} and

F’={s subset of ri: 1 s and [sl =(n + 1)/2}.

Consider any s e F’. We can define an instance cs as follows

(N-3)/2 if]=1,

cs(])= 0 if]7=land]s,

1 otherwise.

It can be easily verified that, for this instance, s is uniquely optimal (with cost
(n 3)/2) with f second to optimal (cost (n 1)/2):,Hence by Theorem 1, s e (f)
and consequently (f)= F’. The cardinality of N(f) is approximately equal to
.8n-1/22n.

Yet for any instance c, (f) can be searched in linear time. To see this, let t be
the set of jobs in {2, 3, , n} having the (n 1)/2 largest costs. The optimum is
either f or ri- t,depending on whether or not jtc(])<c(1). Consequently in
order to search N(f) we only need to find the (n 1)/2 jobs in {2, 3,. ., n} having
the largest cost, and compare the sum of their costs to c (1). But this can be done in
O(n) time by using the median algorithm of [2]. [3

The idea behind this counterexample is that the minimal exact neighborhood
is a.data-independent set, whereas data can be used very efficiently in order to
facilitate its search. As we will see in the next section there is little hope that
something similar can be done in the case of the TSP.

3. The complexity of exact and approximate local search. For the purpose of
relating the complexity of local search to the P NP question, we now show
certain related languages to be NP-complete. We assume the existence of a
function e mapping graphs, digraphs, paths, TSP tours and instances to strings in
(0, 1)*. A wide variety of "reasonable" encodings wouldsuffice for our purposes.

DEFINITION. Let V be the set of nodes of a graph (V, E) (resp. a digraph
(V, E’)) and let (v 1, v2, v n) be a permutation of V such that (v , v +a) is an
edge (resp. a directed edge) for 1, 2,..., n- 1. If (v , vx) is an edge (resp.
directed edge), then (Vl, ", v, v) is an undirected Hamiltonian circuit (UHC)
(resp. directed Hamiltonian circuit (DHC)). Otherwise, if (v, v a) is not an edge
(resp. directed edge) then (v , , v") is an undirected Hamiltonian path (UHP)
(resp. directed Hamiltonian path (DHP)). Note that, by the above definition, no
part of a Hamiltonian circuit is a Hamiltonian path.

In [4] the problems of determining whether a given graph (directed or
undirected) has a Hamiltonian circuit are shown to be NP-complete. We show that
they remain NP-complete even if a serious restriction is imposed on their
domains. In particular one would expect that the search for a Hamiltonian circuit
in a graph would be facilitated considerably, if we were given a Hamiltonian path.
The next two theorems suggest that this is not the case.

The restricted directed Hamiltonian circuit problem is the recognition prob-
lem for the following language:

RDHC {e(G); e(P):P is a DHP in G and G has a DHC}.

80 CHRISTOS H. PAPADIMITRIOU AND KENNETH STEIGLITZ

v,

V
FIG. 1 The digraph H

THEOREM 2. RDHC is NP-complete.
For the proof of Theorem 2, the following lemma is needed"
LEMMA. Let the digraph H (shown in Fig. 1) be a subgraph of a digraph G,

such thatedges ofG HenterHonly at Vl or 123 and leaveHatv4 or v6 only. Then, if
G has a DHC C, one ofthepaths (vl, v3, rE, Vs, v4, v6) or (v3, v6, v5, v2, vl, v4) is a
part of C.

ProofofLemma. Let C enter H at Vl. Then for some node u of G-Hone of
the following six paths is a part of C:

1. (v, 124, U),
2. (v, 124, 126, U),
3. (121, 123, 126,

4. (vx, v3, vz, v5, 124, U),
5. (121, 123, 126, 125, V4, U),
6. (v, v3, v2, vs, 124, 126, U).
In the first five cases it can be easily verified that there is no way for C to pass

through the unvisited nodes of H, contrary to our assumption that C is Hamilto-
nian. Consequently if C enters H at va, (Vl, v3, v2, v5, v4, v6) is a part of C. If C
enters H at v3, then, again, for some node u of G-H one of the following seven
paths is a part of C:

1. (v3, vz, 121, 124, U),
2. (v3, Vz, v, v4, 126, U),

4. (v3, vz, v5, v4, 126,

5. (123, 126, b/),
6. (v3, 126, 125, 124,

Again, if one of the first six paths is indeed a part of C, C cannot visit the
remaining nodes of H. Hence if C enters H at v3, (v3, v6, vs, vz, vl, v4) is a part of
C, which completes the proof of th lemma.

ON THE COMPLEXITY OF LOCAL SEARCH 81

ProofofTheorem 2. We reduce the DHC problem to RDHC. Let G (V, E)
be an instance of the DHCproblem. We will construct a digraph G’ (V’, E’) with
a DHP P, such that G’ has a DHC iff G has a DHC.

We let V={v 1, v2, v n} and V’={v, v,... v, v,... v}. For each
j _-< n we connect the nodes {V/l, v, , v} as {vl, v2, , v6} are connected inH,
and we call the resulting subgraph Hi. Moreover for each edge (v i, v) E we add
the edge (v g6, v) toE We also addtheedges (v4, v 1, 2, n- 1, toE’.

Obviously G’ has a DHP, namely P= (v, v, v, v, v, v, v], v,.",
vT, v]). Moreover if G has a DHC (W 1, W 2, W 3, W n, wl), then G’ also has a
DHC, namely (w, w3, w, w, w4, w, w,-.., w6, w).

Conversely, suppose that G’ has a DHC C. Suppose that for some i, C enters
v i) is a part of C. Since v +1 is the onlyH at v3. By the lemma, (v3 6 5 V2 1

+1.node in G’-H which succeeds v, it follows that C will enterHg+x
at v Hence

the same argument can be applied to Hg+. Inductively, we can assume that C
enters H" at v3. By the lemma, (v "3, v 6," v ", v, v 1, v) will be a part of C But there
is no node in G-H which succeeds v. Consequently C is not a DHC as
supposed.

From the above contradiction we .deduce, that for no n will C enter H at
v3, and hence C is equal to (w, w, w, w,..., w6, w) for some DHC
(w, w,. , w,, Wx) of G. Consequently G has a DHC iff G’ has a DHC, and the
proof is completed. (The straightfoard verification of the facts that the problem
is in NP and that the reduction is a polynomial-time one has been omitted). 3

Similarly we define the restricted undirected Hamiltonian circuit problem to
be the recognition problem of the language

RUHC {e (G); e (P) P is a UHP in G and G has an UHC}.

THEOREM 3. RUHC is NP-complete.
Proof. We reduce the RDHC to it. The construction is identical to the one

used in the proof of the NP-completeness of the ordinary UHC problem 1], [4]. It
is an elementary observation that the construction preserves the existence of a
Hamiltonian path. [-1

An interesting side problem of the TSP is the following: given an instance c
and an edge (i, j), does (i,]) appear in some optimal tour? This problem is also
NP-complete. To show this, we define the language

M= e(c); e(i, f)" the edge (i, f) does not appear in any]
optimal tour of the instance c of the TSPJ"

THEOREM 4. M is NP-complete.
Proof. We reduce the RUHC to it. Let (G; P) be an instance of the RUHC,

where P (wl, w2, , wn) is a UHP. Let c be an instance of the TSP such that
c(wi, wj)= 2 if (wi, wi) is not an edge of G, and c(wi, wi)= 1 otherwise. If
(G, P) RUHC, then G has a UHC and hence (wl, wn) (which, by definition of a
UHP, corresponds to a missing edge of G) will not appear in any optimal tour of c.
Conversely, if (Wx, w,) does not appear in any optimal tour of c, then the tour

82 CHRISTOS H. PAPADIMITRIOU AND KENNETH STEIGLITZ

corresponding to P is suboptimal and hence G has a UHC. Consequently
(c, (i, j)) M iff (G, P) RUHC. E]

We now define the following language"

Lo {e (c); e (f) f is a suboptimal tour for the instance c}.

It can be argued that Lo adequately captures the complexity per iteration of
the exact local search problem for the TSP, since the recognition problem for Lo
can be solved by one call of the function IMPROVE (c, f) of any exact local search
algorithm. Hence the following result suggests that exact local search for the TSP
could require iterations of complexity more than polynomial"

THEOREM 5. Lo is NP-complete.
Proof. We reduce RUHC to it. Let (G (V,.E); P) be an instance of the

RUHC problem. Let c be an instance of the TSP with]VI cities, such that
c(v, u) 1 if (v, u) E and c(v, u) 2 otherwise. Let f be the tour corresponding
to the path P. Then (G, P) RUHC if[(c, f) .Lo.

Let e be any positive real number, and c an instance of the COPNI (n, F),
with optimal feasible solution s. A feasible solution f F is called e-approximate
[9] if (c(f)-c(s))/c(s) <-_ e. Otherwise f is called e-suboptimal. In a similar way to
Lo, the following language is defined for e > 0:

L {e (c); e(f): f is an e-suboptimal tour for the instance c}.

THEOREM 6. L is NP-complete for all e > O.
Proof. Let (G (V, E), P) be an instance of the RUHCproblem. Let c be the

instance of the IVI-city TSP with c(v, u)= 1 if (v, u)E and c(v, u) 2+lv[e
otherwise, f is again the tour corresponding to P. It can be easily seen that
(G,P)6RUHC if[(c,f)6L. [3

We say that a local search algorithm is e-approximate if all local optima
produced by this algorithm are e-approximate. The following theorem suggests
that local search algorithms for the TSP with iterations requiring only a polyno-
mial amount of time (such as the ones proposed by [5], [6], [11], [12]) will yield
local optima of no guaranteed accuracy.

THEOREM 7. IfP NP, local search algorithms havingpolynomial complex-
ity per iteration cannot be e-approximate for any e > O.

Proof. It suffices to show how, by using the function IMPROVE of an
e-approximate local search algorithm, we can solve the RUHC problem. Given
an instance (G V, E), P) of this problem, we construct, as before, the instance c
of the VI-city TSP with c(u, v) 1 if (u, v) E, and c(u, v) 2 /lvl otherwise,
and f, the tour corresponding to the Hamiltonian path P. f has cost VI(1 + e) +
1; moreover there is no tour of better cost, unless G has a UHC. Hence
(G, P) RUHC iff IMPROVE (f, c) # ’no’. E]

It should be emphasized that Theorem 7 and its implications are valid when
no additional restrictions are imposed on the instances of the TSP considered. For
example, if a "natural" constraintmthe triangle inequalitymholds among the
intercity distances, there are polynomial-time algorithms (not necessarily of
iterative nature) yielding 1-approximate [8] and 1/2-approximate [3] solutions.

ON THE COMPLEXITY OF LOCAL SEARCH 83

REFERENCES

[1] A. V. AHO, J. E. HOt’CROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

[2] M. BLUM, R. W. FLOYD, V. R. PRATT, R. L. RIVEST AND R. E. TARJAN, Time bounds for
selection, J. Comput. System Sci., 7 (1972), pp.448-461.

[3] N. CHrtISTOFIDES, Private communication, March 1976.
[4] R. M. KARP, Reducibility among combinatorial problems, Complexity of Computer Computa-

tions, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.
[5] S. LIN, Computer solutions of the traveling salesman problem, Bell System Tech. J., 44 (1965), pp.

2245-2269.
[6] S. LIN AND B. W. KERNIGHAN, An effective heuristic algorithm]:or the traveling salesman

problem, Operations Res., 21 (1973), pp. 498-516.
[7] C. H. PAPADIMITRIOU, The complexity of the local structure of certain convex polytopes, Proc.

1976 Conf. on Information Systems and Sci., Johns Hopkins Univ., Baltimore, Md., March
31-April 2, 1976, pp. 47-51.

[8] D. J. ROSENKRANTZ, R. E. STEARNS AND P. M. LEWIS, Approximate algorithms for the
traveling salesperson problem, IEEE 15th Annual Symp. on Switching and Automata Theory,
Univ. of New Orleans, New Orleans, La., Oct. 14-16, 1974, pp. 33-42.

[9] S. SAHNI AND T. GONZALES, P-complete approximationproblems, J. Assoc. Comput. Mach., 23
(1976), pp. 555-565.

[10] S. L. SAVAGE, P. WEANER AND M. J. KRONE, Convergent local search, RR # 14, Dept. of
Comput. Sci., Yale Univ., New Haven, Conn., 1973.

[11] S. REITER AND G. S. SHERMAN, Discrete optimizing, SIAM J. Appl. Math., 13 (1965), pp.
864-889.

12] K. STEGLITZ AND P. WEINER, Some improved algorithms]:or computer solution of the traveling
salesman problem, Proc. 6th Ann. Allerton Conf. on Circuit and System Theory, Univ. of I11.,
Urbana, I11., Oct. 1968, pp. 814-821.

[13] P. WEINER, S. L. SAVAGE AND A. BAGGHI, Neighborhood search algorithms for guaranteeing
optimal traveling salesman tours must be inefficient, J. Comput. System Sci., 12 (1976), pp.
25-35.

SIAM J. COMPUT.
Vol. 6, No. 1, March 1977

A FAST MONTE-CARLO TEST FOR PRIMALITY*

R. SOLOVAY’I" AND V. STRASSEN:I:

Abstract, Let n be an odd integer. Take a random number a from a uniform distribution on the
set {1, 2,. , n 1}. If a and n are relatively prime, compute the residue e a("-l)/2(mod n), where
-1 e < n 2, and the Jacobi symbol 6 (a/n). If e 6, decide that n is prime. If either gcd (a, n) >
or e 6 decide that n is composite. Obviously, if n is prime, the decision made will be correct. We will
show below, that for composite n the probability of an incorrect decision is _-<1/2. The number of
multiprecision operations needed for the whole procedure is <6 iog2n, m-fold repetition using
independent random numbers yields a Monte-Carlo test for primality with error probabilities 0 (if n is
prime) and <2-" (if n is composite) and with multiprecision arithmetic cost <6m log.n.

Key words. Monte-Carlo tests, primality

1. Cost of the procedure. By a multiprecision operation we mean an arithme-
tic operation or a division with remainder of two numbers <n 2. To decide whether
a and n are relatively prime, we compute (a, n) by Euclid’s algorithm. This can be
done with approximately 1.5 logan multiprecision operations (see Knuth [1,
p. 320]). Computing e can be done by 1.25 logen multiplications each followed by
a reduction rood n, i.e., by 2.5 log2n multiprecision operations (Knuth 1, p. 409]).
We compute 6 with the help of the reciprocity law for Jacobi symbols ([2, p. 79]).
This is about as hard as computing (a, n). The total number of multiprecision
operations of the procedure can therefore be estimated from above by 6 log2n.

2. Error probability. If n is prime, the procedure obviously reaches a correct
decision. Let n be composite. The set

G= {a+(n)laZ & (a, n)= l &a("-l)/2=--(-) (modn)}
is a subgroup of the group of units 2 of 2n. Therefore it suffices to show G
(for this implies IGI_-< l.l_-< (n)/2, so that at most 1/2 of the numbers between 1
and n- 1 will lead to the decision that n is prime).

By the way of contradiction assume

(1) a(-/= (mod n)

for all a e ;g relatively prime to n. If n p is a prime power, we get from

a pe-1 1 (mod pe)

for all a not divisible by p. Since 2, is cyclic of order p -(p 1) we have

pe--(p--1)lpe--1

* Received by the editors June 12, 1974, and in final revised form October 6, 1.975.
? IBM Watson Laboratory, Yorktown Heights, New York 10598.
$ Seminar fur Angewandte Mathematik, Universitiit Zurich, 8032 Zurich, Switzerland.

84

FAST MONTE-CARLO TEST 85

and therefore e <_-1, which is impossible since n is composite. Thus n has a
nontrivial factorization n r. s with (r, s) 1. Equation (1) implies

(2) a (,,-1/2 + 1 (mod n

for all a relatively prime to n. We claim that in fact

(3) a (n-1/2-- 1 (mod n)

for such a. Otherwise there is an a with a ("-/2-- -1 (mod n). Since r and s are
relatively prime we can apply the Chinese remainder theorem and find b with
b 1 (mod r), b -= a (rood s). Then

b("-/2= 1 (mod r), b("-/2=--1 (mod s),

in contradiction to (2). Equation (3) implies

1

for all a relatively prime to n, which is impossible.
Remarks 1. Our result should not be confused with assertions as to n being

prime or not which are correct with high probability given that n is a random
number sampled from the uniform distribution on a sufficiently large segment of
the integers. Under such a hypothesis it is reasonable to decide that n is composite
without even looking at it. The probability of error may be further substantially
reduced by checking, e.g., whether

2" 2 (mod n)

(see Erd6s [3]).
2. Perhaps it is useful to measure the complexity of a Monte-Carlo test (with

one probability of error 0 as above) by a single quantity. If the test has error
probability a and cost t, we suggest t/(-log a) as such a measure, since this is
invariant under independent repetition.

Acknowledgment. It is a pleasure to thank Ernst Specker for interesting
discussions about the subject.

REFERENCES

[1] D. E. KNUTH, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-
Wesley, Reading, Mass., 1969.

[2] I. NIVEN AND H. S. ZUCKERMAN, An Introduction to the Theory ofNumbers, John Wiley, New
York, 1966.

[3] P. ERDOS, On almost primes, Amer. Math. Monthly, 57 (1950), pp. 404-407.

SIAM J. COMPUT.
Vol. 6, No. 1, March 1977

COMMENTS ON F. HADLOCK’S PAPER:
"FINDING A MAXIMUM CUT OF A PLANAR GRAPH

IN POLYNOMIAL TIME"*

K. AOSHIMA AND M. IRIf

Although the final result stated in the above-mentioned paper [1 is correct,
the author’s arguments leading to it seem to want some correction.

In Theorem 2 he states that

An edge set D is an odd-circuit cover of a planar graph G if and only if the corresponding
edge set P is an odd-vertex pairing for the geometric dual GD of G.

This statement is not valid, because he defines both "odd-circuit covers" and
"odd-vertex pairings" with regard to the "removal" of the edges in consideration
(which operation apparently means "opening the edges" in another terminology)
and because the operation of removal (i.e., opening) of edges in a graph G
corresponds to that of "contraction" (i.e., shortening) of the corresponding edges
in the geometrical dual GD. (It is easy to find a counterexample to the theorem.)
Thus, we should replace the term "odd-vertex pairing" by another concept, e.g.,
"odd-vertex cover", which is defined as a set of edges such that their "contraction
(shortening)" yields a graph all of whose vertices are of even degree.

Fortunately, however, the family of minimum odd-vertex covers coincides
with that of minimum odd-vertex pairings, whereas the family of odd-vertex
covers properly includes that of odd-vertex pairings. (Hence, Hadlock’s final
result remains correct.) In fact, it is almost obvious that an odd-vertex pairing is an
odd-vertex cover, and it can be proved, as will be done below, that a minimum
odd-vertex cover is an odd-vertex pairing.

In order to prove this last fact, let us consider a minimum odd-vertex cover C
and the partial graph Gc of the original graph G which has C as the edge set.

First of all, we note that Gc is a forest, because, if there were a circuit in Gc,
C-{e} would remain an odd-vertex cover where e is any edge of the-circuit.

Secondly, we can show that the parity of the degree of each vertex in Gc is the
same as that of the corresponding vertex in G. In fact, the vertex of Gcorrespond-
ing to an isolated vertex in Gc is obviously of even degree. Let us consider a vertex
v of odd (positive even) degree of Gc and the corresponding vertex 5 of G. Since
C is an odd-vertex cover of G, the number of those vertices of odd degree of G
which correspond to the vertices of the connected component of Gc containing v
must be even. Let us then remove (i.e., open) all the edges incident to v in Gc, and
denote by G1, Gc2," the connected components of the resulting graph which
contain, respectively, the vertices adjacent to v in Go If the parity of the degree of
v in Gc did not coincide with that of 5 in G, there should exist at least one Gci, say
Gcl, which contains an even number of the vertices corresponding to the vertices
of odd degree of G (because there are an odd (even) number of Gci’S, is of even
(odd) degree in G and the total number of those vertices in the connected

* This Journal, 4 (1975), pp. 221-225. Received by the editors December 12, 1975.
f Department of Mathematical Engineering and Instrumentation Physics, Faculty of Engineer-

ing, University of Tokyo, Bunkyo-ku, Tokyo, Japan.

86

COMMENTS ON F. HADLOCK’S PAPER 87

component of Gc containing v which correspond to vertices of odd degree in G
must be even). Hence if we removed from C the edge which connects v and its
adjacent vertex in Gcl, we should have another smaller odd-vertex cover, which
would contradict the minimality of C.

Finally, by virtue of .the famous theorem of L. Euler on the unicursal
problem, we can decompose C into a set of edge-disjoint paths which establishes a
pairwise correspondence among the vertices of odd degree of G. Therefore, C is
an odd-vertex pairing.

REFERENCE

1] F. HADLOCK, Findinga maximum cuto]a planargraph in polynomial time, this Journal, 4 (1975),
pp. 221-225.

SIAM J. COMPUT.
Vol. 6, No. 1, March 1977

A GRAPH-THEORETIC CHARACTERIZATION OF THE
PVchunk CLASS OF SYNCHRONIZING PRIMITIVES*

PETER B. HENDERSONf AND YECHEZKEL ZALCSTEINt

Abstract. Many of the process synchronization problems studied in the literature are of the
form of a conjunction of finitely many conditions of the type "process Pi blocks process pj". Such
problems may be expressed as directed graphs whose nodes represent the processes and where
there is an edge from node to node j if and only if process Pi blocks process pj. We characterize
the class of graphs which correspond to the system of synchronizing primitives of Vantilborgh and
van Lamsweerde in terms of a normal form representation and present an efficient algorithm for
determining whether an arbitrary graph is in this class.

Key words, synchronization problem, PVchu,,k, PVc-definable graph, normal form, interval graph

Introduction. Vantilborgh and van Lamsweerde [14] have introduced an
extension of Dijkstra’s PV system of primitives [4] (dubbed PVchunk or PVc in
[8]) allowing the semaphores to be updated by "chunks" that are arbitrary
positive .integers.

An analysis of the purely parallel behavior of systems of processes has
been undertaken in [8]-[10]. Herein, we characterize, in a sense to be made
precise below, the purely parallel behavior of PVchunk systems (in the terminol-
ogy of Lipton [8], the exclusion slices implicitly definable by PVchunk systems).
This solves a problem left open in [8] and [10].

1. Statement ot the problem. A purely parallel program is a program of
the form

parbegin Q1/ / //Q, parend

where parbegin.., parend is Dijkstra’s parallel block notation [4] and each Qi
is a single statement of the form I-8]

when B(Xl, ", xn) ^ bi 1 do (Xl, ", Xn) bi -0;
where Xl, , xn are the program variables of , B(xl, ",x,) is a predicate,
bi is a Boolean variable distinct from Xl, , x,,, bl, , bi-1, bi+l, b,,, and
O(xl,’’’, x,,); bi -0; is a simultaneous assignment of the form

XI<"-OI(X1,"" Xn); Xn <--On(Xl, x); b, O.

In use, assignments of the form x xi will be deleted. Each Q is called a
(purely parallel) process. Note that in a purely parallel program each
statement (corresponding to a process) can execute at most once.

* Received by the editors April 23, 1975, and in revised form February 26, 1976.

" Department of Computer Science, State University of New York at Stony Brook, Stony
Brook, New York 11790. The work of this author was supported in part by the National Science
Foundation under Grant ENG75-10228.

$ Department of Computer Science, State University of New York at Stony Brook, Stony
Brook, New York 11790. The work of this author was supported in part by the National Science
Foundation under Grant DCR75-01998.

88

GRAPH-THEORETIC CHARACTERIZATION 89

A purely parallel system of processes is a pair (, I), where is a purely
parallel program and I is the vector of initial values of the program variables
Xl,’",x, and Boolean variables bi, i=l, 2,...,m. Furthermore, it is
required that for each Qi of the form

when B(x1, Xn) A bi 1 do O(xl, , x.); bi -0;

the predicate B(Xl,’’’, x,)^ b 1 is true at/.

The concept of a purely parallel system of processes is a formalization of
the notion of a synchronization problem with a fixed number of processes. For
example, a purely parallel system of processes (, I) which captures the underly-
ing behavior of the reader-writer synchronization problem [2] with k indepen-
dent reader processes R1, R2,’’’, Rk and writer process W is:

parbegin W / R1/ / R2/ / / /Rk parend with

W: when x 0 A x2 0 A b0 1 do x2 <-- x2 - 1; bo <- O;

Ri" when x. 0 ^ bi 1 do x <-" X -- 1; bi O;

for 1, 2,. , k and I (Xl, x2, bo, bl, , bk) (0, 0, 1, 1,. , 1).
It should be noted that because of the restriction to a fixed number of

processes, the original reader-writer problem [2], where the number of proces-
ses is potentially infinite, cannot be accommodated in this framework.

A state of (, I) is the vector of values of the program variables xl,""’, xn
and the Boolean variables bi, 1, 2,..., m. Let Z be the set of states of
(, I). Each process Qi of the form

when B(x1," Xn) ^ bi 1 do O(Xl, , x.); bi <-’0;

defines a partial function Qi’Z-->Z as follows:
If the predicate B(Xl,’’’, Xn)^ bi--1 is true at z Z, then Qi(z) is the

resulting state after simultaneously executing all assignments bi-O and
Xj<"’Oj(Xl,’’’,Xn) j=l, 2,...,n. If the predicate B(Xl,...,Xn)^bi=l is
false at z Z, then the function Oi(z) is undefined at z.

A sequence Oil"’’Oik of .processes defines a partial function
Oil Oik "Z--> Z by functional composition; that is,

(Z)Oil Oik, Oil (’’" (Oi2(Oil(Z))) for z 6 Z.

A computation of (, I) is a sequence Qil...Qik of processes such that
the partial function Qi Qi is defined at L Note that it follows from the
definition of a purely parallel system of processes that no process can occur
twice in a computation. The behavior of (, I) is the (necessarily finite) set of
computations of (, I). The concept of the behavior of a purely parallel system
of processes was introduced by Lipton [8], where it was termed "slice definable
by a system of processes".

Let (, I) be a purely parallel system of processes. We will say that a
process Qi blocks process Qj provided that QiQj is not a computation of (:, I).
It follows from the definition of a purely parallel program that any process Qi
blocks itself.

90 PETER B. HENDERSON AND YECHEZKEL ZALCSTEIN

Consider the subclass q of the class of purely parallel systems of processes
for which 0,’"0 is a computation if and only if for all j and such that
1 _-<j < _-< k, Q does not block Q,. In the terminology of Lipton [8], the class
q corresponds to the "exclusion slices definable by a system of processes".

Many of the process synchronization problems studied in the literature are
of this type. Examples are:

1. the "reader-writer problem" [2], in which "a writer (process) blocks all
readers (processes) and all other writers", and "each reader blocks all writers"
(note that a reader cannot block another reader), and

2. the "five dining philosophers problem" [5], where each of the five
processes blocks exactly two other distinct processes and in turn is blocked only
by these two processes.

Let (, I) be in class ge. Utilizing the relation "blocks" on the processes of
(5, I), the behavior of (, I) may be expressed by a directed graph G (N, E),
where node set N corresponds with the processes of (, I) and E corresponds
to the relation "blocks" on these processes (i.e. there is an edge (i, j) in E if
and only if process O blocks process O). Accordingly, (, I) defines graph G
provided that there is a one-to-one correspondence y:{Oa,..., Q,,}N so
that O...O is a computation of (, I) if and only if (y(O), T(Q,))eE, for
all 1 <-j < _-< k. With this correspondence, we say that graph G is definable
by the system (, I).

The graphs definable by many systems of processes have been charac-
terized [8], [10]. For example, the class of graphs definable by PV are all
disjoint unions of complete graphs [8, pp. 86, 90] and the class of graphs
definable by any of PV-multiple, up/down, or vector addition systems is the class
of symmetric graphs (a graph is said to be symmetric when the relation E is
symmetric) [10, 5]. Also, vector replacement systems or Petri nets define all
(directed) graphs [10, 5]. In contrast with these results, the characterization of
the PV-definable graphs turns out to be considerably more intricate.

A purely parallel system of processes (, I) is a purely parallel PVchunk
(abbreviated PVc) system of processes provided that (a) there is a distinguished
nonempty subset 5 of the program variables (the variables in 5 are called
semaphores) and (b) there are only statements of the form:

1. when S>=a ^b 1 do SS-a; b-0;
2. when true ^ b/= 1 do S - S + c; bi <- 0;

where a and c are positive integers and S 6. A statement of type 1 is denoted
by P[S, a l, a "delay" or "wait" primitive in [14]. Statements of type 2 are
denoted by V[S, c], the "completion" primitives in [14].

It is important to note that if graph G- (N, E) is defined by the PVc
system (, I), then a node x in G which corresponds to a V[-, process in
is necessarily disconnected from all other nodes in G since a V[., process
can neither block nor be blocked by any other process in . Hence, without
loss of generality we consider only the class of graphs defined by the class of
purely parallel PVc systems of P[., processes. As an illustrative example,
consider the purely parallel system (, I) with I- S 3 and program below:

parbegin Q1 :P[S, 3]//Q2:P[S, 2]//Q3: V[S, 1] parend.

GRAPH-THEORETIC CHARACTERIZATION 91

FIG. 1. Graph definable by PVcsystem (, I)

This system defines the graph in Fig. 1.
It is easy to see that a graph definable by a PVc system--termed a

PVc-definable graph--is a disjoint union of graphs definable by PVc systems
with a single semaphore. Thus in the remainder of this paper, "PVc-definable"
will mean "PVc-definable using a single semaphore". In addition, in [10,
Corollary 5.2.1] it is shown that the relation "blocks" on P[., processes is
symmetric; therefore, any PVc-definable graph may be considered as an
undirected graph. In the sections following all graphs are assumed to be
undirected. Also, since the relation blocks is reflexive (i.e. (3’(Oi), y(Qi))E
for 1, 2,..., m), without loss of generality we consider only irreflexive
graphs (no node is adjacent to itself) and implicitly assume that each process
blocks itself. This assumption simplifies the presentation in the following
sections.

Let (, I) be a purely parallel PVc system of processes with a single
semaphore S whose initial value is t. Then the definition of a purely parallel
PVc system implies OilO2"’’Ok is a computation, with each Oij being a
P[S, aj] process, if and only if Yj=I ai =<t. With respect to the class of PVc-
definable graphs, the latter condition is equivalent to stating that the sets of
nodes {y(Oil),"’, y(Ok)} in G is totally disconnected (i.e. /(0,) is not
adjacent to node 3’(Oij) for any 1 -<_ j -<_ k). It is precisely this class of graphs
which is characterized in this paper.

In view of the preceding statements, the problem we pose and solve can be
stated as a graph-theoretic problem. Therefore, the bulk of this paper pursues
a self-contained graph-theoretic development and can be read without any
knowledge of synchronizing primitives.

2. Fundamental graph theory concepts. This section introduces the funda-
mental concepts from graph theory required in this paper.

DEIINITION. A graph G (N, E) consists of a finite set of nodes N and a
symmetric relation E on N. Each unordered pair x, y of nodes in E is an edge
of G and the nodes x and y are said to be adjacent.

A graph G is irreflexive provided that the relation E is irreflexive (i.e. for
all x N, (x, x) E). Henceforth, all graphs will be assumed to be irreflexive.

A graph G (N, E) is a labeled graph when a positive integer is associated
with each node in G. Let l(x) denote the label for x N. The cardinality of

92 PETER B. HENDERSON AND YECHEZKEL ZALCSTEIN

graph G, denoted by [Gl, is the cardinality of the set N.
A subgraph s(N’)= (N’, E’) of G is the graph for which N’ _N and

E’= E f’l (N’x N’).
A path in G is a sequence of nodes (x l, x2,’", xk) in which all nodes are

distinct and there is an edge (xi, xi/) for all 1 _-<i <k. A graph is connected if
there is a path between every pair of nodes. A connected component of graph
G (N, E) is a connected subgraph s(N’) of G such that there is no path from
nodes in N’ to nodes in N-N’. A connected component is nontrivial provided
that IN’I > 1.

The degree of a node x in G, denoted deg (x), is the number of nodes
adjacent to x. The set of all nodes adjacent to x is denoted by ADJ (x). If all
nodes in G have degree IGI-1, then G is said to be a complete graph. A
complete subgraph or clique of G may be similarly defined. A graph is totally
disconnected when the relation E is . A graph G is called a proper graph if it
is connected but not complete.

We now make precise the concept of a PVc-definable graph as discussed in
the previous section.

DEFINITION. An irreflexive graph G (N, E) is PVc-definable if and only
if there is a positive integer (the threshold) such that the nodes of G can be
labeled by positive integers _-< t, so that given a set F of nodes, the subgraph
s(F) is totally disconnected if and only if YzFl(Z)<=t. Any complete graph
(possibly empty) is PVc-definable (let t= 1 and /(x)= 1 for each x N). Any
labeling of G which satisfies the aforementioned constraints is said to be an
admissible labeling.

Example 1. The following graphs (see Fig. 2) are PVc-definable with the
labeling shown.

Example 2. The following graphs (see Fig. 3) are not PVc-definable.
Graph Fig. 3(a) represents the "dining philosophers" synchronization problem
and is shown not to be PVc-definable in [8, Thm. 9, p. 89] by an ad hoc
argument. That the graphs in Fig. 3(b) and 3(c) are not PVc-definable follows from
Lemma 1 and Theorem 1 respectively.

3. Properties ot PVc-definable graphs. Several properties of PVc-
definable graphs proven in Lemmas 1 through 6 will be utilized subsequently to
characterize all PVc-definable graphs. Also, these results are prerequisite to the
derivation of an algorithm to determine whether an arbitrary graph is PVc-
definable.

(a) (c)2 (b) 1
1

2 2 3

t=3 t=3 t=3

FIG. 2. Examples of PVc-definable graphs

GRAPH-THEORETIC CHARACTERIZATION 93

(a) (b) (c)
O ’O

FIG. 3. Graphs that are not PVc-definable

LEMMA 0. Let G be a PVc-definable graph. If two nodes x and y in G are
adjacent, then (x + (y > t.

Proof. Obvious. U
LEMMA 1. If G is a PVc-definable graph, then there is at most one nontrivial

connected component in G.
Proof. Assume there are at least two nontrivial connected components in

G. Let x and y be adjacent nodes in one connected component, and w and z
be adjacent nodes in another connected component. Applying the definition of
a PVc-definable graph any admissible labeling satisfies the following ine-
qualities:

() t(x)+t(y) >t,

(2) l(w)+l(z)>t.

Also,

(3) l(x)+l(w)<=t,

(4) l(y)+l(z)<=t.

This is an immediate contradiction since (1) and (2) imply l(x)+l(y)+l(w)+
l(z) > 2t, and (3) and (4) imply l(x) + l(w) + l(y) + l(z) <= 2t. [3

Lemma 1 implies that all PVc-definable graphs consist of a possibly empty
totally disconnected component and a possibly empty connected component.
Several of the following lemmas concentrate on characterizing the connected
component of a PVc-definable graph.

Now the subgraph consisting of nodes of maximal degree in G is charac-
terized for a PVc-definable graph.

LEMMA 2. Let G be a nonempty, connected PVc-definable graph; then the
set C1 of the nodes in G of degree]G]- 1 is nonempty; thus s(C1) is a nonempty
clique. Furthermore, any node in G is adjacent to all nodes in C1.

Proof. Clearly the lemma is valid for 161_-<1; hence assume Gl_->2.
Consider any admissible labeling of G. Let x be a node of maximal label. If a
node z is not adjacent to x, then for all nodes y,

and z

l(y) + l(z) <= l(x) + l(z) <= t

is not adjacent to any node in G. This contradicts the assumed

94 PETER B. HENDERSON AND YECHEZKEL ZALCSTEIN

connectivity of G. Therefore x is adjacent to all other nodes in G; thus
deg (x)= IGI-a. Let Ca be the set of all nodes of degree Ial-1. By the above
argument, Ca is nonempty and s(Ca) is clearly a clique. !-i

Lemma 3 concerns itself with relationships between the degrees of the
nodes and their associated labels.

LV.MMA 3. Consider any admissible labeling for PVc-definable graph G.
Then for any two nodes x, y in G, deg (x) < deg (y) implies l(x) < l(y).

Proof. Assume l(x) >= l(y). Then for all z in G, l(x) + l(z) >- l(y) + l(z).
Hence any node adjacent to y must be adjacent to x and so deg (x)-> deg (y),
contrary to the hypothesis. Thus,/(x)</(y). V1

LEMMA 4. If G (N, E) is a PVc-definable graph, then any subgraph
G’= s(N’), N’N of G is PVc-definable.

Proof. Let G be a PVc-definable graph and consider any admissible
labeling of G. We claim the subgraph G’ is PVc-definable. If F_ N’ and s(F) is
totally disconnected, then s(F) is totally disconnected in G, implying
Yzll(z)<-_t. Conversely, if FN’_N and YzFl(z) <-- t, then since G is
PV-definable, it follows that s(F) is totally disconnected in G and thus in G’.
Hence, G’ is PVc-definable with the same labeling and threshold as G.

LZMM: 5. If G =(N, E) is a proper PV-definable graph, and letting
Ca {x 6 G deg(x) Ial- 1}, then D1 {X G G ADJ(x) Ca} is nonempty.

Proof. Lemma 2 implies that s(Ca) is a nonempty clique, and G being
proper implies [G[> [Ca[.

Assume Da=3. Consider the nonempty subgraph G’=s(N-C1)
obtained by deleting all nodes in Ca and all edges incident on these nodes.
Since Da- 3 and G is connected it must be that G’ consists of one or more
nontrivial connected components. However, Lemma 4 implies G’ is PV-
definable; thus it follows from Lemma 1 that G’ is connected. But, G’ is a
nonempty, connected PVcsdefinable graph; thus Lemma 2 implies there is
at least one node x in G’ of degree [G’[-1. This is a contradiction, since
in G, deg (x)= ([G’[- 1)+[C[[G[- 1; that is, x C. Hence, D cannot be
empty, gl

Lz 6. Let G be a proper PV-definable graph and let Ca be defined as
in Lemma 2; then the following statements regarding node x in G are equivalent.

(1) ADJ (x)= Ca,
(2) deg (x)= 1Cl1,
(3) x has minimal degree.
Proof. That (1) implies (2) is immediate and (2) implies (1) follows from

Lemma 2. We now show that (2) implies (3). For any node y in G, [CII_-<
deg(y), since all nodes in C are adjacent to y by Lemma 2. Thus if
deg (x)= [CI[, then x has minimal degree.

To show (3) implies (2), assume x has minimal degree. For any proper
PVc-definable graph, Lemma 5 implies Da={yG:ADJ(y)=C1} is
nonempty. Thus there is a node y in D with deg(y)=[Cl, and deg(x)-<
deg (y)=lcl, since x is of minimal degree. But, x is in G implying [CI[
deg (x) by the above argument; therefore, deg (x)= IC1[. l-]

4. Characterization of PVc-definable graphs. In this section we charac-
terize the PVc-definable graphs in terms of a normal form representation.

GRAPH-THEORETIC CHARACTERIZATION 95

DEFINITION. A graph G is said to be in Normal Form (NF) if either G is
empty or the nodes of G can be partitioned into sets C1, Cz,"’, Ck,
Do, D1, Ok-1 for k _-> 1, where each s(C/), 1, 2, , k 1 is a
nonempty clique, S(Ck) is a possibly empty clique, and each s(Di),
0, 1, , k- 1 is a possibly empty totally disconnected subgraph, such that:

For every node x in C, 1, 2,- ., k- 1

(,)

k-1

and for every node x in Di, 0, 1, , k 1

ADJ (x): U}=l Cj (by convention U=, C).

Henceforth, a graph G in normal form may be denoted ((C1, C2, Ck)
(Do, D,. ., Dk-1)). We refer to ((C1, C.,..., Ck), (Do, D1," ", Ok-l)) as
the normal form representation for G. The integer k will be called the depth of
the normal form representation. Pictorially, a graph in normal form can be
viewed as a "left recursive rooted binary tree" or a "comb". For the normal
form illustrated in Fig. 4, the edges are assumed to be "upward transitive" (i.e.
all the adjacency relationships following from (*) are assumed implicitly).

Some properties of the normal form representation follow directly from
the definition.

LEMMA 7. In a normal form representation ((Ca, C2,’’’,
(Do, D1,"’,Dk-1)), if x, y6C, l<-i<-k or x, y6Dj, l<=j<=k-1, then
deg (x) deg (y).

Proof. That deg(x)=deg(y), for x, y in C, l=<i_-<k is clear from the
normal form definition. Also, by definition, nodes x, y in Dl, O<----I <=k-1
are adjacent to and only to every node in C., j= 1,2,...,l; thus
deg (x) deg (y). [3

For a NF let deg (C) and deg (Dj) denote the degree of the nodes in C
and Di respectively.

FIG. 4. Normalform representation

96 PETER B. HENDERSON AND YECHEZKEL ZALCSTEIN

LEMMA 8. If G has a NF representation ((C1, C2,"’,Ck), (Do,
D1, Dk-1)), then

(1) deg (Dj)= Zi=a [C], j O, 1, 2, k a,
(2) deg.(C,.)=deg (C,._)-lO_l,Y= 2, 3, k,

Y=lOl-deg(f)-deg(G),y- a, 2, .,k.(3) -’
Proof. The normal form definition implies that nodes in a nonempty Di

are adjacent only to nodes in C, i= 1, 2,-.., j and (1) follows. Equalities (a)
and (b) below follow from the normal form (NF) definition.

k k-1

(a) deg (C.)= Y [Cr]- 1 + , [Dr[
r=j

k k-1

(b) deg (C]_I)= 2 levi- + INtl.
r=l r+]--I

Subtracting (a) from (b) yields (2)

(2) deg (C/_l)-deg (C)= IO -ll.
Now, summing (2) for i= 2, 3,..., j, we obtain

deg (C1)-deg (C)= ID, I.
i=2 i=1

LEMMA 9. A graph G which has a normal form representation
((C1, C2," , C), (Do, DI,’’’, Dk-1)) is PVc-definable.

Proof. Assume G has a normal form representation. Label all nodes in the
(possibly empty) set D using the following recursive scheme:

l(Do) 1,

l(Oi) Y IOill(D,)+ 1,] 1, 2,..., k- 1.
i=0

Now label nodes in set Ck (where Ck may be empty):
k-1

l(Ck) , [O, ll(D,)+ 1.
i=0

Let the threshold t=21(Ck)-i and label all nodes in set C by /(C.)=
t-l(D)+l, /’= 1, 2,..., k-1. Thus each node label is positive and Nt. It
follows from this definition of the labeling that l(Do) N l(D1) N. N l(Dk_l) N
l(Ck) <- l(Ck_l) <.. I(C1) -< t.

First we show that for any set of nodes F, if s(F) is totally disconnected,
then zF l(z) _--< t.

By the definition of the NF, (a) the subgraph s(U k-li=o Di) is totally discon-
nected, (b) any two distinct nodes in uk=l C are adjacent and (c) any node in
C is adjacent to all nodes in Di, iN] Nk-1. Thus if s(F) is totally discon-
nected,

q

F__ U DiU{x}, where0_-<qNk-landxC/, q+l_-<jNk.
i=0

GRAPH-THEORETIC CHARACTERIZATION 97

By the monotonicity property of the labeling scheme it suffices to consider only
the case where

Hence,

q

F= U D,U{x},
i=0

O<-q<-k-1 and x Cq+l.

q

Y, /(z)= E IDII(D)+I(Cq+)
zF i=0

=l(Dq+,)-l+l(G+,)=t,
=l(G)-l+l(G)=t,

Now we show that ’,zFl(Z)<=t implies s(F) is totally disconnected. If
IFI-0 or a, then the assertion is true; thus let IFI >-2. By way of contradiction,
assume Y,z,Fl(Z)<--_t and s(F) is not totally disconnected. Hence there are
nodes x, y in F for which x and y are adjacent. By hypothesis l(x)+ l(y)<-_ t.
There are two cases to be considered.

Case I. x Ci and y C. for 1 _-< i, j =< k. Since (Ci) >-_ (Ck) and (C.) ->
l(Ck), it suffices to show that {l(Ck)+l(Ck)>t}, which follows immediately
from t 21(Ck)- 1.

Case II. xC/ and yDj for l<-i<-j<_-k-1. Here l(x)+l(y)=
t [(Di) + 1 + l(Dj). But (Di) --< l(Dj), since _-< j. Accordingly l(x) + l(y) =>
t+ l>t. I]

The labeling utilized in the proof of Lemma 9 is illustrated in Fig. 5.
LEMMA 10. If G (N, E) is PVc-definable, then G has a NF representa-

tion.

Proof. The proof is by induction on IGI. The lemma is true if [G[_-< 1.
Assume all PVc-definable graphs with at most (n-l) nodes have a NF
representation. Let G (N, E) be a PVc-definable graph having n nodes. Let

+1

IDol+ 1 I(D2)+ Q
13o1+1311{13o1+ 1}+ t-l(O3)+

\ l(Dk_l) +

k-2 kl IDill(D)+X ID, II(D,)+
=0 =0

t= 2l(C)-1

FIG. 5. Admissible normal form labeling

98 PETER B. HENDERSON AND YECHEZKEL ZALCSTEIN

(a) Labeling by degree (b) Admissible labeling

7

FIG. 6. Counterexample to degree labeling

Do ={xG:ADJ(x)=}. If D0, then let xD0 and G’=S(N-{x}).
Lemma 4 implies G’ is PVc-definable and the induction hypothesis implies G’
has a NF representation ((Ca," ", Ck), (Do-{x},Da,’",Dk-a)). That
((Ca,’", Ck), (Do, Da,’’’, Dk-a)) is a NF representation for G is immediate
from the NF definition.

If Do Q3, then G is connected and Lemma 2 implies the set of nodes
Ca {x G: deg (x) IGI- 1} form a nonempty clique s(Ca). If G is complete,
it has a NF representation ((Ca), ()); otherwise, G is proper PVc-definable
and Lemma 5 implies the set of nodes D {x G :ADJ (x) C1} is nonempty.
Let x D1 and let G’=s(N-{x}). Lemma 4 implies G’ is PVc-definable,
thus by the induction hypothesis G’ has a NF representation ((Ca,"’,
(, Ol-{X}, D2,""", Dk-1)). That ((C1, C2, Ck) (, Da,’’’, Dk-1)) is a
NF representation for G follows immediately from the NF definition. FI

Remark. Lemmas 10, 7 and 3 may appear to imply that labeling each
node with its degree is an admissible labeling for a connected PVc-definable
graph. In general this labeling technique fails as the counterexample in Fig. 6
demonstrates (i.e. in Fig. 6(a), t-> 5, but 2 + 2 < 5).

Lemma 9 and Lemma 10 imply Theorem 1.
THEOREM 1. A graph G is PVc-definable if and only if G has a normal

form representation.
It follows from Theorem 1 that the class of PVc-definable graphs is a

subclass of the class of interval graphs. The latter being a class which arises in
numerous applications [13].

A graph G--(N, E) is said to be an interval graph if there is a one-to-one
correspondence q between the vertices of G and a set of open intervals on the
real line so that (x, y)E if and only if (x)f’l 0(y) [6].

COROLLARY 1. The class of PVc-definable graphs is a proper subclass of
the class of interval graphs.

Proof. Let G be a PVc-definable graph with NF representation
((C1, C2,’", Ck), (D0, D1,""" ,Dk-1)). Figure 7 illustrates a set of intervals
corresponding to the nodes of G which satisfy the definition of an interval
graph. That the inclusion is proper follows from Lemma 1 and the graph in Fig.
3(b). [-1

A normal form representation of a graph may not be unique. Figure 8
shows two normal form representations for the same graph. This nonunique-
ness can be eliminated by defining a stronger normal form.

DEFINITION. A normal form representation ((Ca,’", Ck),
(Do,’", Dk-1)) is said to be minimal provided that ICkl 1 and there exists

GRAPH-THEORETIC CHARACTERIZATION 99

Do D1

C1

FIG. 7. Intervals for the NF representation

no other normal form representation ((C],..., C,), (D,... ,D,-1)) for
which k’ < k.

Lemma 11 demonstrates some important properties of the minimal NF
representation.

LEMMA 11. The following statements regarding the nonempty PVc-
definable graph G are equivalent.

(1) ((C1, C2, Ck) (Do, D1,"" ", Dk-1)) is a minimal NF representation
for G;

(2) Dj Q5 for all 1, 2,..., k 1, and Ck implies IO -ll-->
2;

(3) deg (Do) < deg (Dx) <’" < deg (Dk-1) < deg (Ck) <’’" < deg (C1); /f
Ck , then deg (Ck) is deleted from the inequality; if Dj (, then deg (D) is
deleted from the inequality;

(4) deg (x)= deg (y) /f and only if x, y E , 1 <=i <= k or x, y E D, 0 <--j <-

Proof. First we show (1) implies (2). Assume ((C1,"’,Ck), (Do,
D1,’", Dk-1)) is a minimal NF representation for G. By way of contradiction,

D

C1

C2
D1

C3

FIG. 8. Two normal form representations for the same graph

100 PETER B. HENDERSON AND YECHEZKEL ZALCSTEIN

assume Di for some i, 1 _-< _-< k 1. Let x e C and y e G+I. Let C
UL C., then the NF definition implies

ADJ (x) (C-{x}) U Dj
-i

ADJ (y) (C-{y}) U Dj
y-

Since Di , ADJ (x)= ADJ (y). This is true for all x C, y C+1, < k- 1
and for =k-1 in case Ck # .Hence ((C1,"’, Ci-1, C LJC+I,..., Ck),
(Do,’",Di-,,Di/,,’",Dk-1)) is a NF representation for G with depth
(k-1). If Ck and Dk-1 , the contradiction is immediate. When Ck

and ID -,I ((G,..., U{x}), (Do,..., O_2)), where x e Dk_ is a
NF representation with smaller depth.

That (2) implies (3) follows from the NF definition, which implies:

i+1

(a) deg (Di) Y’. Ic l < Y, Ic l-- deg (Di+,) O, 1,..., k 2,
j=l j=l

k-1 k

(b) deg(Dk_l) ICI< ICil-l=deg(Ck), when lCl >- 2,
j=l j=l

k-1 k-1

(c) deg (Dk-1)-- If][<]Cjl- 14-[Dk-ll deg (Ck_l) when
j=l j=l

Ck implying [Dk_l[>--2,

(d)
k-1 k-1

deg (Ci+I) ([C 1)4- 2 IDi] < ([C[- 1)+ Y’.]Dil deg (Ci),
j=i/l j=i

i= 1, 2,’’’, k- 1 since IDi] >= 1.

In view of Lemma 7, it is immediate that (3) implies (4).
We show (4) implies (1) by contradiction. Assume (4) is true and

((C’,..’, C), (D’o,"" ,D_,)) is a minimal NF representation for G where
< k. By a pigeon-hole argument, there exist at least two distinct nodes x, y for

which deg(x)deg(y) and x, yeC’i, l<-i<-_l or x, yeDi, 0<j<l-1 The
contradiction follows from Lemma 7. U

COROLLARY 2. The minimal NF representation for a PVc-definable graph
is unique.

Lemma 11 and Corollary 2 imply:
COROLLARY 3. A PV-definable graph G is determined, up to isomor-

phism, by the 2k-tuple of nonnegative integers (Ic, l,[Czl,...,ICkl,
IOol, where ((C1, C2,"’, Ck), (Do, D1,’" ",Ok-,))is the
minimal NF representation for G.

Thus, this 2k-tuple of nonnegative integers is a complete set of isomor-

phism invariants [7] for the class of PVc-definable graphs.
The definition of a PVc-definable graph postulates the existence of a graph

labeling which satisfies a condition over all totally disconnected subgraphs.

GRAPH-THEORETIC CHARACTERIZATION 101

Applying Theorem 1, we proceed to show that this global condition is equivalent
to a seemingly weaker local condition, which considers only pairs of nodes.

LEMMA 12. A graph G (N, E) is PVc-definable if and only if there is a
labeling of G and a positive integer t such that (x, y)E if and only if
l(x) + l(y) > t. (This labeling may not constitute an admissible labeling of G.)

Proof. Necessity follows from Lemma 0. We prove sufficiency by induction
on IGI. The lemma is true when IGI <_-1. Assume the hypothesis is true for all
graphs having at most (n- 1) nodes. Let G (N, E) be a labeled graph with

GI- n. Let x and y be nodes in G with minimal and maximal label respec-
tively. If l(x) + l(y) <= t, then ADJ (x) . Let G’ s(N- {x }). By the induction
hypothesis G’ is PVc-definable and hence has a NF representation
((C,-.., C,), (D;,..., D,-1)). But ADJ (x) , and thus, G has NF rep-
resentation ((C, ., C,), (D; U {x}, D,. , D,_I)) implying, by Theorem 1
that G is PVc-definable. If l(x)+l(y)>t, then G is connected. Let G’=
s(N-{y}) which is PVc-definable by the induction hypothesis. There are two
cases to be considered.

Case I. If G’ is connected, then let ((C, C’2,"’, C’), (D’o,’", D’_)) be
a NF representation for G’. In G, ADJ(y)=N-{y}; therefore,
((C U{y}, C,..., C,), (D;,..., D,_)) is a NF representation for G.

Case II. If G’ is disconnected, let ((C,..., C,), (D, D,..., D,_)) be
a NF representation for G’. In G, ADJ (y)= N-{y}; thus, (({y}, C,..., C,),
(, D;, D,..., D,_I)) is a NF representation for G. I-!

The main results of this section are summarized in Theorem 2.
THEOREM 2. For a graph G=(N,E), the following statements are

equivalent.
(1) G is PVc-definab!e,
(2) G has a NF representation,
(3) G has a minimal NF representation,
(4) there is a labeling of G and a positive integer such that (x, y) E if and

only if l(x) + l(y) > t.

Proof. The equivalence of (1) and (2) follows from Theorem 1. That (2) is
equivalent to (3) is immediate and Lemma 12 implies the equivalence of (1)
and (4). [3

5. Algorithm for testing PVc-definability. Whenever a problem of the
nature discussed in the preceding sections arises, one is often interested in
determining whether a given labeling of a graph is admissible or if an arbitrary
graph is PVc-definable. In this section we present an efficient algorithm to
determine if a given graph is PVc-definable.

A recursive algorithm for checking PVc-definablility and constructing the
minimal NF for a graph G (N, E) is implicit in the definition of the NF. The
algorithm proceeds as follows"

Let Do {x G’ADJ (x) } and G’= s(G-Do).
Initially, let i= 1 and Gi=G’. If Gi=(Ni, Ji) is empty, then G is

PVc-definable. Otherwise, determine C {x Gi" deg (x) 16 1- a. if
then Lemma 2 implies G is not PVc-definable. Otherwise, determine D
{x G’ADJ(x)= Ci}. If Di , then by Lemma 5, G is not PVc-definable.
Apply the above steps recursively to the new graph Gi/a s(N -{Ci D}).

102 PETER B. HENDERSON AND YECHEZKEL ZALCSTEIN

(a) G1 G (b) G2 (C) G @

92

FIG. 9. Example ofthe algorithm

Figure 9 illustrates the execution of the algorithm. Observe that Lemma
11 implies this algorithm directly determines the minimal NF representation
((Ca,’", Ck), (Do, D1,’’" ,Dk-1)) for G. That is, any two nodes with the
same degree are necessarily in the same set C or Dj.

Given the degree of each node in a graph G, Algorithm A, to be presented
below, tests for PVc-definability of arbitrary graph G in time O(IGI). Note that
given only graph G (adjacency matrix or adjacency list), we require O(IGI2)
time to find the degree of each node.

For any graph G, let N[j] denote the cardinality of the set
{x G:deg (x)=f}. That is, N[f] equals the number of nodes with degree j.
Algorithm A is presented in an AL6OL programming language [3]. Comments are
denoted by {... }.

ALGORITHM A. Test graph G (N, E) for PVc-definability.
Input. The integers d (1), d (2),. , d(m), m _-> 1, specifying the degree of

each node in finite graph G.
Output. 1. Accept G, if G is PVc-definable.

2. Reject G, if G is not PVc-definable.
Method.
begin integer m;

string(3) definable;
input(m);
begin integer deg_ci, deg_di; {deg_ci deg (C), deg_di deg (D)}

integer array d[l::m], N[0::m], {N[i] nodes of degree i}
for i:= 1 until m do input (d(i));
for := 0 until m do N[i] := 0;
for i:= 1 until m do N[d[i]] := N[d.[i]]+ 1;
deg_ci := m-N[0]-1; definable :- "yes"; {G’= s(N-Do)}
if deg_ci =-1 then deg_di := 0 else deg_di := N[deg_ci];
while (deg_ci _->deg_di) and (definable "yes") do
begin {nodes of degree]G’[- 1 form a nonempty clique C/(Lemma 2)

and IDil 0 (Lemma 5).}
it N[deg_ci] 0 or N[deg_di] 0 then definable := "no"

GRAPH-THEORETIC CHARACTERIZATION 103

else begin
deg_ci := deg_ci-N[deg_di]; {deg (Ci+I)=deg
deg_di := N[deg_ci]+deg_di; {deg (D+)= IG+al +deg (D)}

end;
end;

end;
it definable "yes" then ouut("accept") else ouut("reject");

end.
Before proving the correctness of Algorithm A, we illustrate the action of

the algorithm in Example 3.
Example 3. Operation of Algorithm A.
(a) Let G be the normal form shown in Fig. 10a with Table 1 below:

deg (Ca) 9 Ca

D1 C

FIG. 10a. Initially deg_ci m 9 and deg_di number of nodes of degree 9 1. The
algorithm halts, accepting G on the third iteration, when deg (C3)= 5 t 6 =deg (D3).

TABLE

Degree Number of nodes

deg (C1) 9
8 0

deg (C2) 7 3
deg (D3) 6 0
deg (C3) 5 2
deg (D2) 4 2

3 0
2 0

deg (Da) 2

(b) Let G be the graph shown in Fig. 10b with Table 2 on the next page.
LEMMA 13. Algorithm A terminates.

Proof. By assumption graph G is finite; thus m is finite. In each iteration
of the while loop the integer variable deg_ci is monotone decreasing and the
positive variable deg_di cannot decrease.

104 PETER B. HENDERSON AND YECHEZKEL ZALCSTEIN

2

6

3

3
First Iteration

(3-1)=2

(2=-1)=1

(3-)
(3-1)=2

Second Iteration

FIG. 10b

TABLE 2

Degree Number of nodes

deg (C1) 6
deg (C2) 5 0*

4 0
3 3
2 2

deg (D0

The algorithm rejects G on the second iteration, since the
remaining subgraph is nonempty and C2} 0.

Lemma 14 relates the computational parameters in Algorithm A with the
results of the previous sections.

LEMMA 14. Given a graph G (N, E), if deg_ci _>-deg_di and definable
"yes" prior to the ith iteration of Algorithm A, then the following assertions are
valid:

(i) For each iteration,], 1 <-] <
(a) the set C, {x G: deg (x) deg_ci} ,
(b) the set Dj {x e G: deg (x) deg_di} # .

(ii) If G is PVc-definable with minimal NF ((C1,"’, Ck),
(Do,’’ ", Dk-1)) then

(a) deg_ci deg (C/) and C/= {x G: deg (x) deg_ci},
(b) deg_di deg (Di) and Di {x G: deg (x)= deg_di}.

GRAPH-THEORETIC CHARACTERIZATION 105

(iii) The subgraph G’ s(N-{C1 " (--/-1 Do U. U Di-1}) is not a
clique.

Proof. The sets C. and Dj for/" 1, 2,..., i- 1 are clearly nonempty since
definable "yes" prior to the ith iteration.

We prove (ii) and (iii) by induction on i, the number of iterations of the
while loop. Let G’= s(N-Do), where Do {x e G: deg (x) 0}.

Basis. 1. Prior to the first iteration, deg_ci m -N[0]- 1 IG’l- 1
and deg_di=N[IG’[-1]. By assumption G is PVc-definable and Lemma 4
implies G’ is PVc-definable. Hence, Lemma 2 implies (ii-a) and Lemma 5
implies (ii-b).

For (iii), if G’ were a complete graph, then deg_ci IG’I-1 and deg_di
s[Ia’l-1]--IG’l which is a contradiction, since by assumption deg_ci _-> deg_di.

Induction step. Assume the assertions are true prior to the ith iteration.
Now, assume deg_ci _->deg_di and definable "yes" prior to the (i / 1)st itera-
tion.

If G’ is PVc-definable with minimal NF ((C1,"" ", Ck), (Do,’’’ ,Ok-l)),
then (ii-a) applying the induction hypothesis

deg_ci := deg_ci N[deg_di];

deg (Ci)-N[deg

deg (G)-IDI
deg (G+I) by Lemma 8,

(ii-b) likewise,

deg_di := N[deg_ci] + deg_di;

N[deg (C+a)] +deg (D,)

IC+ll +deg (D,)

[Ci+ll -I- 2 ICII by Lemma S
]=1

deg (Di+I) by the NF definition.

(iii) Assume G’= s(N-{C1 U U C U Do U" U D}) is a clique. If G’ is
a clique, then G is PVc-definable with the NF representation ((C1, , C, G’),
(Do,"" ,Di)). Prior to the (i+l)st iteration, (ii-a) and (ii-b) above imply
deg_ci =deg(C+l) and deg_di =N[deg(C+l)]+deg(D). By assumption
deg_ci _-> deg_di; hence

deg (Ci+I) -> N[deg (C+1)] + deg (D)

or

() {deg (C+1)- deg (D)}-> N[deg (C+1)].

However, in subgraph G’, the left-hand side of () is deg(G’) and the
right-hand side is N[deg (G’)]. Thus, deg (G’)->N[deg (G’)] which is a con-

106 PETER B. HENDERSON AND YECHEZKEL ZALCSTEIN

tradiction to the assumption that G’ is a clique (i.e. deg(G’)=lG’l-l<
N[IG’I- 1] NEdeg (G’)]).

THZORZM 3. Algorithm A accepts finite graph G (N, E) if and only if G
is PVc-definable.

Proof. Assume G is PVc-definable. Hence, G has a minimal NF represen-
tation ((Ca,’", Ck), (Do,’’’ ,Dk-a)). Initially Algorithm A considers the
subgraph G’= s(N-Do); that is, deg_ci m-N[0]-1. Lemma 14 implies the
algorithm cannot terminate with definable= "no" prior to the kth iteration.
The remaining subgraph G’=Ck is a clique (vacuously if Ck); thus a
contrapositive argument using Lemma 14 (iii) implies deg_ci < deg_di and the
algorithm accepts G.

Algorithm A rejects G only if N[deg_ci] 0 or N[deg_di] 0. Lemma 14
(iii) implies that G’ s(N- {Ca t_J. U C_a t.J Do t3. t3 Di_l}) is not a clique
and hence G’ . We claim G’ is not a PVc-definable graph if either
N[deg_ci] 0 or N[deg_di] O, thus by Lemma 4 G is not PVc-definable.

When N[deg_ci]=O, Lemma 14 (ii-a) and Lemma 2 suffice to prove that
G’ is not PVc-definable. When N[deg_di]=O, Lemma 14 (ii-b) and Lemma 5
imply G’ is not PVc-definable.

The running time of Algorithm A is O(INI). This is clear since m INI and
all for loops and the while loop are iterated at most m times. Also, minor
modifications to the algorithm could be made so that the minimal NF represen-
tation ((Ca,’", Ck), (Do,"’, Dk-a)) for G was determined explicitly. This is
accomplished by listing, at the beginning of the while loop, (a) the loop
iteration number i= 1,2,...,k, (b) deg_ci=deg(Ci) and (c) deg_di=
deg (D). Since the degree of each node is unique the sets C and Di-a,

1, 2,..., k may easily be determined from the numbers listed.
The careful reader may have observed that the set {deg(x):x N} is

another complete set of isomorphism invariants for the class of PVc-definable
graphs (refer to the remark following Corollary 3).

6. Discussion and conclusion. In this paper, we have characterized--in
terms of a normal form representationmthe class of graphs which are definable
by the class of purely parallel PVc systems of processes.

A normal form representation can be interpreted as a hierarchial structure
of asynchronous processes where each process in C can block (i) any process in
D, j>-i and (ii) any process in C, for all 1 _-<j-<k, while the processes in
U=o Di cannot block each other. One can think of this situation as a "reader-
writer" problem where there is a hierarchy of writers (the C’s) and a hierarchy
of readers (the Di’s). In the case k 2 with Do and C2 empty, the normal form
represents the classical reader-writer problem [2].

A possible application of a hierarchical ordering described by the normal
form representation is to synchronizing a shared data base that is accessed by
several processes that can read or write into nested segments of the data base.

An example is presented below:
Example 4. Consider the following process synchronization problem. There

are seven sequential (not purely parallel) processes Q1, Q2,’", Q7 which
require access to specified segments of a common memory M. The memory M

GRAPH-THEORETIC CHARACTERIZATION 107

M

FIG. 11. Blocking relation for Example 4

A

C

is partitioned into three segments A, B and C. The memory access require-
ments for each process are:

Oi--can only write into all of memory M

Qz--can only read from memory segment C

03--can only read from memory segment C

O4--can only write into memory segment B UA

Os--can only write into memory segment B A

Q6can only read from memory segment B

Ovcan only write into memory segment A.

Figure 11 illustrates a NF representation whose nodes correspond to the
processes O1," ", Q7 and edges correspond to the block relationship on these
processes.

A program, which "solves" this synchronization problem is given below.
Initially S 11.

parbegin O/ / O2/ / //07 parend where

QI:P[S, 11] 02: P[S, 1] O3: P[S, 1]

WRITE [M] READ [C] READ [C]

V[S, 11] V[S, 1] V[S, 1]

Q4: P[S, 8]

WRITE [B U A]

v[s, 8]

Q5: P[S, 8] Q6". P[S, 3] Q7: P[S, 6]

WRITE [B U A] READ [B] WRITE [A]

V[S, 8] V[S, 3] V[S, 61
In conclusion, we expect that our results and techniques will be helpful in

attacking the major problem left open in [8] and [10] concerning the relation
between PV chunk and PV multiple systems of processes.

108 PETER B. HENDERSON AND YECHEZKEL ZALCSTEIN

Note. Martin Golumbic has pointed out that the PVc-definable graphs are
a subclass ot the permutation graphs. After this paper was submitted for
publication, the PVc-definable graphs (under the name of threshold graphs)
were introduced and studied by V. Chvatal and P. L. Hammer in Aggregation
of inequalities in integer programming, Tech. Rep. STAN-CS-75-518, Stanford
University, August 1.975.

Acknowledgments. We are indebted to Alan Tucker for suggestions which
contributed to simplifying the proof of Theorem 1.. We would also like to thank
S. C. Eisenstat, .R.J. Lipton and ,L. Snyder for a critical reading of a
preliminary draft of this paper. In addition, we are very grateful to the
anonymous referees for their helpful comments and suggestions.

Note added in proof. The notion of a PVc-definable graph can be generalized,
replacing the functionz" l(z) by a function monotone in each variable. It can be
shown, however, that with this generalized definition, one still obtains exactly the
class of graphs discussed in. this paper.

REFERENCES

1] A. AHO, J. HO’CROrr aND J. D. ULLMAN, The Design andAnalysis of ComputerAlgorithms,
Addison-Wesley, Reading, Mass., 1974.

[2] P. J. COURTOIS, F. HEYMANS AND D. L. PARNAS, Concurrent control with "readers" and
"writers", Comm. ACM, 14 (1971), pp. 667-668.

[3] O.-J. DAHL, E. W. DIJKSTRA AND C. A. R. HOARE, Structured ProRramming, Academic
Press, New York, 1972.

[4] E. W. DIJKSTRA, Cooperating sequential processes, Programming Languages, F. Genuys, ed.,
Academic Press, New York, 1968, pp. 43-112.

[5], Hierarchical ordering of sequential processes, Operating Systems Techniques, C. A. R.
Hoare and R. H. Perrott, eds., Academic Press, New York, 1972, pp. 72-93.

[6] D. R. FULKERSON AND O. A. GROSS, Incidence matrices and interval graphs, Pacific J.
Math., 15 (1965), pp. 835-855.

[7] F. HARARY, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
[8] R. J. LIt’TON, On synchronization primitive systems, Tech. Rep. 22, Computer Science

Department, Yale University, New Haven, Conn., 1973.
[9] ., Limitations of synchronization primitives with conditional branching and global vari-

ables, Proc. Sixth ACM Symposium on Theory of Computing, Association for Computing
Machinery, New York, 1974, pp. 230-241.

[10] R. J. LIPTON, L. SNYDER AND Y. ZAICSTEIN, A comparative study of models of parallel
computation, Conf. Record of the Fifteenth Annual IEEE Symp. on Switching and
Automata Theory, IEEE, New York, 1974, pp. 145-155.

11] R. J. LI’TON, Reduction: A new method for proving properties of systems of processes, Conf.
Record of the Second Annual ACM Symp. on Principles of Programming Languages,
Association for Compting Machinery, New York, 1975, pp. 78-86.

[12] R. J. LIPTON AND R. TUTq’LE, A synchronization anomaly, Information Processing Lett. 3
(1975), pp. 65-66.

[13] F. S. ROBERTS, Discrete Mathematical Models, with Applications to Social, Biological and
Environmental Problems, Prentice-Hall, Englewood Cliffs, N.J., to appear.

[14] H. VANTILBORGH AND A. VAN LAMSWEERDE, On an extension of Di]kstra’s semaphore
primitives, Information Processing Lett., (1972), pp. 181-186.

SIAM J. COMPUT.
Vcl. 6, No. 1, March 1977

EVALUATING RELATIONAL EXPRESSIONS WITH DENSE AND
SPARSE ARGUMENTS*

T. G. SZYMANSKI AND J. D. ULLMAN?

Abstract. We consider expressions whose arguments are relations and whose operators are
chosen from among I.J, o, *, and -a. We further asstime that operands may be designated "sparse" or
"dense", in a manner.to be made formal subsequently. Our aim is to determine whether the evaluation
of such an expression is

(a) as hard as general transitive closure,
(b) as hard as transitive closure for sparse graphs,
(c) as hard as finding connected components of an undirected graph.

Key words, computational complexity, relation, graph, sparse relation, sparse graph, composi-
tion, transitive closure

1. The model. Let us consider expressions with operators union (U), com-
position (o), reflexive and transitive closure (*) and inverse (-1), whose operands
are relation symbols chosen from two alphabets 6e (the sparse relations) and
(the dense relations). Intuitively, a relation obtained by some mechanism is said to
be "sparse" if the number of pairs in the relation forms a useful upper bound on
the "size" of the relation for the purpose of complexity analysis. If only the square
of the domain size is a useful bound then the relation is "dense." We shall make
these ideas formal shortly.

Example 1. The relations p,/x and A on the grammar symbols of a context
free grammar are defined as follows. (See [4] for additional details.)

(i) ApX if there is a production of the form A aX/ for some strings of
symbols a and/, where/3 is the empty string or derives the empty string.

(ii) AAX if there is a production of the formA aX for some strings a and
/3, where a is or derives the empty string.

(iii) X/xY if there is a production of the form A aXYy for some nonter-
minal A and strings a,/ and % where/ either is or derives the empty string.

The "follows" relation is defined to be (p-1)./zh..
For complexity analysis we usually take the "size" of a grammar problem to

be the length of all the productions of the grammar, written out. By rules (i) and
(ii), the relations p and for a grammar of size n can have no more than n pairs,
since each position of each production right side gives rise to at most one pair for
each relation. Thus, p and A may be regarded as sparse. In contrast, a grammar of
size n can give rise to on the order of n 2 pairs in the/x relation. Consider, for
example, a grammar with productions SAIA2... Ak and Ai e for all i,
1 -< _-< k. The size of this grammar is O(k), yet AitxA for all </’, so/x has O(k)
pairs. However, the domain of/x, the set of grammar symbols, is also O(k), so no
relation on this domain can have more than O(k2) pairs. We thus regard g as
dense for our purposes.

* Received by the editors December 1, 1975, and in revised form June 15, 1976.
? Department of Electrical Engineering and Computer Science, Princeton University, Princeton,

New Jersey 08540. This work was supported by the National Science Foundation under Grant
DCR74-21939.

109

110 T. G. SZYMANSKI AND J. D. ULLMAN

-1 D S

81

FIG. 1. Expression tree

If we use $1 and $2, symbols in 9, for p and A, and we use D1 in for/z, then
the "follows" relation can be represented by the expression tree shown in
Fig.1.

Our goal is to characterize the complexity of evaluating relational expres-
sions in terms of the following parameters of a set of argument relations:

1. n, the number of elements in the domains and ranges of the arguments,
2. e, the sum of the sizes of the arguments, where the size of a relation is the

number of pairs in that relation,
3. es, the sum of the sizes of those arguments designated as "sparse," that is,

those arguments associated with operand symbols in S.
We shall henceforth assume that for any set of arguments, both e and es are at

least as great as n.
Our results involve the classification of expressions into three categories, (i)

those expressions which may be evaluated in O(e) time and hence are very easy to
compute, (ii) those expressions which may be evaluated in O(ne) and whose
complexity is therefore independent of the number of pairs in their dense
arguments, and (iii) those expressions which require as much time for evaluation
as the composition of arbitrary relations. The best known algorithm for this latter
problem requires O(min (n 2.81, ne)) time and is equivalent in complexity to the
problem of computing the transitive closure of an arbitrary relation (see. [1], [2],
[3], [6]).

The motivation for separating the operands of an expression into two disjoint
classes stems from the fact that in many applications of interest (see [4] for some
specific examples) certain arguments are known always to have at most O(n)

EVALUATING RELATIONAL EXPRESSIONS 111

pairs. If these arguments correspond to operands which are designated "sparse"
and if the expression in question has an O(nes) evaluation algorithm, then O(n2)
time suffices for evaluating the expression on the relations of interest.

We shall now give a precise meaning to the statement that an expression is
"hard."

DEFINITION 1. The evaluation of an expression 8’ is said to be as hard as
composition if the existence of an f(n, e) time bounded algorithm for 8’ implies
that for some constant c there exists an O(f(cn, ce)) time bounded algorithm for
composing arbitrary relations.

The reader should note that the equivalence of composition and transitive
closure, as far as computation time is concerned, implies that no expression over
the operators (o, t.J, *,-1) is strictly harder than composition.

2. A class of easy expressions. In this section we shall show that any
expression known to yield an equivalence relation on a particular set of arguments
may be evaluated in O(e) time; the problem essentially reduces to finding
connected components on an undirected graph. In fact we can prove a slightly
stronger result.

DEFINITION 2. A relation R is said to have property P if aRd, cRd and cRb
imply aRb. That is, the images of any two domain elements are either disjoint or
identical.

THEOREM 1. Let be any expression over operators o, (_J * and -1; letR be the
relation produced by applying to some list of arguments with parameters n and e.
Suppose thatR is known to have property P. ThenR may be computed in O(e) time,
in the sense that we can in this amount of time build a structure from which the
answer to "aRb?" can be obtained in constant time.

Proof. By [4] we can construct for R a directed representation graph, G
(V, E) with the following properties:

(i) There are disjoint subsets 5 and 6 of V, such that for each a in the
domain ofR there is a node 5 (a) in 5 "representing" a. Similarly, for each b in the
range of R there is a representative 6(b) in ?.

(ii) The number of nodes of G is O(n) and the number of edges is O(e). G
can be constructed from and its arguments in O(e) time.

(iii) No edge enters or leaves .
(iv) There is a path from St(a) to 6(b) if and only if aRb.
The following steps suffice to compute R in O(e) time.
1. Construct G (V, E), the representation graph for R.
2. Eliminate all nodes not reachable from a member of 5 or which do not

reach a member of 6. This can be done by a straightforward application of
depth-first search (see [1], [5], e.g.). Call the result G’.

3. From G’ construct G", an undirected graph having an edge (v, w) if and
only if G’ has an edge v w or w v.

4. Find connected components of G". Then aRb if and only if (a) and (b)
are in the same connected component of G".

To show that the above works we must prove that aRb if and only if there is a
path from 5(a) to 6(b) in G". The hard part is to show that if there is a sequence of
nodes/)1,/)2, /)k Of G’, such that/)1 5(a),/)k 6(b), and for 1 _-< < k, either

112 T.O. SZYMANSKI AND J. D. ULLMAN

FIG. 2. Paths in G’

vi vi+l or v+l v, then there is another path 3(a) W2 W3 -’) W "-) 7(b)
in G’, so aRb.

We proceed by induction on the number of values of such that v v/l in G’
is false. The basis, zero, is trivial, as v v2 Vk is then a path in G. For the
induction, let/" be the smallest value for for which vi v/ is false. Then vj+l vj.

By step 2 of the algorithm, we can find c and d such that there are paths from
(c) to v.+ and from v. to 7(d) in G’, as shown in Fig. 2. Then there are in G’,
(and hence in G) paths frorn 5(a) to 7(d) and from 5(c) to 7(d). Moreover, bythe
inductive hypothesis, a path from if(c) to ’(b) exists in G. Thus aRd, cRd and
cRb, so aRb follows by property P.

COROLLARY. Let be an expression over operators o, U, * and -1, and letR
be the result of applying to a set of arguments with parameter e. Suppose thatR is
known to be an equivalence relation. Then R may be computed in O(e) time in the
sense of Theorem 1.

Proof. Every equivalence relation has property P.
Example 2. It is not necessary that g’ satisfy the condition of Theorem 1 or its

corollary for every value of its arguments. The algorithm of Theorem 1 will work
on any particular set of arguments that happen to make g’ have property P. Thus,
if G (V, E) is any undirected graph, we can determine in O([EI /lvl) time a
relation such that vRw if and only if there is a path from v to w of even length.
That is, R (E E)*. Note that the expression (E E)* is only an equivalence
relation if E is symmetric, as it will be for an undirected graph. We could also write
the formula R ((E UE-1) (E U E-a))* and be assured that R was an equival-
ence relation independent of E. [3

Theorem 1 is slightly more general than its corollary in that certain expres-
sions can be shown to yield relations which are not necessarily equivalence
relations but which always have property P. The simplest such expression known
to us is

(R oR-2oR oR-oR2oR-toR oR-2oR)*.

3. A tool for proving expressions hard. In this section we shall develop a
theorem which may be used to prove that the evaluation of certain relational
expressions requires asymptotically as much time as the composition of arbitrary
relations. Although the theorem can be stated and proved for expressions with

[A[is the number of members of set A.

EVALUATING RELATIONAL EXPRESSIONS 113

-1

-1 -1 :::>

* -1 -1

R R R R R

FIG. 3. Transformation to normalform

multiple operands, we shall develop the simpler case of single operand expres-
sions. This less general result will still be sufficiently powerful to handle the
applications in 4.

DEFINITION 3. We say that an expression g" is in normal Corm if in the tree
corresponding to g’, all -1 operators are parents of leaves.

Any expression over the operators with which we are concerned may be
uniquely put into normal form by repeated application of the following identities:

(c1U c2,)--1 c1U d-1

()-1= (,),,

Example 3. The expression (R-o R*)- may be transformed to normal
form as shown in Fig. 3.

It should be clear that the transformation of an arbitrary expression to normal
form can be performed eciently and can at most double the number of operators
in the expression. Moreover, the evaluation of the new expression is as hard as
composition if and only if the evaluation of the original expression was as hard as
composition.

DEFINITION 4. Let be an expression with one operand, in normal form.
The set of path schemes of , denoted P(g), is the set of strings over the two
symbol alphabet {R, R -1} defined by interpreting g as a regular expression over
this alphabet.

A path scheme can naturally be interpreted as a sequence of "go forward"
and "go backward" instructions.

If we let S be a relation, we may take a path scheme pipe P for , and
starting at some s in the domain of S, walk the edges of S. At the ith step of the

114 T.G. SZYMANSKI AND J. D. ULLMAN

walk we follow an edge forward if Pi is R, i.e., a "go forward" instruction, and we
follow an edge backward if Pi is R -1, i.e., a "go backward" instruction. After
following "instructions" PiP2 P,, we arrive at some node t of S’s graph; there
could be many such t’s possible. We can show that the t’s we can reach by this
process are exactly the objects for which s(S)t, where ’(S) is expression with
actual parameter $ substituted for formal parameter R. We make these state-
ments precise with the next definition and lemma.

DEFINIa’ION 5. Let $ be any relation. A sequence of S’s domain2 elements,
Vl, v2, , vr is said to be a path induced by if there exists a path scheme H in
P(’) such that

(i) II =plp2""pr-, where each Pi is either R or R -1,
(ii) viSvi+ whenever Pi R,
(iii) viS-lV+l whenever p R-1.
There is a natural correspondence between paths induced in S by ’ and the

relation ’ (S). This correspondence is described in the following lemma.
LEMMA 1. Let be a normalform expression with a single operand. Let S be a

relation and let s and t be elements of the domain orS. Then s(S)t ifand only if
induces a path from s to t in S.

Proof. The proof is a simple induction on the number of occurrences of the
operators o, * and U in the normal form expression .]

Example 4. Let us consider the single operand expression g-
[R (R R-l)]*. The set of path schemes P() of is precisely the set of even
length strings whose odd positions are R and whose even positions are either R or
g -1.

Now consider the relation $ depicted by the following directed graph.

The path 1 2 1 is induced in S by the path scheme RR -1 and so we conclude by
Lemma 1 that 1 ’(S)1. The path 1 2 3 is induced by both RR and RR- and so
1 ’(S)3. Finally, 1 if(S)4 because the path 1 2 3 1 2 3 4 is induced by the path
scheme RR-

The motivation for considering path schemes is that we would like to show
composition of relations to be embedded in particular expressions ’. The path
scheme provides a useful formalism for discussing such embeddings.

The next theorem is the main result of this section. It says that if every path
induced by an expression in a particular relation S is of a certain form, then any
algorithm for evaluating on an arbitrary argument R requires as much time as
the composition of arbitrary relations of the same size as R.

THEOREM 2. Let be an expression with a single operand. Suppose there exists
a relation S with domain elements s, t, x, , y and such that

Throughout the rest of this paper, we shall use the term "domain" to denote that set which is the
union of the domain and range of the relation in question.

EVALUATING RELATIONAL EXPRESSIONS 115

1. induces at least one path in S from s to t;
2. for every induced path I) Or with V s and vr them exists a unique

pair of integers p and q such that
(a) l<-p<q<r,
(b) one of v19 and v19+1 is x, the other is ,
(e) one of vq and Vq+l is y, the other is .

Then the evaluation of is as hard as composition.
Proof. Let M be the domain of S, and let R and R2 be arbitrary relations

with domain N and parameters n and e. Construct relation T with domainMxN
such that for all i,/’, k, in N,

(x, i)T(, f) iff iRlj and xSY,

(, f) T(x, i) iff iRd and xS-lY,
iff jR2k and yS,

iff jR2k and

(z, l)T(3, l) iff zS3 and the pair (z, 3)

is none of (x,), (, x), (y, 37), or (7, y).

We claim that (s, i)(T)(t, k) if and only if igl Rzk.
Intuitively, T allows us to walk around the graph of $ at will, using the first

component of its elements. However, the fact that we are concerned with if(T)
will force us to follow the instructions of some path scheme of ’ when determining
whether to go forward or backward along edges of $. The second component of
the elements cannot change unless we traverse the edge (x,) or the edge (y, 7) in
one direction or the other. When we traverse the former, we apply R to the
second component, and when we traverse the latter we apply Ra. The fact that
every path induced by q on S involves exactly one traversal of each of the edges
(x, Y) and (y, 17) in that order assures us that we apply R1 Rz to the second
component.

Suppose first that iR ljR2k for some j. Let II =/)iv2 v be any path induced
in Tby ge with v s and vr t. Such a path exists by condition 1 of the hypothesis.
Let p and q be the unique integers of condition 2 of the hypothesis and consider
the sequence

1-It---(Vl, 11) (Ur, lr)

with 11 119 i,

119+1 lq=j

It is easy to verify that 17’ is induced in T by the same path scheme that induced 1-I
in S. By Lemma 1, we conclude that

(s,i)(S)(t,k).

On the other hand, suppose that

(s, i)(S)(t, k).

116 T. G. SZYMANSKI AND J. D. ULLMAN

By Lemma 1, there exists some path

II= (Vx,/)’’ "(1)r, lr
induced in T from (s, i) to (t, k). By definition of T, II’ --/.)1 /-)r must be a path
induced in S by g’. Let p and q be as in condition 2. The definition of Tthen implies
that for some k,

l lp=i,

lq+ l=k.
But then we have iglfg2k, so igl R2k as was to be shown.

To complete the proof of the theorem, observe that the domain of T has

IMl" n elements and T itself has at most 2e + IMIn pairs. Therefore T has at most
cn domain elements and ce pairs for some constant c depending only on S. Thus
any algorithm for evaluating ’ on arbitrary arguments in f(n, e) time can be used
to compose arbitrary relations in O(f(cn, ce)) time. [q

Example 5. Let us show the known result that transitive closure is as hard as
composition. Consider the single operand expression R* and the relation S
depicted by the graph below.

g’ induces precisely one path in S from 1 to 3, namely, the path 1 2 3. We may
therefore apply Theorem 2 with

s=x=l, =y=2, 17=t=3. VI

Example 6. Consider the more complicated expression g [R (R t_J R-l)]*
of Example 4 and the graph S depicted below.

The set of paths induced in S by g’ may be expressed as the regular set
(12)’123(43)’45. Theorem 2 may therefore be applied with s 1, x 2, 3,
y 4, t7 t 5 to show that g’ is hard.

4. Expressions without -1 or without *. Since Theorem 1 says any equiv-
alance relation is easy, we must look elsewhere for hard expressions. One
interesting special case is expressions without inverse, which may not in general be
symmetric, and another is expressions without *, which need not be transitive. In
each of these cases we can divide expressions into two classes, those which are
equivalent in complexity to general composition, and those which have O(nes)
algorithms, that is, are no harder than sparse transitive closure. The division can
be expressed as follows.

EVALUATING RELATIONAL EXPRESSIONS 117

R E

FG. 4. ConstructionforR E

DEFINITION 6. An expression g’ with expression tree T is simple if
(i) no dense argument has an ancestor in T labeled*,
(ii) no two dense arguments have a lowest common ancestor labeled o.
Example 7. The expression tree of Fig. 1 is simple. Since there is only

one dense argument, rule (ii) of Definition 6 must be satisfied. Inspection shows
rule (i) satisfied, since both ancestors of D1 are labeled o. If the argument $1 were
replaced by a dense argument, say D1 or D2, then both rules (i) and (ii) would be
violated.

LEMMA 2. Let E be the relation resulting]?om the application o[some
expression to a set ofarguments with parameters n and e. LetR be a relation whose
domain is of size O(n). Then the relations E R and R E can be found in O(ne)
time, that is, in time independent o[the number ofpairs in R.

Proof. We consider R E only. The proof for E R is a mirror image of what
follows. Construct the representation graph G for E from g’ and its arguments.
Create a new set 1 of nodes corresponding to the domain of R. Put an edge from
o1(a) to o(b) if and only if aRb, as shown in Fig. 4.

Construct a table T(x, y) where x ,.1 and y is a node of G, such that
T(x, y)= true if and only if there is a path from x to y. Initialize T(x, y)= true if
and only if y e and [-;l(x)]R[C-l(y)]. Then use a standard stack oriented table
filling algorithm to complete T in O(ne) time. The formal procedure is given in the
following algorithm.

TABLE FILLING ALGORITHM.
procedure INSERT(x, y);/, set T(x, y) to true and stack (x, y) if T(x, y) was not
previously true../
i T(x, y)= false then begin

T(x, y) true;
push (x, y) onto STACK

end;
/ main program follows ,/

begin
(1) or x in 51 and node y of G do T(x, y)= false;
(2) for all a and b such that aRb do INSERT (5a(a), 5(b));

* above steps initialize T ,/
while STACK not empty do
begin

(3) pop top pair (x, y) from STACK;

118 T. G. SZYMANSKI AND J. D. ULLMAN

(4)

end
end

for each edge y z in G do INSERT(x, z)

We may easily check that the above algorithm never puts (x, y) on STACK
twice. It therefore terminates. An easy inductive argument shows that T(x, y) is
set to true if and only if there is some z in for which d-fl(x)RC-l(z) and there is a
path in G from z to y. Thus, if y s ’, we have T(x, y) true if and only if there is a z
in 5 for which 5-l(z)E’-l(y). It is thus straightforward to see the correctness of
the algorithm.

For the timing, note that steps (1) and (2) of the algorithm are each O(n 2),
since INSERT takes constant time. Step (3) is O(n 2) since pairs are never placed
on STACK twice. No y can be the second component of a pair selected in step (3)
more than O(n) times, for the same reason. Thus the time spent in step (4) for
fixed y is no more than O(ndy) where dy is the out-degree of y in G. The total time
spent in step (4) over all possible y’s is thus O(ne).

THZOREM 3. Any simple expression may be evaluated in O(nes) steps.
Proof. The proof is a construction. We evaluate, in a bottom up fashion, all

nodes v which have one or more dense descendants. If there are no dense
arguments, we first construct the representation graph for g" applied to the given
set of arguments as explained in Theorem 1. We then follow all paths from the
input set of the representation graph to the output set, thereby evaluating g’. This
process takes O(nes) time.

Assume that there are dense arguments. First we observe that by rule (i) in
Definition 6 every node with a dense descendant is labeled U, o, or -1.

Case 1. The label of v is U. Let the subexpression represented by v be
g’l U g’s. Then g’l and g’2 have been evaluated or are single arguments. The union
of their values may easily be taken in O(n 2) steps.

Case 2. The label of v is o. It is not possible that both children of v have dense
descendants by rule (ii) of Definition 6.. Thus, assume without loss of generality
that the subexpression represented by v is of the form c’ 2, where g’l has a
dense argument and g’2 does not. Then either g’l is a single dense argument or an
expression which has already been evaluated. In either event, let R be the value of
g’l. Then R g2 can be evaluated in O(ne) steps by Lemma 2.

Case 3. The label of v is -1. It is easy to invert the relation represented by the
subtree with root v in O(n 2) steps.

When we evaluate the root, we have evaluated the entire expression. Since
evaluation consists of a fixed number of steps, each of which is O(ne), we have our
result.

COROLLARY. Ifall sparse arguments ofa simple expression have size O(n),
then O(n 2) steps suffice to evaluate K independent of the number.of pairs in the
dense arguments.

One can argue that without parametrizing the problem further, the above
corollary is optimal for simple expressions, since O(n 2) time could be needed to
print the answer.

Example 8. In [4], evaluation of the expression (p-1)*/.t,A* was done
efficiently for dense/x and sparse p and A, by expressing/x in terms of operations

EVALUATING RELATIONAL EXPRESSIONS 119

applied to sparse relations. However, Theorem 3 implies that the evaluation could
have been done directly with dense/., since the expression is simple when p and
are sparse. However, certain other expressions in [4] yield nonsimple expressions
if the substitution for is not made.

Now, let us consider nonsimple expressions. Clearly, no expression over the
four operators we have been considering is harder than general transitive closure.
We establish lower bounds for the special cases mentioned at the beginning of the
section.

Our first task is to reduce the evaluation of arbitrary expressions over
operators o, U, * and -1 to expressions with one dense and no sparse operators.

DEFINITION 7. Let ff be an expression with at least one dense argument. The
pruning of g is constructed as follows.

1. Substitute D for every dense argument of
2. For each node in the expression tree for g having only sparse descendants,

but whose parent has a dense descendant, substitute a leaf labeled L the identity
relation.

3. Propagate I’s up the tree by using the following relations, always replacing
left sides by right.

(i)
(ii)
(iii)
(iv)
(v)
(vi)

(vii)
(viii)

IoE =E,
(IUE)* =E*,
(ILJE)-1 =IUE-1,
(I [3 El) E2 E2 [.J E1 E2,
E1 (I U E2) E1 [3 E1
(I LE) (I E:3 I (E E: E E),
(I 1.3 El) 1,3 E2 I O (El [..J E2),
(I [_J El) [.J (I [.J E2) I (3 (El O

It is elementary to show that the result is an expression g’, which either has no
instances of I or which is of form ! U g’", where g’" has no instances of L

Example 9. Fig. 5(a) shows an expression g’. In Fig. 5(b) we have applied
steps 1 and 2 of the pruning process (Definition 7). In Fig. 5(c) we have applied
rule 3(vi), with E1 D and E. D-1. In Fig. 5(d) we have applied rule 3(ii) to
obtain the pruned expression. [3

LEMMA 3. Let be an expression with at least one dense operand, and let ’ be
its pruning. Let " be ’ if ’ involves no I, and let " be such that ’= !U "otherwise. Then (a) g’ is simple if and only if " is simple. (b) If " is as hard as
composition, so is .

Proof. Part (a) follows from the fact that each step of the pruning process is
easily seen to preservesimplicity and nonsimplicity.

For (b), suppose we are given an f(n, e) time bounded algorithm to evaluate
g’. We can evaluate g’" with actual parameter D as follows. First, for each d in the
domain of D, create another element d’. Then for every pair dlDd, add the pairs
dlDd’2, d’Dd2 and d’Dd’2. Thus, d’ is just a copy of d which behaves the same way
as d. The presence of d’ will help us determine whether dge"(D)d however. Call
the new relation D’.

If we consider 8’ with D’ substituted for all dense arguments and I for all
sparse ones, we get ff’(D’), the pruning of 8’. In proof, note that any of the

120 T. G. SZYMANSKI AND J. D. ULLMAN

$1

/\ /\
D1 -1 $2 I D

(a)
92

u

DD -1

D

(b)

D D -1

D

(c) (d)

FIG. 5. Pruning

operators o, U, * and -1 applied to I’s only produces I as a result. Thus the nodes
of g" which are replaced by I in step 2 of the pruning algorithm (Definition 7) are
sure to get I as a value anyway.

If we apply our supposed f(n, e) time bounded algorithm to g"(D’), we get
either g’"(D’) or IU g’"(D’). In either case, g’"(D) can be recovered from g"(D’) by
noting that dl ’(D’)d’2 if and only if dl "(D)d2. We thus have an f(cn, ce) time
algorithm to compute g’"(D), which we supposed was as hard as composition. [-1

TIzORZ 4. The evaluation of any nonsimple expression over the operators
(o, U, *) is as hard as composition.

Pro@ By Lemma 3, it suffices to consider expressions with a single operand.
Let g’ be such an expression and consider the relation S depicted below.

Since g’.contains no - operators, P(g’) c__ R*. Thus every path induced in S by 8’ is
of the form 1233". Moreover, since g’ is nonsimple, P(g’) must include at least one

EVALUATING RELATIONAL EXPRESSIONS 121

element of length two or more. Thus induces at least one path from 1 to 3 in T.
We may therefore apply Theorem 2 with s x 1, : y 2 and)7 t 3 to
conclude that ’ is hard. [3

THEOREM 5. The evaluation o] any non-simple expression over the operators,
(o, (.j,-1) is as hard as composition.

Proo] Once again, by virtue of Lemma 3, we need only consider expressions
with a single operand. Without the * operator, the set of path schemes P([g) must
be finite. Let II Pl Pr be a longest element of P(’). Since is nonsimple, r
must be at least two. Consider the relation $ whose domain is {1, 2, , r + 1},
which is defined by (i)S(i + 1) if and only if Pi is R and (i + 1)S(i) i and only if pi
is R -1. P(’) induces exactly one path from 1 to r + 1 in $, namely 1, 2, , r, r + 1.
Thus Theorem 2 applies with s x 1, $ 2, y r and 37 r + 1. Thus ’ is
hard. [3

Example 10. Let us consider a specific example of the construction in
Theorem 5. Suppose that 8’ is [D (D P-1 (.J D)] (.J [D D-1 D]. Certainly 8’ is
nonsimple. P(’) is the set {RRR -1, RR, RR-1R}. A longest path scheme 17 is
RRR-1 and the corresponding relation T is

Consider the paths induced from i by . The scheme RRR-1 induces paths 1234
and 1232, RR induces only 123 and RR-1R induces 1212. Thus ’ induces
exactly one path from 1 to 4, namely 1234. [3

A corollary of Theorems 4 and 5 is that the existence of an O(nes) algorithm
for any nonsimple expression over U, o, -1) or U, o, *) implies the existence of an
O(n 2) algorithm for arbitrary composition, a rather unlikely possibility.

5. Summary. It has been shown that any expression involving a particular
set of arguments which yields a relation having property P (a generalization of
"equivalence relation") may be evaluated in O(e) time. Since every equivalence
relation has property P, we conclude that any equivalence relation defined as an
expression over the operators { U, o, *, -1} may be computed from the arguments
of the expression in O(e) time.

The "simple" expressions of 4 were shown to be no harder than sparse
transitive closure, that is, they may be evaluated in O(nes) time.

The classes of expressions over the operators (t.J, o, *) and (t_J, o,-1) were
each divided into two categories, those which are "simple" and hence have O(ne)
evaluation algorithms, and those which are not simple and hence do not have
O(ne,) evaluation algorithms unless arbitrary composition can be done in O(n 2)
time.

A general theorem was developed for showing that certain expressions
require as much time for evaluation as does arbitrary composition or transitive
closure. This theorem may be applied to many classes of expressions besides the
ones we have considered here. Consider for example the class of expressions of
the form

(De1 De2 Dek)*

122 T.G. SZYMANSKI AND J. D. ULLMAN

where ei is either -1 denoting inverse, or + 1, denoting absence of an inverse
operator. These expressions are always nonsimple, yet neither Theorem 4 nor 5
applies because both the -1 and * operators may be simultaneously present.
Nevertheless, Theorem 2 may be applied to show that expressions of this form are
hard whenever e 0.

Theorems 1 and 2 of this paper give sufficient conditions for an expression
being easy or hard to evaluate. In [7] we shall deal with the problem of
determining when these theorems apply.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[2] M. E. FURMAN, Application ofa method offast multiplication ofmatrices in the problem ofnding
the transitive closure of a graph, Dokl. Akad. Nauk SSSR, 194 (1970), p. 524.

[3.] M. J. FISCHER AND A. R. MEYER, Boolean matrix multiplication and transitive closure, 12th
IEEE Symp. on Switching and Automata Theory, IEEE, New York, 1971, pp. 129-131.

[4] H. B. HUNT, III, T. G. SZYMANSKI AND J. D. ULLMAN, Operations on sparse relations, with
applications to grammar problems, 15th IEEE Symp. on Switching and Automata Theory,
1974; Comm. ACM, Jan. 1977, to appear.

[5] J. E. HOPCROFT AND R. E. TARJAN, Efficient algorithms for graph manipulation, Comm. ACM,
16 (1973), pp. 372-378.

[6] I. MUNRO, E]ficient determination of the transitive closure of a directed graph, Information
Processing Lett., 1 (1971), pp. 56-58.

[7] T. G. SZYMANSKI, manuscript in preparation.

SlAM J. COMPUT.
Vol. 6, No. 1, March 1977

DERIVATION COMPLEXITYIN CONTEXT-FREEGRAMMARFORMS*

SEYMOUR GINSBURG AND NANCY LYNCH"

Abstract. Let F be an arbitrary context-free grammar form and (F) the family of grammars
defined by F. For each grammar G in d(F), the derivation complexity function 6, on the language of
G, is defined for each word x as the number of steps in a minimal G-derivation of x. It is shown that
derivations may always be speeded up by any constant factor n, in the sense that for each positive
integer n, an equivalent grammar G’ in (F) can be found so that ,(x)<-_lxl/n for all large words
x, Ix denoting the length of x.

Key words, complexity theory, grammar complexity, grammar forms

Introduction. In [2] the notion of a (context-free) grammar form was intro-
duced, to model the situation where all grammars structurally close to a master
grammar are being considered. The research on grammar forms to date [2], [3],
[5] has been concerned with grammatical, structural, and language-theoretic
problems. The present paper initiates the study of complexity-theoretic questions.
Specifically, the derivation complexity function G, defined to be the minimal
number of steps in a derivation of x, is examined with respect to all grammars
defined by a grammar form F. It is trivial that is at least linear and almost trivial
that is, in fact, linear. Our main result asserts that derivations may be speeded
up by any constant factor n, in the sense that for each positive integer n, an
equivalent grammar G’ defined by F can be found so that ,(x)<-_lxl/n for all
large words x, Ix denoting the length of x.

The basic question underlying this work is whether among the different
grammar forms yielding the same family of languages, there are some which are
more efficient than others. The results of this paper show that, if length of
derivation is the only criterion, there is no difference among grammar forms. As
will be seen, the cost of the speedup is a large increase in the size (e.g., number of
productions) of the grammars used. It remains to study the resulting trade-offs.

The notion of derivation complexity was originally defined by Gladkii [6] and
has been extensively studied by Book 1] for arbitrary phrase-structure grammars.
Some of the results in [1] have a speedup flavor similar to ours, but the grammars
in [1] accomplishing the speedup have structure very different from those of the
original grammars. By carrying out our constructions within the framework of
grammar forms, we preserve structure while speeding up derivations.

The paper is divided into three sections and an Appendix. Section 1 reviews
grammar form concepts, defines the derivation complexity function, and deter-
mines a lower bound for it. Section 2 is concerned with proving Proposition 2.4, a
special case of the main theorem. The main result itself, Theorem 3.2, is
established in 3. The proof involves first showing (Lemma 3.1) that the original
grammar form may be assumed to have certain additional properties. An induc-
tion argument on the number of variables in the grammar form is then presented,

* Received by the editors November 27, 1974, and in revised form December 8, 1975.

" Computer Science Department, University of Southern California, Los Angeles, California
90007. This work was supported in part by a Guggenheim Fellowship and in part by National Science
Foundation Grant GJ 42306.

123

124 SEYMOUR GINSBURG AND NANCY LYNCH

with the case for one variable being exactly the situation handled in 2. The
Appendix is devoted to proving a technical combinatorial lemma, needed in 2 to
verify the main theorem for each grammar form defining the family of all
context-free languages.

1. Preliminaries. In this section we first review the principal ideas relating to
context-free grammar forms. Then we introduce the formalism for treating
derivation complexity in grammar forms.

DZFINIaION. A (context-free) grammar form is a 6-tuple F=
(V, , o//., oW, , r), where

(i) V is an infinite set of abstract symbols,
(ii) Z is an infinite subset of V such that V-Z is infinite, and
(iii) Gv= (o//., 50, , r), called the form grammar (of F) is a context-free

grammar with 0
_
Z and (F- 5e) V- Z).

The reader is referred to [2] for motivation and further details about
grammar forms.

.Throughout, V and are assumed to be fixed infinite sets satisfying condi-
tions (i) and (ii) above. All context-free grammar forms considered here are with
respect to this V and Z. Also, the adjective "context-free" is usually omitted from
the expression "context-free grammar form."

The purpose of a grammar form is to specify a family f grammars, each
"structurally close" to the form grammar. This is accomplished by the notion of:

DEFINITION. An interpretation of a grammar form F (V, 5;, F, if’, , tr) is a
5-tuple I (/z, VI, E, PI, S), where

1. /x is a substitution on * such that/x(a) is a finite subset of Z*,/x(c) is a
finite subset of V-Z for each sc in o//._ if,, and/x(sc) f)/x(r/) for each : and
sc r/, in

2. Pt is a subset of/z() t3 =i./x (Tr), where/z(a -/3) {u v/u in/z(a),
v in/z(fl)};

3. SI is in/z(tr); and
4. EI(VI) contains the set of all symbols in Z(V) which occur in PI (together

with SI).
G (Vz, , Pz, Sz) is called the grammar of I.

An interpretation is usually exhibited by indicating Sz, Pt, and (implicitly or
explicitly)/x. The sets V and Et are ordinarily not stated explicitly.

A grammar form determines a family of grammars and a family of languages
as follows:

DEFINITION. For each grammar form F, (F) {Gx/I an interpretation of F}
is called the family of grammars of F and (F)={L(Gt)IGI in (F)} the
grammatical family of F.

In this paper we are interested in studying derivation complexity in a
grammar form, i.e., the derivation complexity of the grammars in (F). To do this
we consider the following:

We assume the reader is familiar with the basic notions pertaining to context-free grammars.
Here o//. is the total alphabet, 6 is the terminal alphabet, is the set of productions, and tr is the start
variable.

CONTEXT-FREE GRAMMAR FORMS 125

Notation. For every context-free grammar G (V1, El, P, S) let a be the
function on L(G) in which a(x) is the minimum number of steps among all
G-derivations of x,2 for each x in L (G).

Thus is the minimum derivation function, in the sense that a(x) is the
minimum number of steps necessary to derive x.

Notation. For every context-free grammar G let 4a=min{a(x)[x in
L(G), x e} if G is not vacuous,3 and b otherwise.

Thus b is the fewest number of steps needed to derive at least one non-e
word in L(G).

The restriction in our definition of b to non-e words is needed because of
the construction used in Lemma 2.1 to make finite patches on grammars.

From Lemma 2.1 of [2] we immediately get:
LEMMA 1.1. For each grammar form F and each grammar G in (F),

Using the above lemma we now obtain a lower bound for .
PROPOSITION 1..2. LetFbe a grammarform and G in f(F). Then there exists a

positive integer n so that (x) >= max {b, Ixl/n} for4 all x e in L(G).
Proof. Let n be the largest number of terminal symbols on the right side of

any production of G. Then for each x e in L(G), at least Ixl/n steps are needed
to derive x and

(x) -> b, by definition,

-> b, byLemma 1.1.

Hence the result.
Note that the right-hand expression in the conclusion of Proposition 1.2

decreases as n increases. The question arises whether the lower bound on the
right-hand side is attainable as n gets larger.

DEFINITION. A grammar form F is minimal if for each L in (F) and each
positive integer n, there exists a grammar G in (F) such that L(G)= L and
(x)-<max {bc, Ixl/n} for all x in L.

The purpose of the present paper is to prove that every grammar form is
minimal. In other words, for each grammar form F and each language L in ?(F) a
grammar G in (F) can be found which speeds up the derivation as much as
desired. Thus, if derivation complexity is the only criterion being considered,
there is no reason to select one grammar form instead of another.

2. Minimal forms for specific grammatical tamilies. In this section we show
that all grammar forms defining the finite languages, the regular sets, the linear
languages, and the context-free languages are minimal. Using this result we then
prove in the next section that all grammar forms are minimal.

To establish the result about all grammar forms for the above four grammati-
cal families we need two lemmas. The first states that if a grammar form F has an

2By a G-derivation of x, with n steps, is meant a derivation S w0 :ff w Wn X.
G G (3

A grammar G is said to be vacuous if L(G)= or L(G)= {e}. A grammar form F is said to be
vacuous if GF is vacuous.

4 For each word x, Ixl denotes its length.

126 SEYMOUR GINSBURG AND NANCY LYNCH

interpretation I which derives all long words x in L(Gx) in at most [xl/n steps, then
F has another interpretation defining L(Gx) which derives all possible words x in
L(G) in at most Ixl/n steps. In other words, a "finite patch" may be made for
short words.

LEMMA 2.1. Let F be a nonvacuous form and n a positive integer. Suppose
there exists a positive integer k and a grammar G in c(F) such that (x)<-_
max {k, Ixl/n} for all x in L(G). Then there exists a grammar G’ in f(F) such that
L(G’) L(G) and O,(x) _-<max {b, [xl/n} for all x in L(G’).

Proof. The argument consists of adding to G productions that generate, in
46, steps, the finite number of words x in L(G) for which Ixl/n < k.

Since F (V, , , 6e, , tr) is not vacuous, there is a b,-step derivation

(1) o’=zo =:::" z4,o,=z
G G

of a non-e word z in L(GF). For each i, 1 _-<i _-< b, let

(2) fli-* wi

be the production used in zi-1 zi. Since z e, there exists some j such that zj
GF

contains a symbol of 6e, say wj wilaiwi2, where ai is in 5 and Wjl, wi2 are in //*.
Note that for every and every occurrence of a variable on the right side of the ith
production in (2), there is a unique integer such that fl w is the production
applied to that variable in the derivation (1).

Now let G=(VI, Z1, P1, S) and x be an arbitrary word in L(G), with

Ix [/n < k. For each i, 2 _<- -<_ b, let Ai,x be a new variable (in V-). LetA1,x S.
For each x, consider the set of new productions

(3) {A,x - Vi,xll <-- -< ch,]} {Ai, - VjlxXl)j2x},

where each Vx, vial, Vi2x is obtained from the corresponding word w, wja, wi2 by
deleting all symbols in 6e and replacing each variable by the appropriate variable

A,x. Clearly the rules in (3) derive just the word x and no production A,x - V,x can
be applied to any variable Ai’,y unless i’ 1.

Let G’= (V2, 1, P2, S), where

V2 V1 -J {A,x Ix in L(G), Ix___l < k, 2 -< _<- b6,}.
n

Obviously G’ is in c(F), L(G’) L(G), and G’ has a bF-step derivation for all x in
L(G) L(G’). Thus G’ satisfies the conclusion of the lemma.

Remark. An alternative formulation of Lemma 2.1 is the following" Let Fbe
a nonvacuous form and n a positive integer. Suppose there exists a positive integer
r such that (x) _-< Ix I/n for all x in L(G) having Ix >- r. Then there exists a
grammar G’ in C(F) so that L(G’) L(G) and ,(x) -<max {b, Ixl/n} for all x
in L(G’).

COROLLARY 2.2. LetF (V, , , , , tr) and F’ V, , r,, ,, ,, tr) be
equivalent grammar]:orms,5 with ’. IfF is minimal, then so is F’.

Grammar forms F and F’ are said to be equivalent if (F) (F’).

CONTEXT=FREE GRAMMAR FORMS 127

The second lemma states that minimal grammar forms are not affected by
either adding or removing "redundant" productions.

LEMMA 2.3. Let F be a nonvacuous grammarform and w a derivation,
GF

with a variable. LetF’ be the grammarform obtained by adding toFtheproduction
w. Then F is minimal if and only if F’ is minimal.
Proof. Suppose F is minimal. By Proposition 2.1 of [2], w(F’) (F). Hence

F’ is minimal by Corollary 2.2.
Now assume that F’ is minimal. Let L be in Lt’(F) (F’) and n be a positive

k
integer. Since /3 w, /3 w for6 some nonnegative integer k. Suppose

k ->_ 1. Then there exists G’ (V1, Za, P’, $) in 3(F’) such that L (G’) L and
,(x)<=max{ck,,Ixl/(kn)} for all x in L. Also, there exists a sequence

k
7ra," , 7rk Of productions in/7 which realize/3 w. Let G (Vz, Za, P, $) in
(F) be obtained from G’ as follows. Each production A y in G’ which comes
from the production/3 w in F’ is replaced by a sequence of k productions,

corresponding to 7ra, , rk, which realizes A y. As in the proof of Lemma
2.1, new intermediate variables are introduced in the sequence in such a way that

the new sequence can only derive A y. Let V2 be Va together with all the new
variables introduced. Clearly L(G)=L(G’). Since every production of G’
requires at most k productions of G to simulate it, (x) _-<max {k4, klxl/(kn)}
for all x in L. By Lemma 2.1, there exists G in (F) such that L(G)= L and
’/d (x)_--<max {b Ixl/n} for all x in L.

Suppose k =0. Then there exists G’=(V1, Ea, P’, S) in (F’) such that
L(G’) L and ,I,(x) _-< max {b,, [x l/n} for all x in L. Let G (Vz, El, P, S),
where

P=(P’-{A-B in P’[A and B in /z(fl)})t_J{A-ylA in /x(fl), y in
V*-/z(fl), there exist l_-> 1 and A1,’", A in /z(fl) such that
A -A 1, Ai - Ai+I, AI -- y, 1 _--< _--< 1, are in P’}.

Clearly G is in (F) and L(G) L. Since each derivation ;’ in G’ of a word x in L
has an obvious corresponding derivation ; in G of x, with at most the same
number of steps as in ;’, ,I(x) =< max {b ,,, [x [/n} for each x in L. By Lemma 2.1,
there exists in (F) such that L() L and d(x) -<max {bo, Ix[In} for all x
in L.

Thus, for any value of k, there exists G in (F) so that L(G)= L and
d(x) _-<max {b, Ix[/n} for all x in L. Hence F is minimal.
We are now ready for the main result of the section.
PROPOSITION 2.4. In each of the following cases, F (V, E, V, 6e, , tr) is

minimal:
(a) (F) is the family of all finite sets.
(b) (F) is the family of all regular sets.
(c) (F) is the family of all linear languages.
(d) (F) is the family of all context-free languages.

k6 By u :ff v is meant that there exist ul, , Uk- such that Uo u

128 SEYMOUR GINSBURG AND NANCY LYNCH

Proof. (a) Since ’(F) is the family of all finite sets, by Theorem 2.1 of [2]
there is a word w in7 6e/ such that o- w. Let F’ be the grammar form obtained

fromFby adding the production cr - w. By Lemma 2.3 it suffices to show that F’ is
minimal.

Let L ={Xl,’", Xk} be any finite set and let n be an arbitrary positive
integer. If k=0 there is nothing to prove. Suppose k->l. Let G
({S} t_J El, El, P, S) be the grammar where Z1 is the set of all symbols appearing in
any of the xi, 1 <- <-_ k, and P {S- xill _-< -<_ k}. Obviously G is in (F’),
L(G) L, and (x) 1 _-<max {bF,, Ixl/n} for all x in L. Thus F’ is minimal.

(b) Since (F) is the class of all regular sets, L(GF) is an infinite set by
Theorem 2.1 of [2]. By [9], there exist xl, x, x3, x4, x5 in 6e* and fl in F-5 such

that x is in 6/, x3x4 is in 6e/, r ==:>, xxe, fl x3/3x4, and/3 xs. By
Lemma 2.3, there is no loss of generality in assuming that r - XlflXe, fl - x3flx4,
and fl -x are in . By symmetry, there is no loss in assuming x3 e.

Let L be any regular set. Then L L(G) for some right-linear grammar
G (V1, EI, P, S) in which A wB in P, A and B variables, implies w is in
Let n be an arbitrary positive integer. Let S’ be a new variable,8

P. {S’ - S} 1.3 {A wBIA, B in Wl --1, A
n+l

wB}

n+l

tA {n - win in V1-1, w in El*, A :::::ff w},

and G’= ({S’} IA V1, 1, e2, St). Clearly L(G’) L(G) L. Also G’ is in (F).
[For one can construct an interpretation (/x, G’) of F for which S’ S is in
tz(tr XlX2), A - wB is in/z(/3 - x3{x4) for every production A - wB, A and B
variables, in P2, and A w is in/z(/3 xs) for every production A w, w in El*, in
P2.] Consider any word x in L. Obviously there exists a derivation in G’ of x so
that except, perhaps, for the first and last productions, each production deposits at
least n + 1 terminals. Thus ,(x) _-< 2 + Ixl/(n / 1). For x sufficiently large,
2 / Ixl/(n / 1)< Ixl/n. Hence, o,(x)-< Ixl/n for all large x. By Lemma 2.1, F is
minimal.

(c) Since (F) is the family of all linear languages, by Theorem 2.4 of [2]
there exist xl, x2, x3, x4, x5 in * and/ in V-such that x3, x4, x5 are in 6e+ and

cr XlX2, x3x4, and/3 xs. By Lemma 2.3, we may assume that

O" --)’ XlX2, -’-> X3X4, and/3 x5 are in .
Now let L be any linear language. Then L L(G) for some linear grammar

G (V1, ,1, P, S) such that A uBv, A andB in V-, implies uv in. Let n be

7 For each set E of words, E U Ei.i--i
_-<k

By u v is meant that there exists a derivation of v from u in at most k (possibly 0) steps.

CONTEXT-FREE GRAMMAR FORMS 129

an arbitrary positive integer. Let S’ be a new variable,

n+l

P2 {S’ S} t.J {A uBvIA, B in VI -E1, A ::::z:z), uBv}
G

n+l

t.J{A -> wlA in VI-I, w in E*, A:::::ff w},

and G’ ({S’} LJ V1, El, P2, S’). The remainder of the argument is as in part (b).
(d) As often happens in pr.oofs about grammar forms, the case where (F) is

the family of all context-free languages is proved very differently from the other
cases, although the statement of the result is similar. Here we cannot simply
compose productions as in (b) and (c), since the resulting productions would not
necessarily be in the required form. Instead, we introduce productions where
possible which simulate within the required form the result of composing sequ-
ences of productions. We then use a combinatorial lemma to show that the
simulating productions are sufficient for the task at hand.

Since (F) is the family of all context-free languages, by Theorem 2.2 of [2]

there exist x 1, x2, x3, x4, x5 in 6e*, x6 in 9+, and/3 in -9o such that tr x lflX2,

fl _.. x3flx4flxs, and fl x6. By Lemma 2.3, we may assume that tr--> xlflx2,

fl -> XaflX4flxs, and fl -> x6 are in . Intuitively this means that it suffices to prove
the results for GF ({tr, a};, {a}, {or -> trtr, tr --> a}, tr).

Now let L be any context-free language. Then there exists a grammar
G (VI, El, P1, S) such that L L(G) and each production of P1 is of the type
A -> BC or A --> w, where A, B, C are variables, w is in El*, neither B nor C is S,
and A S if w e. (Thus S never appears on the right side of any production and
S is the only variable which derives e.) Intuitively, we shall construct a grammar
G’ as follows. We consider a derivation of a word w in G, represented by a
derivation tree. We put into G’ productions which simulate the effects of
G-productions used near the ends of branches. (See part 4 below.) Thus if the
derivation tree of w is very wide, then these productions yield the needed
speed-up. On the other hand, the derivation tree of w may be very narrow, with
very little internal branching. In this case, the new productions do not speed up the
derivation sufficiently. To obtain the speed-up here, we put into G’ productions
which "condense" long internal paths having little branching. (See part 6 below.)

Proceeding more formally, note that

1. if A w, where A is in VI-Z and w is in EI(VI-E1), then
G

s _-< 21w 2, and

2. if A w, where A is in V1-1 and w is in , then s -<_ 21w [- 1.

Let n be an arbitrary positive integer. Let G’ (V2, El, P2, S’), where S’ is a
new variable, V2 consists of the symbols of V1 together with all variables in P2, and
P2 is defined as follows"

3. S’- S is in P2.

130 SEYMOUR GINSBURG AND NANCY LYNCH

=<l12n

4. A - w is in Pz if A ===z) w, where A is in V1- ;1 and w. is in Z*.
5. A BC if A, B, C are in V1- Z1 and A BC is in Pa.
6. For each derivation 6" A :ff :ff vBw of at most 112n steps, with A, B

in V1-1 and v, w in El*, let D, En, and Hn be new variables. Let A DnEn,
E BHn, D v, and H w be in P2.

The indexing of the variables in part 6 is done, as in the proof of Lemma 2.1,
to keep the new variables distinct, so that each new production can be used only as
part of the simulation of the derivation of G for what it was intended.

From parts 2 and 4, we get

7. a - w is in P2 if a :==> w, with a in V El, w in Ex*, and Iw[_-< 56n.

It is easily seen that G’ is in (F). Since P P2 and new productions (except
S’ - $) in P2 are only used to simulate productions in P1, it follows that L(G’)-
L(G) L. To complete the argument, it remains to show that G’ has sufficiently
short derivations of all words in L.

Let x be an arbitrary word in L. For each G’-derivation of x, there is
associated in the obvious way [4] a G’-derivation tree9 T(x). Let (x) be the tree
obtained from T(x) by deleting the root, all leaf nodes, and all edges incident to
these nodes. Note that 5?(x) is a binary tree.1 Consider the set of all such
derivation trees T(x) for x. Let To(X) be one such tree with the fewest number of
nodes, and let To(x) be a tree giving rise to To(x). Then To(x) has the following
three properties:

8. No two consecutivela internal nodes of o(X) have both their node names
in V2- VI.

9. Each internal node of To(x) with at least one daughter an internal node
generates a subtree of To(x) whose terminal word is of length _-> 56n.

10. Let nx, n6 be six consecutive internal nodes of 5P0(x) and for each i,
2-<_ i-<6, let m be the other daughter of n_a. Suppose that each m is a leaf in
To(x) and Bi wi in To(x), Bi the node name of mi. Then [w2" w61--> 56n.

For consider part 8. Let n and n2 be consecutive internal nodes of To(X). Let
A and B be the node names of n and n2 respectively. Suppose A is in Vz- V.
Then by part 6, there is a 6 such that A isE and B is Hn. By construction, B Hn
cannot be an internal node of To(x).

Consider part 9. Suppose it is false. Then there exist consecutive internal
nodes n and n2 of To(x) such that n (thus n2) generates a subtree of To(x) whose
terminal word w (w2) is of length smaller than 56n. Let A and B be the node
names of na and n2 respectively. By part 8, one of the variables, say A, is in V.,
ThenA :z w. By part 7 A w is in P2. Replacing the subtree in To(x) realizing

9 Trees are viewed with the root node at the top. A node leading downward to another node is
called an internal node. Otherwise, the node is called a leaf. If nodes n and n2 are jointed by an edge,
with n2 below na, then n2 is called a daughter of nl, and na the father of n2.

ao A tree is called binary if each internal node has exactly two daughters.
1 Nodes nl,’" ", nr are consecutive if each ni+ is a daughter of ni, i_->2.

CONTEXT-FREE GRAMMAR FORMS 131

A wl by the subtree representing A - w gives rise to a G’-derivation tree

Tl(X), deriving x, with the property that Tl(X) has fewer nodes than To(x). (The
two daughter nodes of n in To(x) are no longer present.) This is a contradiction. A
similar contradiction arises if B is in V1. Hence part 9 holds.

Consider part 10. Suppose it is false. Let Ai, 1 _-< -< 6, and Bj, 2 _-<] -< 6, be the
node names of ni and mj, respectively. By part 8, either A1 or A2, say A2, and
either A5 or A6, say As, is in V1. [An analogous argument holds if any of the other
three possibilities occurs.] Since m3, n3 are daughters of n2; m4, n4 are daughters
of n3; and ms, n5 are daughters of n4, we have as productions in P2, A2- A3B3 or

A2- B3A3, A3 - A4B4 or A3 B4A4, and A4-AsB5 or A4- B5As. Suppose
Az- B3A3, A3 - A4B4, and A4-- BsA5 are the productions in P2 realizing the
above daughter relations. [An analogous argument holds if one of the other
combinations occur.] Thus

A2 B3A3 B3A4B4 B3BsAsB4 , W3wsAsw4

SinceA2andAsarein V1,A2 W3WsAswa.Byassumption, lw2.., w6[<56n.
Thus [w3w5w41 < 56n. By part 1, there exists a derivation
t’A2 --’’" W3wsAsw4, of at most l12n steps. Replacing in To the

subgraph realizing A2 B3A3, B3 w3, A3 ---) AaBa, B4 w4, A4 BsAs, B5- w5
by the graph realizing A2 DE, E -.A5H, D -. W3Ws, H - w4 gives rise to a
G’ derivation tree T(x) for x. Then l(x) has two nodes fewer than 5to(X). This
contradicts the minimality of To(x). Hence part 10 holds.

Using the above symbolism for trees, let r be a positive integer such that ’o(X)
has at least two internal nodes for each x in L, Ix >- r. Clearly r exists. By Lemma
2.1, it suffices to show that ,(x)<-Ixl/n for each word x in L, Ixl>-_r.

Let x be any word in L, with Ix _-> r. Consider the following result, whose
proof is in the Appendix.

LEMMA 2.5. Let Tbe a binary tree with at least two internal nodes and exactly
lea]’ nodes. Suppose there exists a positive integer k and a weight function to which
assigns a nonnegative integer to every leafnode in such a way that thefollowing two
properties hold"

(a) For each internal node no which has at least one daughter an internal node,
-’-m in Q(no) to(m) k, where Q(no) is the set o]’ all lea]’nodes in the subtree generated
by no.

(b) If n 1," n6 are six arbitrary consecutive internal nodes and m2, , m7
7

are leaf nodes such that each mi is a daughter of hi-l, then =2 to(m) >- k.
Then

kl

leaf

In Lemma 2.5, let k 56n, let T= o(X), and for each leaf node rn in 0(x) let
,o(m)- Iwl, where A is the node name of rn and A w is the production in P2
realizing the subtree in To(x) generated by m. By parts 9 and 10, (a) and (b) of

132 SEYMOUR GINSBURG AND NANCY LYNCH

Lemma 2.5 are satisfied. (There is some redundancy in(b).) By the conclusion of
Lemma 2.5, Em aleaf (.O (m)=> (56n/28)l 2nl, where is the number of leaf nodes
in To(x). Now the number of steps in any derivation realizing To(x) is 1 (for S’ S)
plus the number of internal nodes of To(x) plus I. Since To(x) is a binary tree, it is
easily seen that is 1 plus the number of internal nodes. Hence the number of steps
in any derivation realizing To(x) is 21. But Ix m aleaf to(m). Therefore ,(x)=
21 <-Ixl/n, and the proof of Proposition 2.4 is complete.

3. Minimality of arbitrary grammar forms. In the previous section we
proved that all the grammar forms for some special types of grammatical families
were minimal. In the present section we establish the result for all grammar forms
for all grammatical families.

The argument for the main result is as follows. In 3 of [2] a procedure was
given for converting an arbitrary grammar form into an equivalent, completely
reduced, sequential one. This procedure is exploited here to show that the
transformation cannot convert a nonminimal grammar form into a minimal one. It
is then proved that the resulting grammar form is always minimal.

LEMMA 3.1. For every grammarform F there exists an equivalent, completely
reduced, 12 sequential grammar form 13 F’ such that F is minimal if F’ is.

Proof. If F is vacuous then L(GF) or L(GF) {e}. Thus (F) {} or
(F) {, {e }}. In the former case, let F’ be a form with no productions, and in
the latter let F’ be a grammar form with the single production tr - e. ClearlyF and
F’ are both minimal, and F’ satisfies the conclusion of the lemma.

Suppose that F is not vacuous. For the remainder of this proof, we assume the
reader is familiar with the contents of 3 of [2]. We follow the transformation
procedure given there, noting that each step of the procedure cannot change a
nonminimal grammar form into a minimal one. There are five parts to consider.

(a) By the proof of Lemma 3.1 of [2] a reduced, equivalent grammar form Fa
is obtained from F. Since Fa is constructed by deleting the useless productions of
F, i.e., those productions involved in no derivation of a terminal word, only useless
productions of each G in (F) are deleted. Thus F is minimal if Fa is.

(b) By Lemma 3.2 of [2], an equivalent, reduced, noncyclic grammar form Fb
is obtained from Fa. Assume Fb is minimal. Let F" be the grammar form obtained

by adding to Fb all productions fl - 3’,/3 and 3’ variables, for which/3 . 3". Then

(Fb) (Fa)= (F"). Since each production in Fb is in F", it follows from
Corollary 2.2 that F" is minimal. By repeated use of Lemma 2.3, F is minimal.

(c) By Lemma 3.3 of [2] an equivalent reduced grammar form Fc containing
no production of the kind - r/, : and r/variables, is obtained from Fb. Suppose Fc
is minimal. Repeating the argument in (b) above, with Fc replaced by Fa andF by
Fb, it is easily seen that Fb is minimal.

12 A grammar form F (V, Y_,, OF, 5, , r) is said to be completely reduced if Ge is reduced, there

are no variables a and/3 in F-6such that a /3 is in , and for each variable a in OF- (5U {tr}) there
exist x and y in b*, xy # e, such that a xay is in .

13A context-free grammar (V1, E1, P, S) is sequential if the variables can be ordered S
A 1, , Ar such that if Ai - uAjv is any production in P, then] -> i. A grammar form F is sequential if

G is sequential.

CONTEXT-FREE GRAMMAR FORMS 133

(d) By Lemma 3.4 of [2], an equivalent, completely reduced grammar form
Fa is obtained from Ft. Assume.Fa is minimal. If every variable of Fc is partially
self-embedding, then F is minimal by Lemma 2.3. Suppose that F has exactly
k > 0 variables which are not partially self-embedding. The procedure in (13) of
Lemma 3.4 of [2] shows how to obtain from F an equivalent, reduced grammar
form F’ having exactly k- 1 variables which are not partially self-embedding.
This procedure is iterated k times until Fa is obtained. To show that Fc is minimal,
it therefore suffices to prove that F is minimal provided that F’ is minimal.

Assume F’ is minimal. Let L be in (F)=(F’) and n be an arbitrary
positive integer. Let be 1 plus the maximum number of times any single variable
appears on the right of any single production of F. Then there exists a grammar
G’ in (F’) such that L(G’) L and ,(x) _-<max {bF, Ixl/(ln)} for all x in L. By
the method of construction of F’ from F, there exists a grammar G in q3(F) such
that L(G) L and the following holds: For every G’-derivation 8’ of a word x in
L(G’) there is a G-derivation 8 of x in which each step of 8’ is simulated by at most
steps of 8. Then (x)_-<max {1,, [x]/n} for all x in L. The minimality of F

follows from Lemma 2.1.
(e) By Theorem 3.1 of [2], an equivalent, completely reduced, sequential

grammar form F’ is obtained from Fa. Assume F’ is minimal. Let F’e be a grammar
form obtained by adding to Fa one production of the kind/ v3,w, v and w in 6*,
for all variables/3 and 3’, fl 3’, in Fd such that/3 @ v’Tw’ for some v’ and w’ in

6*. By Lemma 2.3, it suffices to show that F’c is minimal.
Let L be in (F’e) (Fd) (F’) and n be an arbitrary positive integer. Let

k be 2 plus the maximum number of variables on the right side of any production
in F’. Then there exists a grammar G’ in (F’) such that L(G) L and ,(x)’_-<
max {bo,, [x[/(kn)}. In an obvious way there exists a grammar G’e in q(F’e) such
that L(G’e)=L(G’) and for each G’-derivation 8’ of a word x in L there
corresponds a G’e-derivation ’e of X in which each step of 8’ is simulated by at most
k steps in 8’e. (Specifically, each production p, corresponding to a production in F’,
may be replaced by one production corresponding to a production in Fd, plus one
production corresponding to a production of the form fl - v’i,w for every variable
in p.) Thus L(G’e) L and (x) _-<max {k., [x[/n} for all x in L. This implies
the minimality of F’e.

Combining (a)-(e), we obtain our result.
TI-IEOREM 3.2. Every grammarform is minimal.
Proof. Clearly each vacuous grammar form is minimal. Consider nonvacuous

grammar forms. By Lemma 3.1, we may restrict our attention to completely
reduced, sequential grammar forms. The proof will be by induction on the number
k of variables in the grammar form.

Suppose F is a completely reduced, sequential grammar form with just one
variable. By Lemma 5.1 of [2], (F) is either the family of finite, regular, linear, or
context-free languages. By Proposition 2.4, F is minimal.

Now assume the theorem is true for all completely reduced, sequential
grammar forms with at most k variables. Let F (V, E, o//., 6, , r) be a com-
pletely reduced, sequential grammar form with k + 1 variables. Thus, the vari-
ables in F can be arranged into a sequence r a0,"’, a so that for each

134 SEYMOUR GINSBURG AND NANCY LYNCH

production ai uajv in , <_-j. If (F) is the family of context-free languages,
then by Proposition 2.4 we are through. Thus assume (F) is not the family of all
context-free languages. We may assume similarly that F is nontrivia114 (since
otherwise F is either vacuous or generates the family of all finite sets.) By Lemma
2.3 we may assume the following:

1. For each i, 0 _-< _-< k, there exists vi in 5/ such that ai vi is in .,
2. If there exist Wl, w. in (7/’-{r})/ such that r WlO’W2, then there exist

Xl, x:z in * such that r XlO’X2 is in .
3. If there exist w in (7/’-{r})/ such that r wr (r rw) then there

GF
exists x in 6/ such that o- xr (r- rx) is in .

Intuitively, we proceed as follows. Consider the collection of "component"
grammar forms arising from F by treating each variable of F except o-, in turn, as
the start variable. Each such component form has at most k variables and thus, by
induction, is minimal. Given any interpretation grammar G of F, the speed-up is
accomplished by a grammar G’ constructed as follows: Consider the collection of
"components" of G, i.e., the parts of G which correspond to respective compo-
nent forms of F. By the minimality of the component forms, each component of G
may be sped up. The productions accomplishing this are then placed into G’. (See
part 6 below.) In addition, productions which speed up short derivations are also
placed into G’. (See part 4 below.) Similarly, productions which speed up the
portion of G not part of any component of G (i.e., the portion involving variables
corresponding to o-) are placed into G’. (See part 5 below.)

More formally, let F (V, Z, , fie, , a) be the grammar form in which

72i- 6U{cejlci woiw2 for some wa, w2 in *} and i be the set of all

productions in F involving only variables in . Then F/is nontrivial, completely
reduced, sequential, and has at most k variables. For each i, ba, 1 by assump-
tion 1 above.

Let L be in o(F) and n be an arbitrary positive integer. There exists an
interpretation (/z, G) of F such that L(G)= L. Let G- (Va, El, P, S). We shall
modify G to obtain a new grammar G’ obtaining the speedup of L by constant n.
Let A be an arbitrary variable in Vl- (-- [,_J J,(o’)). Then A is in/x(a) for some

->_ 1o Let Gk (v, 5;1, Pk, A), where P P f’l/z () and V is {A} U Z1
together with all the symbols appearing in productions of P. Obviously G. is in
qd(F). By induction, there exists a grammar GA=(VA, E1, PA, A ’) in
(F) such that L(GA) =L(G’A) and a,,(x)-<max{1, Ixl/(2(n +1))}=
max {b,, Ixl/(2(n + 1))} for all x in L(GA). There is no loss of generality in
assuming that A’ A, A does not occur on the right side of any production in PA,
and each symbol in VA- (El LI {A }) is a new symbol in V-Z.

Let s be the number of elements in/z(r) and r the maximum number of
variables (not necessarily distinct) on the right side of any production in . Let
G’ (V, E, P’, S), where V is Z1 U {S} together with all symbols in P’, and P’
consists of P and the following productions:

14 A grammar form F is said to be nontrivial if L(G.) is infinite.

CONTEXT-FREE GRAMMAR FORMS 135

4. Foir every variable A in V1 1 and w in *, with Iwl--< 2(n + 1)(r + 2) and

A

__
w, let A - w be in P’.

[Part 4 speeds up the G-derivation of short terminal words from variables.]
-<(n+l)s

5. Suppose A, B are in/z(tr) and A .), WlBW:z for some Wl, we in VI. Let
G

B1," Bq be the variables (not necessarily distinct) of G appearing in WlW in

order from left to right, and for each suppose Bi G Ui, where u is in * and

lull _-<2(n + 1)(r + 2). Let ffl and fie be the words obtained by replacing each B by
ui in w and we respectively. Then A - llB:z is in P’.

[Part 5 speeds up G-derivations of the form A =::ff wBw2 ff,’Bff,’:2, A
G G

and B corresponding to tr, in which A :==ff wBw:z does not have too many steps

and each variable of ww has a G-derivation of a short terminal word.]
6. For each A in V- (El /.t (or)) let each production of PA be in P’.
[Part 6 speeds up G-derivations of long words from variables not corres-

ponding to tr.]
It is readily seen that G’ is in (F) and that L(G’)= L. To show that F is

minimal, by Lemma 2.1 it suffices to show that ,(x) <-Ixl/n for all words x in L
such that Ixl/(n + 1)+ 4 + 2r _-< Ixl/n. [For the number of words x in L such tha
Ixl/(n / 1)+4+2r >lxl/n is finite.] Thus consider any word x in L such that
Ixl/(n + 1)+4 + 2r_-< Ixl/n. There exists a minimal G-derivation of x so that
productions (possibly none) of the type A vBw, A, B in /z(tr) and v, w in
(V1 -/x (or))* are applied first; then exactly one production of the type A - v, A in
/z(tr) and v in (V1-/z(tr))*, and finally productions involving only variables in
V (E _J/./, (o-)). Three cases arise. 15

(a) There are (n + 1)s consecutive productions p,..., P(,+)s in 8 with a
variable in/z(r) on both sides such that for each variable A in V-/z(tr) gen-
erated by each of the p, the subword of x generated by A has length at most
2(n / 1)(r + 2). Then by part 5, there is a production r in G’ which simulates the
sequence p,.-., p(,,+) as well as the derivations into subwords of x by every
variable not in/z(tr) produced by each of the p. Since t is minimal, each time a
variable in/z (tr) is repeated, either a terminal symbol or a variable deriving (in 8) a
terminal symbol is produced. Since there are only s distinct variables in/z (tr) and
the production r simulates the effect of all the productions alluded to above, r
deposits at least n + 1 symbols.

(13) Fewer than (n + 1)s consecutive productions as in (ct) occur, followed by
a production p: A - vBw such that A, B are in/z (tr), v, w are in (V1 -/z (tr))*, and
lu[> 2(n + 1)(r + 2) for some subword u of x generated by some variable in vw. As
in (ct), there is a production r of G’ which simulates the sequence of productions
preceding p, plus the derivation of variables not in/z (tr) into subwords of x. Let

15 We implicitly use the fact that since (F) is not the family of all context-free languages, it,
follows from Theorem2.2 of [2] that there are no words u1, u2, u3 in V* such that tr ::=ff u ltru:o’u3.

GF

136 SEYMOUR GINSBURG AND NANCY LYNCH

B1., , Bq be the occurrences of the variables in vw, in order, and let Xl, , xq
be the corresponding subwords of x which the Bi generate. Note that q-< r. For
each such that Ixil-< 2(n + 1)(r + 2), there is a production B --> x in P’, by part 4.
For each such that [x[>2(n+l)(r+2), there is a sequence of at most
]x]/(2(n + 1)) productions in P’ which converts B into x by part 6. Thus, the
simulation of the sequence of productions, plus p, plus the derivation into
subwords of x of all generated variables not in/z(o-), requires at most 1 (for the
initial sequence of productions)+ 1 (for p)+ r (for expanding all B such that
Ix,[<-2(n + 1)(r +2)) +YTlx, l/(2(n +)) (for such that Ix, > 2(n + 1)(r + 2)) pro-
ductions of G’, i.e., at most 2+r+Y7=[xl/(2(n+l)) productions. Since
E7=1 Ix, > 2(n + 1)(r + 2), the number of productions is at most E7_=1 [x,I/(n +).
Since at least Y’-7= [x[terminals are deposited by these productions, it follows that
at least n + 1 terminal symbols are deposited for each production of G’ used
(although each production may not itself deposit n + 1 terminals.)

(/) Fewer than (n + 1)s consecutive productions as in (a) occur, followed by a
production p: A --> v, where A is in/z (o-) and v is in (V-/z (or))*. As in (13), one
production of G’ simulates the sequence of productions preceding p, plus the
derivation of the variables not in/z (o-) into subwords of x. Let B, , Bq be the
sequence of occurrences of variables, in order, and x,. , xq the corresponding
subwords of x. As in (B), the total number of productions needed to simulate the
initial productions, plus p, plus the derivation of all generated variables into
subwords of x, is at most 2+r+7=11x, I/(2(n+ 1)). If Y7= Ix, l>2(n + 1)(r+2),
then as in case (13), n + 1 terminals are deposited for every production of G’ used.

We now apply (a) and (13) to 8 in the obvious way until (/) arises. The number
of applications of productions in G’ is at most Y7= [xi l/(n + 1), where the x are the
subwords of x derived from the variables not in/z(o-). Suppose that Y’,=I Ix, >
2(n + 1)(r + 2) for the x, arising in (/). Then o,(x) <= Ixl/(n / 1) < [xl/n. Suppose
that qY= [xl-<_ 2(n + 1)(r + 2) for the xi arising in (/). Then

,(x)-< Ix---J--I (from (a)and (/3))
n+l

+ 2 + r - ET= Ixi (for the xi arising in (/))2(n + 1)

< Ixi +2+r+2+r
n+l

_< Ix__JI, by hypothesis on x.
n

Hence the result.
The basic question we are interested in is whether some grammar forms are

"more efficient" than others, either for representing particular languages or for
their entire language families. By our main result, this question has a negative
answer if our measure of complexity is derivation length. (That is, each grammar

CONTEXT-FREE GRAMMAR FORMS 137

form has the power of expressing each language in its grammatical family as
efficiently as liked.) Of course, derivation length is not the only criterion for
judging the efficiency of a grammar. Other possibilities are "size" measures
(e.g., total number of symbols needed to represent the grammar or number of
productions in the grammar), as studied, for example, in [7], [8]. The reader will
note that the cost of the speedup using our construction is a large increase in the
size of the grammar: if S(n) is the size of the grammar constructed to accomplish
speedup of a language by constant n, then S(n) can be roughly equal to S(1)kn,
where k is a constant depending on the form and language. It remains to study
comparative efficiency of forms with respect to size measures, and to examine
trade-offs between the two types of measures.

Appendix. We now establish Lemma 2.5. Suppose there are at least 1/7 leaf
nodes m with the property that

(A.1) for some leaf m’ m, m and m’ are daughters of the same father.
Then there are at least 1/14 pairs of distinct leaf nodes, the two nodes in each pair
having a common father. Thus there are at least l 14 such fathers, and since T has
at least two internal nodes, //’28 fathers of such fathers. Each such father of a
father is an internal node with at least one daughter an internal node. By (a) of the
hypothesis, the sum of the weights below each such father of a father is at least k.
Thus Em aleaf to(m) > k(U28).

Suppose there are e <//7 leaf nodes m satisfying (A. 1). Call an internal node
both of whose daughters are internal nodes a branch node. Let be the number of
internal nodes and b the number of branch nodes. Since T is a binary tree, it is
readily seen that + 1 and e/2 b + 1. Now remove all branch nodes and their
incident edges from the tree T, obtaining a graph with g connected components,
F1," , Fg. Clearly

g<=2b+ l =e-l<-.
7

Let n be the number of original internal nodes in all the g components. Then

e 13
n i-b l-->--l.

Also observe that each component is one of the following two types:
(A.2) For some r --> 1, the nodes are {hi, mill <=i -< r} U {re’r}, where for each i,

1 <- r, mi is a daughter of hi, and for each i, 1 <- <- r 1, ni+l is a daughter of n.
Also, mr’ is a daughter of n. In addition, n 1, n are internal nodes of Tbut not
branch nodes, and each mi, m’ is a leaf node of T.

(A.3) For some r>=l, the nodes are {ni, mil l <- <= r}, where for each i,
1 =<.i r, m is a daughter of n and for each i, 1 -<i -<r- 1, n+a is a daughter of hi.
In addition, n 1, ", n are internal nodes of T but not branch nodes, and each m
is a leaf node of T.

Define a 6-chain as a 6-tuple (n 1,""", n6) in which each n is an internal,
nonbranch node of T, and nj is a daughter of nj_ for all j-> 2. All 6 nodes of a
6-chain are in some common component since no n is a branch node. For each i,

138 SEYMOUR GINSBURG AND NANCY LYNCH

1 _-< _--< g, let ai be the number of original internal nodes in Fi. Then there is a set
of 16

>l ai-g[ai/6J=-i=1

1
=(n-5g)

>1/13

=t/28
pairwise disjoint 6-chains (i.e., 6-chains having no elements in common). Since
every internal node not a branch node has a daughter which is a leaf, it follows
from (b) of the hypothesis that the sum of the weights of the leaf nodes which are
daughters of nodes in a given 6-chain is at least k. Since there are at least//28
disjoint 6-chains, the sum of the weights of the leaf nodes in T is at least kl/28,
completing the proof of Lemma 2.5.

REFERENCES

[1] R. V. BOOK, Time-bounded grammars and their languages, J. Comput. System Sci., 5 (1971),
pp. 397-429.

[2] A.B. CREMERSAND S. GINSBURG, Context-free grammarforms, Ibid., 11 (1975), pp. 86-117.
[3] A. B. CREMERS, S. GINSBURG AND E. H. SPANNER, The structure of context-free grammatical

families, submitted.
[4] S. GINSBURG, The Mathematical Theory of Context-Free Languages, McGraw-Hill, New York,

1966.
[5] S. GINSBURG AND E. H. SPANIER, Substitution of context-free grammar forms, Acta Math., 5

(1975), pp. 377-386.
[6] A. GLADKII, On the complexity of derivations in phase-structure grammars, Algebra Logika

Sem., 3 (1964), pp. 29-44.
[7] J. GRUSKA, On the size ofcontext-free grammars, Kybernetica (Prague), 8 (1972), pp..213-218.
[8] A. R. MEYER AND M. J. FISCHER, Economy of description by automata, grammars and formal

systems, Twelfth Annual Symp. on Switching and Automata Theory, 1971, pp. 188-191.
[9] S. SCHEINBERG, Note on the Boolean properties of context-free languages, Information and

Control, 3 (1960), pp. 372-375.

16 For each number t, It] is the largest integer less than or equal to t.

SlAM J. COMPUT.
Vol. 6, No. 1, March 1977

TWO ALGORITHMS FOR GENERATING
WEIGHTED SPANNING TREES IN ORDER*

HAROLD N. GABOW?

Abstract. Two algorithms for generating spanning trees of a connected graph in order of
increasing weight are presented. The first generates the K smallest weight trees, where K can be
specified in advance or during execution of the algorithm. The run time is O(KEa(E, V)+E log E)
and the space is O(K+E); here V is the number of vertices, E is the number of edges, and a is Tarjan’s
inverse of Ackermann’s function and is very slow-growing. The algorithm uses a minimum weight
spanning tree as a "reference tree", and exchanges edges to derive other trees. The second algorithm, a
modification of the first, generates all spanning trees of the graph, in order. If N is the number of
spanning trees, the time is O(NE) and the space is O(N+E).

Key words, weighted spanning trees, edge exchange, set merging, branch and bound

1. Introduction. In many practical situations, one wants to generate the
spanning trees of a graph in order of increasing weight. For example, consider this
electrical wiring problem" n pins must be wired together with as little wire as
possible; further, the wiring must satisfy complicated and diverse constraints, e.g.,
at most k wires can meet any pin, no two wires can be too close, etc. One way to
solve the problem is to generate spanning trees in order of increasing length
(weight) until a tree satisfying the constraints is found.

This paper presents an algorithm for generating the K smallest spanning trees
of a connected graph, in order of increasing weight. K may be known in advance
or specified as trees are generated. The algorithm requires time O(KEo(E, V)+
E log E) and space O(K+E). Here V is the number of vertices, E is the number
of edges, and c is Tarjan’s inverse of Ackermann’s function and is very slow-
growing. A previously known algorithm for this problem [2] has slower run time,
O(KV2 +KV log K). The algorithm works by using a minimum weight spanning
tree as a "reference tree" [6], and exchanging edges to find other trees. It uses fast
set merging algorithms [10], and a bounding technique for partitioning the
solution space [5].

The algorithm is modified for the problem of generating all spanning trees of
a connected graph, in order of increasing weight. The run time is O(NE) and the
space is O(N+ E), whereN is the number of spanning trees of the graph. Efficient
algorithms for generating all spanning trees of a graph without weights [7], [8] can
be applied to this problem. The best known algorithm gives time bound O(NE)
and space bound O(NV+ E). Since N can be large, storage may be a limiting
factor. So the improvement in space is significant.

Section 2 gives definitions from graph theory. Section 3 gives a result on edge
exchanges that is the basis of the algorithm. Section 4 presents the algorithm, and
analyzes time and space requirements. Section 5 describes the modified
algorithm. Section 6 summarizes computational experience.

* Received by the editors September 12, 1975, and in revised form February 9, 1976.
? Department of Computer Science, University of Colorado, Boulder, Colorado 80309. This

work was supported in part by the National Science Foundation under Grant GJ 36461.

139

140 HAROLD N. GABOW

2. Definitions. A graph G consists of a finite set of Vvertices and a finite set
of E edges. An edge is an (unordered) set of two distinct vertices. The edge
containing vertices v and w is denoted (v, w); it joins v and w.

A subgraph of G is a graph whose vertices and edges are in G. If H is a
collection of edges on the vertices of G, graph G-H consists of the vertices of G
and all edges in G except H; graph G UH consists of all vertices of G and all
edges in G or H.

A pathfrom vl to v, is a sequence of edges (vl, V2) (V2, V3),""" (/)n--l, 0n)" If
all vertices vi, 1 =< <= n, are distinct, the path is simple. A graph is connected if
there is a path between any two distinct vertices. A bridge is an edge (v, w) that is
in every path from v to w.

A tree is a connected graph, where any two distinct vertices are joined by a
unique simple path. A spanning tree of G is a tree that is a subgraph containing all
vertices of G.

A rooted tree is a tree T with one vertex r chosen as the root. Let v be a vertex
in 7; and let v =/)0, va, , vn r be the sequence of vertices in the simple path
from v to r. Any vertex vi, for 0 =< n, is an ancestor of/); v is the lather of/); v is
a son of v 1; the depth of v is n. The first common ancestor of two vertices v and w is
the ancestor of both v and w that has greatest depth. Two distinct sons of the same
vertex are brothers. In an oriented tree, the sons of a vertex are ordered from left to
right.

In a weighted graph, every edge e has a number, w(e), called its weight. If H is
a set of edges (such as a spanning tree), the weight otH is eH (e).

3. T-exchanges. This section describes how spanning trees can be derived by
exchanging edges. T-exchanges are defined and a useful property is proved.

Let T be a spanning tree of graph G. A T-exchange is a pair of edges e, f
where e e T,/. T, and T-e U]’ is a spanning tree. The weight o]’ exchange e,
f is w(f)- w(e). So the weight of tree T-e Uf is the weight of tree T plus the
weight of exchange e, [.

A T-exchange can be used to derive one minimum weight spanning tree from
another, as shown below.

LEMMA].. A spanning tree T has minimum weight if and only if no T-
exchange has negative weight.

Proo[. The necessity of this condition is obvious. Sufficiency is proved in
[4]. El

THEOREM 2. Let T be a minimum weight spanning tree of G, and let e be an
edge in T. Let e, f be a T-exchange having the smallest weight of all T-exchanges
e, f’. Then T- e Uf is a minimum weight spanning tree o] graph G e.

f

h

U V
FIG. 1. Edges in Theorem 2

TWO ALGORITHMS 141

Proof. Let S T-e t_Jf. Suppose S does not have minimum weight. By
Lemma 1, there is an S-exchange g, h having negative weight. We derive a
contradiction below.

We first show edges e, f, g, h are situated as in Fig. 1. Let T- e consist of the
two trees U, V. Edge e joins U and V. Edge f also joins U and V, since e, f is a
T-exchange.

Edge h also joins U and V. For if not, assume without loss of generality that h
joins two vertices in U. Since g, h is an S-exchange, g is in tree U. Thus g, h is a
T-exchange. But g, h has negative weight, and T is a minimum weight spanning
tree. This contradiction proves h joins U and V.

Now we show edge g U t_J V. Since e, h is a T-exchange, its weight is no
smaller than that of e, f. Thus
(1) w(f)<=w(h)<w(g).

So g f, and g s S-f= U t.J V.
Assume without loss of generality that g s U. This gives Fig. 1.
Now let U- g consist of the two trees W, X. Edge e is incident to one of these

trees, say W. Since T- e g (.J f LJ h is a spanning tree, either f or h is incident to
X. So either g, f or g, h is a T-exchange. But (1) implies both of these exchanges
have negative weight, a contradiction. This contradiction shows the original
assumption is false. Thus $ has minimum weight. [-1

Now let T be a minimum weight spanning tree. The theorem shows a
spanning tree with. the next smallest weight is T-e (.J f, where e, f is a minimum
weight T-exchange. This observation is the basis of the algorithm.

4. Algorithm |or Kspanning trees. The algorithm for generatingKspanning
trees consists of procedures EX, GEN, and a main procedure GENK. This section
describes these procedures in turn.

EX finds a minimum weight T-exchange e, f subject to certain constraints,
IN, OUT. We describe EX, first assuming there are no constraints and then
incorporating the constraints.

For each edge g T, EX finds a minimum weight T-exchange g, h; it sets e, f
to the smallest of these exchanges. During the execution of EX, we call an edge
g T eligible if a minimum weight exchange g, h has not been found.

EXworks as follows. Originally all edges in T are eligible. A list L contains all
edges hi, h2,’", h. of G, sorted in order of increasing weight. EX begins by
finding every T-exchange g, h 1. This is a minimum exchange for g, since h has the
smallest weight possible. Now all edges g become ineligible.

Edge h2 is processed similarly. EX finds every T-exchange g, h2, where g is
eligible. This is a minimum exchange for g. The edges g become ineligible.

The procedure is repeated for every edge hk in L. The smallest exchange
found is the minimum T-exchange e, f.

The tree T is represented by a father array F. Vertex 1 is the root; for any
vertex v 1, F(v) is the father of v. Call a vertex v 1 eligible if edge (v, F(v)) is
eligible, i.e., a minimum exchange for (v, F(v)) has not been found; call vertex 1
eligible too.

Now suppose EX examines the edge hk (x, y), as shown in Fig. 2. Vertex a
is the first common ancestor of x and y that is eligible; vertices xi, for 1 <-_ <-_ n, are

142 HAROLD N. GABOW

FIG. 2. Exchanging (x, y) into T

the other eligible vertices on the path from x to a; vertices yj, for 1 =<j _-< m, are
defined similarly. Edge hk gives a minimum exchange for each edge (xi, F(xi)),
(yj, F(yi)), and no others.

EX finds the vertices x, yi, by using set merging techniques. A family of sets
partitions the vertices of G. Each set contains a unique eligible vertex, which is
used as the name of the set. Vertex w is in the set named v when v is the first
eligible ancestor of w. (Since 1 is eligible, v exists for any w.) EX uses two
procedures to manipulate these sets" FIND(v) computes the name of the set
containing vertex v; UNION (v, w, x) combines sets named v and w into a new set
named x (destroying sets v and w).

EX computes the vertices x using the equations xl=FIND(x), X+l=
FIND(F(x)). Vertices y are computed similarly. Vertex a is the fi’rst common
value, a xn+l Y,,+I. In this manner, EX finds all minimum exchanges for edge
hk.

Now we discuss the constraint lists IN and OUT. These lists prevent trees
from being generated twice; their construction is described fully below. IN is a list
of edges in T that must remain in T; OUT is a list of edges out of T that must
remain out of T. Thus EX must find a T-exchange e, f, such that e 6 T-IN,
f G- OUT, and e, f has the smallest weight possible.

To do this, EX begins by making all IN edges (x, y) ineligible. This is done by
placing x and y in the same set (since they have the same first eligible ancestor).
Also, EX marks all OUT edges in the list L, so they are .not considered for
exchanges. These edges are later unmarked, for subsequent calls to EX. In this
manner, the constraints are handled.

The final array used is W, which specifies the weight W(e) of each edge e.

TWO ALGORITHMS 143

The procedure below sets global variables e, f and r, so e, f is a minimum
weight exchange subject to constraints IN, OUT, and r is the weight of e, f.

procedure EX(F, IN, OUT); begin
1. initialize: r eo; make each vertex v the only element in a set named

v;
2. IN edges: for edge (x, y) in IN do begin wiog assume F(x) y;
3. y FIND (y); UNION (x, y, y);

end;
4. OUT edges: for edge (x, y) in OUT do mark (x, y) in L;
5. L edges: for edge (x, y) in L do comment edges in L are in increasing

weight order;
if (x, y) is marked then unmark (x, y)
else if F(x y and F(y x then begin

let a be the first eligible common ancestor of x and y;
for v 1 - x, y do begin v - FIND(v I);

while v a do begin
rl- W(x,y)-W(v,F(v)); comment rl is the
exchange’s weight;

12. if r 1 < r then begin r r 1; e (v, F(v));f (x, y); end;
13. advance: u .- FIND(F(v)); UNION(v, u, u); v u;

end end end end EX;
Table 1 illustrates EX. Input parameters describe T1 for the graph of Fig. 3.

The exchanges found by EX in step 8 are listed, along with the output values
describing T..

8. find exchanges:
9.

10.
11. check exchange:

TABLE

EXprocesses
F(2) F(3) F(4) IN OUT f

2 3 (2,1), (3,1)" (3, 2), (3,1); (4, 3), (4,1) 0 (3, 2) (3,1)

input exchanges output

4

4

5 4

FIG. 3. Example graph

144 HAROLD N. GABOW

LEMMA 3. Let T be a minimum weight spanning tree subject to constraints
1Nc T G OUT. Then EX, called with a father array]’or T, sets e,
is the next smallest spanning tree subject to the same constraints.

Proof. Theorem 2 shows T-e L_Jf has the desired property if e, f is a
minimum weight T-exchange subject to constraints e IN,f OUT. The remarks
preceding EX show EX finds such an exchange.

LEMMA 4. EX runs in time O(Ea(E, V)).
Proof. First we bound the time for set operations. Lines 3 and 13 together do

at most one UNION for each vertex. So they do O(V) UNIONs, and also O(V)
FINDs. Line 9 does at most two FINDs for each edge in G- T. Thus, a total of
O(V) UNIONs and 0(17,) FINDs are done. If fast set merging algorithms are
used, the total time is O(Ea(E, V)) [10].

Line 4 can be done in time O(F_,). For OUTcontains at most E edges e; e can
be marked (in L) in time O(1), if OUT contains a pointer to e in L.

Next consider line 8. Vertex a can actually be computed as exchanges for
vertices v are found (lines 9-13). To do this, the paths from x to a and y to a are
processed simultaneously. Referring to Fig. 2, suppose xi and yj have been found,
for some _-< n, j _-< m; if xi yj, the vertex with greater depth precedes a, and so is
x/. or y+. In this manner, the exchanges for vertices v, and the vertex a, are
found.

To do this efficiently, we use an array D, that gives the depth D(v) of vertex v
in T. D can be computed from F in time O(V). Thus, line 8 requires only O(V)
extra time.

The remaining lines in EX require time O(E + V). This gives the desired time
bound. E!

Procedures GEN and GENK call EX to generate spanning trees in correct
order. A technique resembling branch and bound, described by Lawler [5], is
used.

Let T, for 1 =< =< N, denote the spanning trees of G, in order of increasing
weight. Suppose the algorithm has output the first j 1 trees, j > 1. The remaining
trees have been partitioned into j- 1 disjoint sets of the form

P{--={T, Ik >j- 1; e, e2, e T; e,+l,""’, e,g T},
for 1 < <j (here r and s vary over sets). Tree T satisfies all conditions of this set
except the first, k >j- 1. The smallest tree in this set is known; it is the result of a
T/-exchange e, f.

Procedure GEN finds the next smallest tree T from among the j- 1 smallest
trees in these sets. Suppose T is in the above set P{-, and T T-e t3 f. GEN
computes T. and outputs it. Then a new partition Pk, 1 _--< k _-<j, is formed, by
subdividing P-. For all k # in 1 _-__ k < j, set P P-’, further,

PJ={Tk]k >j; e,..-, e,, e Tk; e+,, , e Tk},

P-- {rklk >j; el,’’’, e, Tk e+,, e, e: Tk}.

T satisfies all conditions of P{ except the first. GEN finds the smallest tree in Pby
executing EX on T, with edges el,’", er, e in IN, and er/l,’", es in OUT.

TWO ALGORITHMS 145

(Lemma 3 shows EX works correctly.) P is processed similarly, using tree Tj. In
this way, the partition is updated. Now +1 can be found.

The algorithm uses a list P to represent the partition. A set P is represented
by a tuple (t, e, f, F, IN, OUT) in P. Here is the weight of the smallest tree in P; F
is the father array for T; the smallest tree in P results from the T/-exchange e, f;
IN is the list of edges that are in all trees of P; OUT is the list of edges that are out
of all trees of P.

Procedure GEN outputs the next smallest tree Tj from set p-l, and puts the
new sets P, P in the partition.

procedure GEN; begin
1. find P--": remove the tuple (t, e, f, F, IN, OUT) wth smallest weight from

P;
2. if e then stop; comment all spanning trees have been output,
3. output : //" <-- F; modify Fj so edge f replaces e; output (Fj);
4. ti -t--W(f)+ W(e); comment ti is the weight of T;
5. form list INi by adding e to IN; form list OUTj by adding e to

OUT;
6. form P: EX(/; lNi, OUT); add (ti +r, e, f, I*; INi, OUT) to .P; comment

EX sets e, f, r for the minimum weight exchange;
7. form P}: EX(b., IN, OUTj); add (t + r, e, f, Fj, IN, OUTj) to P;

end GEN;
Table 2 illustrates GEN, by showing the partition after tree 72 for Fig. 3 is

output.

TABLE 2

Partition P
f F(2) F(3) F(4) IN OUT

(- 3P !_4,3 4, .,2
12 (4, 3/ (4 1) 3 2)

LEMMA 5. Let GEN be called, with P containing tuples]’or the sets PJk-1,
1 k < j. 7hen GEN outputs Ti, and changes P to tuples for the sets P, 1 <_ k _<-_ j.

Proof. The Lemma follows from the remarks preceding GEN.
LEMMA 6. GEN runs in time O(Ea(E, V)).
Proof. Lines 1, 6 and 7 of procedure GEN remove and add tuples to P. These

operations can be done in time O(E). For this, we use a heap [1]. The tuples in P
.jare numbered, by assigning to Pi. An entry in the heap is a number i; entries are

ordered on. the weight of the corresponding tuple. The heap contains at most K
entries. So an entry can be removed or added h time O(log K), Since K -< 2, this
is

Line 3 requires time O(V) to derive t9". Referring to Fig. 2, let e
(xi, F(x)), f= (x, y). To derive Fj, arrayF need only be changed on the path from x
tO Xi.

The rest of the time is dominated by the two calls to EX. This gives the desired
bound. El

146 HAROLD N. GABOW

The main procedure GENK finds a minimum spanning tree, and calls GEN
for the next (K-1) trees.

procedure GENK(K); begin
1. make L a list of the edges of G, sorted in order of increasing

weight;
2. find Ta: make F a father array for a minimum weight spanning tree,

having weight t; output(F);
3. form P" EX (F, b, b); make (t + r, e, f, F, b, b) the only tuple in P;
4. generate T." or j 2 to K do GEN;

end GENK;
Table 3 shows the partition after all minimum weight spanning trees for Fig. 3

are output.

TABLE 3

Partition P

P
P
P
P

f F(2) F(3) F(4) IN OUT

13 (2,1)

13 (3,1)

13 (2,1)

(3, 1) 1 2 3 (3, 2), (4, 3)

(4, 1) 3 (4, 3)

(3,1) 2 (3,2)

(3,2)

(4, 3)

(3,2),(4,3)

LEMMA 7. GENK generates the K smallest weight spanning trees in order, in
time O(KEa(E, V) +E log E).

Proof. The correctness of GENK follows by induction, using Lemma 5. Now
we analyze the time. Line I requires time O(E log E) to sort E edges. Line 2 can
be done in time O(E log E), using Kruskal’s algorithm [1]. The rest of the time is
dominated by O(K) calls to GEN, requiring time O(KEa(E, V)) by Lemma
6. !-1

When K is small, the term E log E in the run time is significant. It can be
reduced to E log log E. This is done by using a faster minimum spanning tree
algorithm [3], [12], and changingEX so the edges of G need not be sorted. For the
latter, the techniques developed by Tarjan [11] are used.

Now we examine the space requirements. The dominating requirement is for
P. Since a tuple can contain O(E) words, P can use O(KE) words. Below we
modify the data structure to reduce this bound, without changing the run time.

LEMMA 8. GENK uses O(K+E) space.
Proof. We show the structures F, IN, OUT in a tuple can be replaced by 6

words, and still be computed in time O(E). The extra time is spent in line 1 of
GEN, and does not change the algorithm’s time bound; P is reduced to O(K)
words. So this suffices to prove the Lemma.

Suppose the first k trees T, 1 _-<] _-< k, have been output. Make these trees the
vertices of an oriented tree -, as follows. Make Ta the .root of -. For] > 1, make T.

T’VO ALGORITHMS 147

a son of T if GEN derives T. from a T-exchange. Let ej,/) denote this T-
exchange. Arrange the sons T. of T so] increases from left to right.

For a set P, the structures F, IN, and OUTcan be derived from -, as follows.
Let A be the path in z from T to the root T1. Consider these sets:

01 {ei[Ti is in A and > 1},

02 {f[T is in A and > 1},

T (T1 02)- O1,

I1 {eilT is a left brother of some T/in A},

12 {eli Ti is a son of T/}.

T contains the edges of T; the father array F for T is easily derived. 11 I2
contains the edges of IN, and O1 contains the edges of OUT.

Now for each set Pf, replace F, IN, OUTby the 6 words/’, i, ej, f/’, s, b. Here
is the index in P; is the index of the father T of T.; ej, f] is the exchange that
derives T. from T; s is the index of the rightmost son (if any) of T; b is the index of
the brother (if any) immediately to the left of T..

These 6 words are easily computed in GEN. Let the tuple found in line 1 be
(t, e, f, i, il, ei, fi, s, b). Then line 6 adds the tuple (ti + r, e, f, i, il, ei, fi, , b) to P;
line 4 saves e, f as ej, fj, and line 8 adds the tuple (t + r, e, f, j, i, e], fj, O, s) to P.

Finally, it is easy to see the 5 sets above, and F, IN, OUT, can be constructed
(in line 1 of GEN) in time O(E). [3

Table 4 shows how the partition in Table 3 is changed using this scheme.

TABLE 4

Changes in P using storage reduction scheme

P 2

P 3

P 4 2

e q

(3, 2) (3, 1) 4

(4,3) (4,1)

(4, 3) (4,1)

5. Algorithm for all spanning trees. This section describes a modification of
the algorithm that generates all spanning trees of a connected graph, in order of
increasing weight. The run time is O(NE), a slight improvement over GENK. The
three main changes are described below.

The first change eliminates extra calls to EX, by modifying the tuples for sets

P in P. The tuple’s minimum T-exchange e, f is replaced by X, a list of
T-exchanges. For each edge g T-IN, X contains g, h, the smallest exchange
with h G- OUT. So e, f is the smallest exchange in X.

148 HAROLD N. GABO-W

EX is modified to generate X. X is initialized to an empty list (in line 1), and a
line is added after 12:

12.1. add exchange (v, F(v)), (x, y) to X;

GEN is modified to use X. In line 1, the minimum exchange e, f is found by
examining X. In line 6, the call to EX is eliminated; thetupie for P{ is formed by
rejnoving e, f from X, and computing the new minimun weight, t, using Xi

The second change, in the set merging algorithms, speeds up FIND at the
expense of UNION. Sets are representeckby an array VSET, where VSET(w) v
when v is the name of the set containing w. With this approach, FIND takes time
O(1) and UNION takes time O(V).

EX uses these algorithms to manipulate the sets of vertices. Also, lines 2-3
are modified to avoid calls to UNION:
2’. IN edges: sort the edges (x,y) of IN, so F(x)=y and the depth of x

increases;
3’. for edge (x, y) in IN do VSET(x) VSET(y);
When (x, y) is processed in line 3’, VSET(y) already has its final value. So lines
2’-3’ initialize the sets correctly.

The third change involves the main procedure. A new main procedure is used
to insure all trees are generated:

procedure GENA; begin GENK() end,

Note the algorithm halts n line 2 of GEN.
Further, GENK is modified to reduce the set-up time in lines 1-2o Line 1 is

changed:

1’. make B a list of the bridges of G; make L a list of the edges of G-B, sorted in
order of increasing weight;

In line 2, the bridges B are placed in the spanning tree, before the minimum
spanning tree algorithm is called.

The remaining changes in the algorithm are typographical.
LEMMA 9. GENA generates all spanning trees in order, in time O(NE) and

space O(N+E), where N is the number of spanning trees.

Proof. The correctness of GENA follows from Lemma 7 and the discussion
above. Now we analyze the time, beginning with GENK.

Let E’ be the number of edges that are not bridges. Then lines 1.’-2 of GENK
use time O(E + E’ log E’). For in line 1’, the bridges B can be found in time
O(E) [9]; L can be sorted in time O(E’logE’). Line 2, using Kruskal’s
algorithm with the bridges already in the tree, uses time O(E’ log E’).

Now we show E’ log E’ is O(NE). It suffices to show E’ < 2N. Let T be a
spanning tree. We can list T-exchanges e, f, so each edge that is not a bridge occurs
in the list. Since each exchange represents a distinct tree, E’ < 2N. Thus, lines 1’-2
use time O(NE).

The rest of GENK is dominated by O(N) calls to GEN. As before, the heap
operations in GEN (lines 1, 6, 7) require time O(NE); the rest of GEN is
dominated by O(N) calls to EX (line 7).

TWO ALGORITHMS 149

In EX, line 2’ can be done once in time O(V). First the depth of each vertex in
the tree is computed, using F. Then the edges of IN are sorted on depth, using a
bucket sort [1] with one bucket for each depth. Thus, line 2’ uses total time
O(NV).

Line 13 of EX, using the modified FIND and UNION procedures, is done
once in time O(V). It is executedNtimes, once for each spanning tree. So the total
time is O(.NV).

The rest of EX uses time O(NE). This gives the desired time bound for
GENA.

Now we examine the space. The X lists in P require a total of O(N) words,
since each exchange in an X list represents a distinct spanning tree. Using the
modification of Lemma 8, the rest of P uses O(N) words. So O(N/E) space is
used. [3

Minty [7] and Read and Tarjan [8] give an algorithm that generates all
spanning trees of a graph without weights. It requires time O(NE) and space
O(E), assuming each tree is output as soon as it is generated. We can generate all
spanning trees in a weighted graph, by first applying this algorithm, and then
sorting the trees in order of increasing weight. This method requires time O(NE).
The space is O(NV+E), since each tree must be stored until the sort is done.
GENA has the same time bound but uses less space. Since N can be large
(N Vv-2 in a complete graph), space is likely to be a limiting factor, so this
improvement is significant.

6. Computational experience. A version of GENK has been programmed in
PASCAL and run on the CDC 6400. The program stores tuples in a hybrid form
(using the notation defined above, a tuple is (t, X, i, fj, F, IN)). The time bound for
the program is O(KEa(E, V) / E log E), and the space is O(KV+ E).

Experiments were conducted on random connected graphs with random
integer edge weights between 50 and 10000. Tables 5-6 show results. The run
time is specified by T, the average time in milliseconds to generate one spanning
tree. (Experiments show for a given graph, the time per spanning tree is approxi-
mately constant, as expected.) Table 5 shows T for graphs that are almost
complete; T is computed from K- 15. Table 6 shows T for graphs with 60
vertices; again K 15. When T is plotted against E, the data is almost linear.
Least square fits for the two tables have slopes 0.72 and 0.68, respectively. Almost
linear performance is expected from the asymptotic time bound, since the factor
c(E, V) is constant in this relatively small range.

TABLE 5

Timeforgenerang one ee

V 10 15 25 35 45 55 60

E 44 104 300 595 985 1476 1762

12 27 74 143 236 362 422

150 HAROLD N. GABOW

E 159 336

48 86

TABLE 6

Time for generating one tree, V 60

513 690

124 162

867 1044 1221

199 237 279

1398

324

1575 1757

365 413

Acknowledgment. The author thanks Professor Donald Johnson of
Pennsylvania State University for his inspiring discussions, and Mr. Robert
Palasek for programming GENK. He also thanks the referee for his penetrating
comments, in particular for indicating how to improve GENK for small K.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, Mass., 1974.

[2] P. M. CAMERINI, L. FRATFA AND F. MAFFIOLI, The Kshortest spanning trees ofa graph, Int.
Rep. 73-10, IEE-LCE Politecnico di Milano, Italy, 1974.

[3] D. CHERITON AND R. E. TARJAN, Finding minimum spanning trees, this Journal, to appear.
[4-] N. DEO, Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall,

Englewood Cliffs, N.J., 1974.
[5] E. L. LAWLER, A procedure for computing the K best solutions to discrete optimization problems

and its application to the shortest path problem, Management Sci., 18 (1972), pp. 401-405.
[6] W. MAYEDA AND S. SESHU, Generation of trees without duplications, IEEE Trans. Circuit

Theory, CT-12 (1965), pp. 181-185.
[7] G. J. MINTY, A simple algorithm for listing all the trees of a graph, IEEE Trans. Circuit Theory,

CT-12 (1965), p. 120.
[8] R. C. READ AND R. E. TARJAN, Bounds on backtrack algorithms for listing cycles, paths, and

spanning trees, Networks, 5 (1975), no, 3. pp. 237-252.
[9] R. E. TARJAN, A note on finding the bridges ofa graph, Information Processing Lett., 2 (1974),

pp. 160-161.
[10], Efficiency of a good but not linear set union algorithm, J. Assoc. Comput. Mach., 22

(1975), pp. 215-225.
[11] ., Applications of path compression on balanced trees, Tech. Rep. STAN-CS-75-512,

Comp. Sci. Dept., Stanford Univ., Stanford, Calif., 1975.
[12] A. C. YAO, An O([E[log log [VI) algorithm for finding minimum spanning trees, Information

Processing Lett., 4 (1975), pp. 21-23.

SIAM J. COMPUT.
Vol. 6, No. 1, March 1977

A LINEAR TREE PARTITIONING ALGORITHM*

SUKHAMAY KUNDUf AND JAYADEV MISRA$

Abstract. Given a rooted tree with a positive weight associated with every node, a linear
algorithm is presented that will partition the tree into a minimum number of subtrees such that the sum
of node weights in no subtree exceed a prespecified value k.

Key words, tree, partition

1. Introduction. Let Tbe a rooted tree with a positive weight associated with
every node. A feasible k-partition C of T is a set of edges such that upon removal
of these edges from the tree, each of the resulting component subtrees has a total
node weight (sum of node weights) at most k. The problem studied in this paper is
to find a feasible k-partition of minimum cardinality (an optimal k-partition).
Note that an optimal k-partition partitions the tree into minimum number of
components each of whose total weight is less than or equal to k. We will use
"partition" instead of "k-partition" when the context is understood. The weight
of each node of T is assumed to be at most k.

A more general problem is when the edges are also weighted, and it is
required to find a k-partition that has minimum sum of .edge weights. Lukes [5]
has given an O(k2n) algorithm for this general problem, where n number of
nodes in the tree. We present an O(n) algorithm for the special case of unit edge
weights. Our algorithm is also valid for weighted edges if the weights satisfy a
certain monotone property, to be defined later. Note that for large k, say, order of
n, Lukes’ algorithm will be less efficient than a linear algorithm.

The tree partition problem arises in partitioning any hierarchical structure
into a minimum number of segments when there is a constraint on the size of a
segment. For example, distributing a hierarchical data base into a minimum
number of pages fits into this model; k denotes the size of a page. Usually the
nodes in the data base would be of different sizes reflected by the corresponding
weights. Partitioning of logic modules into a minimum number of blocks (when
block sizes are fixed) to minimize the total number of interconnections among
blocks also fits into this model assuming that the modules are arranged in the form
of a tree.

Problems of partitioning arise in several different contexts. For example [3],
[4] consider the problem of optimal segmentation of a program into pages so that
the average number of interpage branching is minimized ur,,2c; ertain assumed
probabilities of branching. The problem of optimally partitioning a tree into
disjoint chains has been considered in [6].

2. Results. Let Tp denote the subtree rooted at node p, S(p) the set of sons of
node p, w(p) the weight of node p, and W(p) the sum of node weights in Tp. The
following lemma is fundamental to our algorithm.

* Received by the editors September 24, 1975, and in revised form May 6, 1976.

" Computer Science Department, University of Texas at Austin, Austin, Texas. Now at LOGI-
CON Corporation, San Pedro, California 90733.

$ Computer Science Department, University of Texas at Austin, Austin, Texas. This research was
supported in part by the National Science Foundation under Grant DCR75-09842.

151.

152 SUKHAMAY KUNDU AND JAYADEV MISRA

LEMMA 1. Letp be a node in Tsuch that W(p)> k and W(r)<=k, VrS(p).
Then there exists an optimal k-partition containing the edge (p, ro), where

W(ro) max { W(r)}.
rS(p)

Proof. Since W(p) > k, any feasible partition C necessarily contains an edge
from Tp. Let (u, v) be such an edge in C from Tp. If u # p, then (u, v) is in the
subtree Tr, r S(p). Clearly, C’= C-{(u, v)}+{(p, r)} is a feasible k-partition, and
is also optimal. We may thus assume that each edge of C from Tp is of the form
(p, r). The lemma follows by replacing one of the edges (p, r) in C by (p, to).

r0 is called a heaviest son of p. Note that the sum of the node weights in a
subtree (not the weight of the node) determines the heaviest son. T-Tr will
denote the rooted tree obtained upon deletion of Tr from T.

LEMMA 2. Let (p, r) be in some optimal partition of T. ff C1, C2 are optimal
partitions of T-Tr and Tr respectively, then C C1 + C2 +{(p, r)} is an optimal
partition for T.

Proof. C is a feasible partition. Let C’ be any optimal partition containing
(p, r), and let C, C denote the set of edges in C’ from T- Tr and Tr respectively.
Obviously, [CI[]C[and [C2[IC.l. Hence ICI _<-[C’ I.

Lemmas 1 and 2 lead to the following algorithm. Find a node p such that
W(p) > k and W(r) <- k, Vr S(p). Let ro be a heaviest son of p. Then construct an
optimal k-partition C1 of T-Tro and let C Ca +{(p, r0)}. (Since W(ro)<-k, the
optimal partition of Tro is null.)

A node p as above can be located by proceeding along the tree level by level,
beginning at the highest level (distance from root) and going down to the root level
(level 1). At any stage of the algorithm, we have a single tree which is modified by
deletion of a subtree. We let W*(p) denote the weight of subtree rooted at node p
in the modified tree.

ALGORITHM FOR OPTIMAL k-PARTITION

begin
C := ; assign W*(q) := w(q) to all leaf nodes in T;
for := maximum-level-in-T downto 1 do
begin process th level"

while there is an unprocessed node p in level do
begin process node p"

remove heaviest sons of.p one by one from S(p) until
W*(p) 2qS(p) W*(q) + w(p) <-_ k;
For every such son r removed, add the edge (p, r) to C

end process node
end process level

end algorithm;

A simple technique to process node p is to rank order all the sons of p based
on their W*(. value. The heaviest sons can then be removed one by one until the
total weight is less than or equal to k-w(p). This step however, requires
o(Is(p)! Is(p)l) time to process node p and hence the overall running time of
the algorithm becomes O(n log n).

A IJNEAR TREE PARTITIONING ALGORITHM 153

The following technique for processing node p was suggested by an anony-
mous referee, resulting in a reduced running time for this step to o(Is(p)l) only.
"Process node p" step essentially partitions S(p) into two subsets Sk(p) and SH(p)
(light and heavy) such that

(1) q 6 SL(p) and r 6 SH(p) zz) W*(q) _--< W*(r),

(2) Z W*(q)+w(P) <=k,
q SL(p)

(3) 2 W*(q) + w(p) + W*(r) > k, Vr
qSL(p)

This partitioning can be performed by successively splitting S(p) using a
linearmedian finding algorithm [1]. First S(p) is split into two parts SL(p), SH(p)
sa’tisfying (1) and ISH(p)I<--_SL(p)I<=ISH(p)I+I. Then conditions (2), (3) are
checked in O(]S(p)I) time. If both conditions hold, we have located the desired
partition. If (2) holds but (3) does not hold, then SH(p) is split into "lower" and
"upper" parts and the algorithm is repeated. If (3) holds but (2) does not hold,
then SL(p) is split.

More formally, the following routine returns the set SH as value given the
inputs S and k w(p). Medianfind-and-halve(S, $1) returns the "upper" half $1
of S.

split(S, k):
begin

i| ISl 1 then [split := it W*(q), q S <-k then
else S]

else begin
medianfind-and-halve(S, S);
:= Y’.qS, W*(q);

case of
t k: split := Sl;
<k: split := split(S1, k-t);
> k: split := split(S $1, k) + $1

end
end split;
Medianfind-and-halve takes linear time. Since we examine a set of approxi-

mately half the size in every succeeding step, split(S(p), k) requires

(Is(p)l)IS(p)[
O IS(p)[+

2 4

time. Hence the running time of the optimal k-partition algorithm is O(n). For
small values of k, good running time can be obtained by distributing S(p) into k
buckets--node q goes to the ith bucket for W*(q) i, q S(p). Then lighter sons’
weights are successively added to obtain a value as close as possible, but not
exceeding k w(p).

Remarks. The algorithm presented above can be applied to a few other
similar problems. First, assume that the edges are also weighted and the weights
satisfy the following monotone property: on each path from the root to a node of

154 SUKHAMAY KUNDU AND JAYADEV MISRA

the tree, the edges closer to the root have smaller weights than those that are
urther away, and all edges directed away from a node have equal weights. To
obtain a k-partition with minimum sum of edge weights, the partition algorithm
can be used successfully since at each iteration step an edge is added to C which is
as close to the root as possible.

Next, consider the partition problem where it is required that each rooted
subtree of the partition be a simple chain with total weight not exceeding k. We
process the nodes p from higher to lower levels as before. In the step "process
node p," we remove all but the lightest son of p, i.e., we find r S(p), where

W*(r)= min {W*(q)}
qS[p]

and add every (p, q), q r, q S(p) to C. If furthermore w(p) + W*(r) > k, then
(p, r) is also added to C. The running time of this algorithm is also O(n).

Acknowledgment. The authors are indebted to an anonymous referee who
suggested the use of median finding algorithm in processing a node. This has
lowered the running time to O(n) from the previous bound of O(n log n).

REFERENCES

[1] M. BLUM, R. FLOYD, V. PRATI’, R. RIVEST AND R. TARJAN, Time bounds for selection, J.
Comput. Systems Sci., 7 (1973), pp. 448-461.

[2] M.R. GAREY, D. S. JOHNSON AND L. J. STOCKMEYER, Some simplified NP-complete problems,
6th ACM Symp. on Theory of Computing, Seattle, WA, 1974, pp. 47-68.

[3] B.W. KERNIGHAN, Optimal sequential partitions ofgraphs, J. Assoc. Comput. Mach., 18 (1971),
pp. 34-40.

[4] J. KRAL, To the problem o[segmentation o[a program, Information Processing Machines, (1965),
pp. 140-149.

[5] J. A. LUKES, Efficient algorithm for partitioning of trees, IBM J. Res. Develbp., 18 (1974), no. 3,
p. 217.

[6] J. MISRA AND R. E. TARJAN, Optimal chain partitions of trees, Information Processing Lett., 4
(1975), pp. 24-26.

[7] W. H. HOSKEN, Optimum partitions o]’ tree addressing structures, this Journal, 4 (1975), pp.
341-347.

SIAM J. COMPUT.
Vol. 6, No. 1, March 1977

BOUNDS FOR LPT SCHEDULES
ON UNIFORM PROCESSORS*

TEOFILO GONZALEZt, OSCAR H. IBARRA$ AND SARTAJ SAHNI$

Abstract. We study the performance of LPT (largest processing time) schedules with respect to
optimal schedules in a nonpreemptive multiprocessor environment. The processors are assumed to
have different speeds and the tasks being scheduled are independent.

Key words. LPT schedules, uniform processors, nonpreemptive scheduling, independent tasks

1. Introduction. A uniform processor system [4] is one in which the proces-
sors P1,’" ",P, have relative speeds s1,..., s, respectively. It is assumed that
the speeds have been normalized such that sl 1 and si >= 1, 2<=i <-m. The
problem of scheduling n independent tasks (J,..., Jn) with execution times
(t, , tn) on m uniform processors to obtain a schedule with the optimal (least)
finish time is known to be NP-complete 1], 4]. Hence, it appears unlikely that
there is any polynomial time bounded algorithm to generate such schedules. For
preemptive scheduling, however, optimal finish time algorithms can be obtained
in polynomial time 6], [7]. Horowitz and Sahni [4] showed that for any m,
polynomial time algorithms exist to obtain schedules with a finish time arbitrarily
close to the optimal finish time. The complexity of these algorithms was, however,
exponential in m. The purpose of this paper is to study the finish time properties of
LPT schedules with respect to the optimal finish time.

DEFINITION. An LPT (largest processing time) schedule is a schedule
obtained by assigning tasks to processors in order of nonincreasing processing
times. When a task is being considered for assignment to a processor, it is assigned
to that processor on which its finishing time will be earliest. Ties are broken by
assigning the task to the processor with least index.

One may easily verify that for identical processor systems, this definition is
equivalent to that of [2, p. 100]. Graham [-3] studied LPT schedules for the special
case of identical processors, i.e., si 1, 1 <_- _<- m. If is the finish time of the LPT
schedule and f* the optimal finish time, then Graham’s result is that)t/f* < 3m

and that this bound is the best possible bound. In 2 we extend his work to the
general case of uniform processors. While the bound we obtain is best possible for
m 2, it appears that it is not so for m > 2. In view of this, we turn our attention to
another special case of uniform processors, i.e., s 1, 1 _<- < m and Sm S >= 1.
This case has previously been studied by J. W. S. Liu and C. L. Liu [5]. Using a
priority assignment according to lengths of tasks, they show that]/f*<=
2(rn-l+s)/(s+2) for s<=2 and f/f*<-(m-l+s)/2 for s>-_2, where f is the
finish time of the priority schedule.

* Received by the editors January 24, 1975, and in final revised form March 28, 1976. This work
was supported in part by the National Science Foundation under Grants DCR72-03728-A01 and
DCR74-10081.

t Department of Computer Science, University of Minnesota, Minneapolis, Minnesota. Now at
Department of Computer Science, Pennsylvania State University, University Park, Pennsylvania
16802.

t Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455.

155

156 TEOFILO GONZALEZ, OSCAR H. IBARRA AND SARTAJ SAHNI

Similar bounds for list schedules are also obtained by them. We show that for
m >_- 3,)/f* -<_ 3/2- 1/(2m) and that this bound is the best possible for m 3. For
m > 3 we conjecture that fir* <= 4/3.

Before presenting our results we develop the necessary notation and basic
results. Throughout the remainder of this paper) and f* will denote the finish
times of LPT and optimal schedules respectively. Let S be the set of tasks being
scheduled. It will sometimes be necessary to distinguish between finish times of
different sets of tasks. To do this, S will appear as a superscript along with) or *as in s and f,s. If the number of processors is important, then this number will
appear as a subscript as in 1,,, f,,,s etc. We shall refer to the sets of tasks (jobs) by
their task execution time. Thus, we speak of a set, S, of tasks (tl--> t2 =>""--> t,)
meaning the execution time of task is ti and ti >= ti+l, 1 <= < n. The m processors
P1, ",P,, are assumed ordered such that sl 1 and 1 <-si <-si+l, 2 _-< < m. The
following result from [2, p. 102] is made use of:

LE,MMA 1.1. Iffor any m, S (tl >- t2 5 >= tn) is the smallest set of tasks [or
which f/f*> k, then tn determines the finish time (i.e., task n has the latest
completion time).

2. Basic results. In this section, we prove two important lemmas that are
used throughout the paper (Lemmas 2.2 and 2.3). We also derive the bound
2m/(m + 1) for the ratio)/f* for the general m-processor system. Examples are
shown for which f/f* approaches 3/2 as m

We begin with the following lemma. Informally, it states that if either the LPT
or optimal schedule of an (m + 1)-processor system has an idle processor, then the
ratio ff* for this schedule is no worse than ff* for m processors.

LEMMA 2.1. For m >= 1, let g(m,
g(m, s2,"" ,s,,). Consider any (m+l)-processor system with lob set S=
(tl >= t2 >-" >-- tn) and processor speeds 1 Sl <- s2 <-_. --<s,,/l. If a processor is
idle in either the LPT or optimal schedule of S, then /Sm+l ,S

g(m, s3/s2, ,s,,+I/S2).
Proof. Suppose in the LPT schedule of S a processor Pi is idle. Then it must

be the case that in the optimal schedule, P is also idle. Otherwise,]S/l _<-t,/s,
sfm+1

> tn/Si and)s.. ,s+1/[,/1 1. So we need only consider the case when Pi is idle
in the optimal schedule. If Pi is idle then clearly P1 is also idle or can be made idle
without increasing f* by scheduling the jobs from P1 onto Pi. Consider the
m-processor system with job set S and processor speeds 1 s2/s2 <-_ s3/s2 <--" <=

s ss,+l/s. Then by assumption, for this system, f’m/f, g(m, s3/s2," s,,,+l/s2).
s s ,S ,sMoreover, f,,,+l=fm/S2 and f,,+l=fm /S2. It follows that js ,s+l/fm+l<=

g(m, s3/s2, s,,+l/s2).
The next lemma gives an estimate of 1/f* for the case when) is determined

by the job with the smallest execution time.
LEMMA 2.2. Consider an m-processor system with]ob set S=

(.,t >- t2 >=" >- tn and speeds s 1, ",s,,. If in the LPTschedule ofS, the finish time

f is determined by t,, (i.e., if task n has the latest completion time), then /f*<-
1 + (m 1)t,/(Qf*), where O Z si.

Proof. Let the LPT schedule be as shown in Fig. 2.1, where Pk determines tlae
finish time. Each T is the sum (possibly 0) of task times of jobs scheduled on P

BOUNDS FOR LPT SCHEDULES 157

prior to tn’s assignment, T1 +" + T,, tl +. + tn_a.

el
T1/$1

P2
T2/s2

Tk/$k tn/Sk

FIG. 2.1

Since task n determines the finish time, 1= (Tk + tn)/Sk and (T/+ tn)/S i
for k. Hence, fs- T tn and so fZ, s,-Z, _-<(m-)t. This, together
with fs T + t yields

fO<=E Ti +mt
=Yt+(m-1)t,.

Since f*>=Yt/Q, we get//f*=<l+(m-1)&/(f*Q). 7]

Using Lemmas 2.1 and 2.2, we can now derive a bound for the m processor
system.

THEOREM 2.1. For an m-processor system, /f* <=2m/(m + 1).
Proof. For m 1, the theorem obviously holds. Now suppose the theorem

holds for 1,2,..., m-1 processors but fails for m-processors. Let S--
(t->t2 ->...->_t.) be the smallest set of jobs which gives a bound f,,/f*m>
2m/(m + 1). Then by Lemma 1.1, tn determines the finish time. There are two
cases to consider. Both lead to a contradiction.

Case 1. n -> m + 1. Then by Lemma 2.2,

(m- 1)t

1 +(m- 1)t,,/[O(ti/Q)]

(m-l) m-1 2m<= 1 + (m 1)t,= 1 + =< 1 q a contradiction.
ntn n m+l m+l’

Case 2. n <= m. Then in the optimal schedule, either each processor has
exactly one job or a processor is idle. In the first case, fm/f*m 1, since no
processor can be idle in the LPT schedule (see proof of Lemma 2.1). For the

?s/f,s< iSm_l/f,mS__ < 2(m- 1)/m < 2m/(m + 1) by Lemma 2.1second case lmtlm 1--

Either case leads to a contradiction. I-1
COROLLARY 2.1. For an m-processor system, /f* < 2.

158 TEOFILO GONZALEZ, OSCAR H. IBARRA AND SARTAJ SAHNI

The bound of Theorem 2.1 is probably not a tight bound. However, we can
show that there are examples approaching the bound 1.5 as m oo.

TIEOREM 2.2. For every m >= 2, there is an example ofan m-processor system
and a set o[obs S for which s/fs, c, where c is a positive root of the equation
2sm--sm-1 s-2 =0.

Proof. The example we shall construct has job set S
(tl->t2 =>’’" =>t,,, >--tin/l) (where m is the number of processors) and processor
speeds 1 sa _-<. =< Sin. The ti’s and si’s will satisfy the following properties (see
Fig. 2.2)"

tm tm
$1, P1 el tm

$2, P2
tm

P2

Sin, Pm

LPT schedule

FIG. 2.2

Optimal schedule

tm+l(2.1) f= -[- tin+ and f*
Sm

(2.2) t,, t,,+ t,

(2.3) t,,+t,+a=2t=ti+t for l<i<m-l,=
Sm-i+l

(2.4)
t,, + t,,+__2 m_2tt for 1 --<_ <_- m 1.

Sm Sm Sm-i

Then f/f* 2t/(2t/Sm) Sin. From properties (2.1)-(2.4) we can derive the equa-
tion for s,,. From (2.3) we get

(2.5) t 2ts,,_+a-t= t(2s,,_+l- 1).

From (2.4), we have

(2.6) Smti 2tSm-i.
Equations (2.5) and (2.6) yield

2s,,_i+s,,
for 1 <i <m-1.(2.7) Sin_i+

2s,

BOUNDS FOR LPT SCHEDULES 159

Using (2.7) repeatedly for 1, 2,. , m- 1 we get

Hence,

or

2Sin- q- Sm
Srt

2Sin

22Sin_2 + S + S

2Sin_ + Sin)2\ 2-
2Sin

(2Sm-3-s+Sm) 22\ +Sin "I-Sin

2 -.[.. $32Sin_3 at- Smd" S

2s 3

2 m--12Sl +Sin +Sin+" "t- S

2+Sin -1"$2 -[’" "[" S=-1

(since s 1)

(2.8) 2S’--Sm --Sin Sm--2 =O.

The polynomial on the left-hand side of (2.8) has one sign change and so from
Descartes’ rule of sign it also has one positive real root. This root must clearly be
> 1 as otherwise the left-hand side is <0.

Let c be this positive real root of equation (2.8). We can construct an example
of an m-processor system with)t/f, =c by setting Sm =C and computing
s2,’’’,Sm-1 in terms of c using (2.7). (Of course, Sa 1.) Then by letting
tm= t,,+l t, we can determine the values of tl," ", tm-1 in terms of t using
(2.4). I-1

COROLLARY 2.2. There exist uniform processor systems and ob sets S for
which /f*- 1.5.

Proof. From Theorem 2.2 we know that there are job sets, $, for which
//[* c where c is a positive root of (2.8). Let s be a root. Rearranging terms, we
get

2s’- 1 Z si
O<=i<m

sm--1

or 2sm+a-3s"-s+2=O.
Since s > 1, for m --> o we have s - 3/2 as a root. [-1

160 TEOFILO GONZALEZ, OSCAR H. IBARRA AND SARTAJ SAHNI

Example. (a) m 2: Then we have 2S22--$2--S=0, where we find $2

(1 + vri)/4. Of course, sl 1. Let t2 t3 1. From (2.4), we find

2t 8
tl S1

$2 1 + c]-"

One easily verifies that f/f*= (1 +’,/-i-)/4.
2(b) m 3" The equation to use is 2s33- s3- s3 2 0. s3 1.384 is an approx-

imate root of this equation. Using (2.7), we find s2 $3(2s3- 1)/2 1.223; Sl 1.
Let t3 t4--t-- 1. Using (2.4), find t2 (2t/$3)’$2-- 1.767 and tl (2t/s3)’s1--=
1.445. Again we can check that f/f* is approximately 1.384.

(c) Some other roots of (2.8) are 1.493 for m 10 and 1.499 for m 20.

3. The case st = 1, 1 <= i -<_ m, and Sm >_-- 1. In this section we study the special
case in which all but one of the m >= 1 processors has a speed of 1. The mth
processor Pm has a speed s => 1. The main result of this section is stated below as
Theorem 3.1.

THEOREM 3.1. For m >--2 the ratio f/f* has the following bounds"
(i))/f*_-<(l+vri-)/4 for m=2,
(ii) f/f* <-_3/2- 1/(2m) for m >2.
Proof. (i) is proved in Lemma 3.2. (ii) follows from Lemmas 3.1-3.6 and the

fact that the bound is a monotone increasing function in m.
Before proving the theorem we derive a general bound for 1/f* in terms of m

and s.
LEMMA 3.1. For an m-processor system with si 1 for 1 < m and s,, s,

/f* =<2(m- 1 + s)/(m- 1 + 2s).
Proof. If m 1, the lemma is obviously true since f/f* 1. Now assume that

the lemma holds for 1, 2, , m 1 processors but fails for m (m 2). For this m,
let S (ta t2.>:" ->- tn) be the smallest set of jobs for which /f* >
2(m 1 + s)/(m 1 + 2s). Suppose a processor is idle in either the LPT or optimal

PS s< Ps sschedule of S. Then [,/f,]’,,-1/f,- --< 2(m 2 + s)/(m 2 + 2s) <_-

2(m 1 + s)/(m 1 + 2s) by Lemma 2.1.
So we may assume that no processor is idle in either the LPT or optimal

schedule of S. We consider two cases, both leading to a contradiction.
Case 1. The LPT schedule is as shown in Fig. 3.1, where each T/represents

the sum of execution times of jobs scheduled on Pi prior to the assignment of
t,, Ta +...+ 7 t +’’’-t-tn-1. By assumption, no processor is idle. Hence
T/> 0 for 2 -<_ --<_ m. Since the first m "1 processors have speed 1, we may assume
that T/->- T1 for 1 -<_ -<_ m 1. Now if T1 0, then 1 tn. But f* _-> tn since by
assumption no processor is idle in the optimal schedule. Then 1/[* 1. So we may
also assume that T1 ->_ t,.

Thus, fl->2t,. From Lemma 2.2 we have /f* <-1 +(m-1)t,/(Of*), where
Q=(m-1)+s. This implies that Of*>=O-(m-1)t>=2Otn-(m-1)t,. Sub-
stituting this inequality back into Lemma 2.2 gives

m-1 20 2(m- l+s)(m 1)t,
=1+=<l+2ot_(m_l)t,, 20-m+1 20-m+1 m-l+2s’

a contradiction.

BOUNDS FOR LPT SCHEDULES 161

P1

P2

1ol

1o2

TI

FIG. 3.1

T’

lqo.

Ca 2. Suppose the LPT sche,Jule is as shown in Fig.
assume that ’_ . T1 ;,. We may 1.:o .sume hat T,, >0;
since)’= t,./s. If 2t,, then the protff proceeds a.,; in Case 1.
Note that Z t s[+ (m 1)t,. Therefore,

Since f < 2& we have

f o o
f-Tf+(m- l_)& -s +(m- 1)&/"

__f_ O 20 2(m 1 + s).
f* -s -t- (m 1)/2 m 1 + 2s m--- 1 + 2s

The bound for m 2 follows from the following lemma.
LEMMA 3.2. For an m processor system with si 1, 1 ..<=. < m and s,, s,

/f* .<- I[(3 m) +4i m)2 + 16(m 1)]. Moreover, for m 2, the bo,nd is fight.
Proof. Let k > 1 be the desired bound for f/.*. Let (.2) E s m 1 + s. First

We show that if s <=20(k-1)/(m-1), then f/f*<=k. Suppose not. Let S
(& _>=. => &) be the smallest set of jobs for whichf/f* > k. Then t, determines the
finish time and by Lemma 2.2, f/f*<=l+(m-1)t,,/(Of*). Hence f*<
(m- 1)&/[O(k 1)]. It follows that the number of jobs on each processor in the
o.ptimal schedule of S is less than (m-1)s/[O(k-1)] 2T 2. But then in this case,
f/f* 1. This contradicts the assumption that S produces a bound >k. Thus if
s . 2O(k 1)/(m-- 1), then f/f* -_<= k. This, in turn, implies that if O <
(m 1)+ 2O(k 1)/(m- 1), then f/f* ._-<_- k or that

(3.1) if O---<-
(m--l)2
m-2k+l’

then f/f*<=k.

162 TEOFILO GONZALEZ, OSCAR H. IBARRA AND SARTAJ SAHNI

Now by Lemma 3.1, we have

f ..2(m- 1 +s) 2(m- 1 +s) 20
f*= m-l+2s 2(m-l+s)-(m-1) 2Q-(m-1)"

It follows that if 2O/(2Q-(m- 1))- k, then /f*<-_k or

(m- 1)k
(3.2) if Q>=--;,---;- then f/f*<=k.

ztx 1)

To satisfy (3.1) and (3.2) simultaneously, we must have (m-1)2/(m-2k + 1)>_-
(m 1)k/(2(k 1)), from which we get k _-> 1/4[(3 m + 4(3 m)2 + 16(m 1)]. For
all such k, f/f*<_-k for all Q.

For the case m 2, we have k (1 +.__x/-i-)/4. In 2 we saw an example with
s2=(l+.4]-)/4 for which f/f*=(l+417)/4. Hence, this bound is tight for
m=2.

In arriving at the proof of the theorem for m > 2, it is necessary to prove four
lemmas. To begin with, we show that if for any set of jobs, S, an optimal schedule
has more than one job on any of the processors el,"" ", Pro-1 then s/f.s<__
3/2-1/(2m).

LEMMA 3.3. For any set offobs, S, either (i) processors el Pro-1 have at most
one job scheduled on each in every optimal schedule or

(ii) fs.,, <3 1

f*..s=2 2m"

Proof. Suppose (ii) is not true for some set of jobs. Let S (tl >- t2 ->" -> t,)
sbe the smallest set of jobs for whichf,,/f, > 3/2- 1/(2m). From Lemma 2.2 we

get

f (m- 1)t, 3 1
f,..,s<= 1 +

(m 1 + s)f*,, >-2-
or

(m- 1)t. m-1
(m 1 + s)f

>
2m

or

m-l+
t, >

2m
sf.,,

i.e., f* < 2t, which, in turn, means that none of the processors el Pro-1 can have
more than one job scheduled on them in an optimal schedule.

BOUNDS FOR LPT SCHEDULES 163

Next, we prove that if s >=m- 1 then f/f* _-__4/3.
LEMMA 3.4. ff s >- m 1 then /f* <-4/3 <-_3/2 1/(2m) for m >2.
Proof. Lemma 3.1 gives

/,<_2(m- l +s)
m-l+2s

The right-hand side of the above inequality is a decreasing function of s.
Hence, for s >_- m 1 we obtain

fro< 4m--4

f’m-- 3(m 1)

=4/3

=<3/2-1/(2m), m>2. D
As a result of Lemmas 3.3 and 3.4 the only counterexamples to Theorem 3.1

are sets of jobs, S, for which the optimal schedules have at most one job on each of
P--Pm- and the speed, s, of Pm is <m 1. The next two lemmas show that for
this kind of an optimal schedule and s < m 1 the bound of Theorem 3.1 cannot
be violated.

LEMMA 3.5. Let S (/i -> t2 >=" t,) be the smallest set of jobs for which
/f* > 3/2- 1/(2m). Ifin the LPTschedule, ti is the onlyjob scheduled on one ofthe
processors, P1, , P,,- and ifin an optimal schedule ti is the onlyjob scheduled on
one of the processors, Pa, , Pro-1 then, either

or

(i) fSmi[:sS< fm 1/ s
jm fm--

(ii) 6 < ti.
Proof. From Lemma 1.1 it follows that t determines the finish time ds. If any

one of the processors P,. , P is idle in an optimal solution (i.e. no jobs have
been scheduled on it), then f,..s ,s s < s s ,s< s /,sfm-l. BUt, fm= fm- andsofm/m =m--1/m--1-

We may therefore assume that no processor is idle in any optimal solution. Hence,
f’mS>= t.. If n, then]Sm t,, (as 6 is the only job on some processor P1," ", Pro-l)
and s/f,s< 1 Therefore n Now, we haveJmljm

but

Therefore,

f,s= max {ti, f,s_]{t}}

>=f,s{t,}... as

im =m- as i#n.

f"S-{h fro-iSm< Jm-1

164 TEOFILO GONZALEZ, OSCAR H. IBARRA AND SARTAJ SAHNI

LEMMA 3.6. When s < m 1 and an optimal schedulefor any set of]obs S has
at most one ob .on each o[processors P1 P,,- then ,,/[._<-_ 3/2- 1/(2m).

Proof Let S (t t2-" tn) be the smallest set of jobs and m the least
m > 2 for which the lemma is not true. From Lemma 3.1 we obtain f/f* =<-.
1 +(m- 1)/(m- 1_+ s)(tn/f*). By assumption f/I*> 3/2-1/(2m). Therefore,

(m-l) t,, 3 1
+ f->m-l+s 2 2m

2m
(3.3) f* < t,,,

m--l+s

If #,, is the number of jobs on P, in an optimal schedule then,
Substituting this inequality into (3.3) yields

2sm
(3.4) # < m--l+s"
Iqae right-hand side of the inequality (3.4) is an increasing function of s. Since
s < rn 1, (3.4) yields the following bound on #

2(m- l)m

" 2(m-- 1)
m.

The optimal schedule has at most one job on each of P-t-P,,-. Hence, n-_<-_.
2m -2.

I he remainder of the proof shows that if n . 2m 2 then Lemma 3.5 can be
used to show that fm/fm" ----f’L-/f,-, thus contradicting the assumption that this
was the least rn for which the lemma was false. (The contradiction comes about as
3/2- 1/(2m)is monotone increasing in m and the fact that when m 3 this bound
is 4/3 which is greater than the known bound for m 2.) Clearly, we may assume
that each processor has at least one job scheduled on it in every optimal schedule.

Let k be the smallest index (i.e. largest job) on any of the processors
P.-P,, in an optimal schedule. Then, the schedule obtained by assigning job
tk+i.-- to processor P, 1 < m, and the renaining jobs to processor-Pm has a

sfinish time no greater than the optimal finish time f,,. Such a schedule shall be
denoted by OPTk. Clearly, 1 k ..-_<_-- n m + 2. Since, n 2m- 2 at least one of the
processors P-.P_ has exactly one job scheduled on it (every. processor must
have at least one job on it as otherwise, by the definition of LPT, f t,, butf* t,,).
Let the index of this job be i. Then, ti must be the largest job amongst jobs
scheduled on Pa P,,__a in the LPT schedule (this again follows from the definition
of LPT). But, s < m- 1 implies t t,,,_ as LPT cannot schedule all of the first
m-1 jobs on Pm when s <m-1. For all k 1, OPT has a job with index
j k + m 2 m 1 on Pm- and this is the only job on .Pm--. By the ordering on
the jobs, ti t,, So, t > ti. Lemma 3.5 now implies that f,/f"s--.<L,_/f,,__,a*
contradiction. 13

Having shown that ff* is indeed bounded as in Theorem 3.1, the next
question is: How good is the bound. From the previous section we know that the

or

BOUNDS FOR LPT SCHEDULES 165

bound for m 2 is tight. Lemma 3.7 shows that the bound is also tight for m 3
and that for all m > 3 it is possible to have an }/f* arbitrarily close to 4/3. Lemma
3.8 shows that for m 4 and 5 there is no set of jobs $ for which }/f* > 4/3. This
shows that the bound of 3/2-1/(2m) is not a tight bound for all values of m and
leads us to conjecture that for m -> 3 the bound is in fact 4/3. Note the closeness of
this bound of 4/3 to the bound 4/3- 1/(3m) obtained by Graham [3] for the case
of s 1 (i.e., m identical processors).

LEMMA 3.7. Form >= 3 and any e > O, there is a,set ofjobs, S, and a speed s > 1
for which f/f* > 4/3 e.

Proof. For any m => 3 consider the set of jobs tl 1.5, t2 1.5, tj 1, 3 -_<j -<_
m + 2 and s 2 + e’ with e’ very close to zero. The LPT schedule has jobs tl, t2 and
tin+2 on Pm with1 4/(2 + e’). One optimal schedule is shown in Fig. 3.3. f* 1.5.
Hence, /f*=8/(6+3e’)4/3 as e’ 0.

t3 tx 1.5
Px P

P4 t4 P2 t2 1.5

Pm
t, t2, tin+2 tm’ tm+l tin+2P.
s=2+e’ s=2+e’

LPT Optimal

FIG. 3.3. LPTand optimal schedulesforLemma 3.7

LEMMA 3.8. For m 4 and 5, /f* -<- 4/3.
Proof. The proof is omitted and may be found in [8].
Conjecture.)/f* <_- 4/3 for m >= 3 and si 1, 1 -< < m and s,, >_- 1.

4. Conclusions. We have shown that in the case of uniform processors LPT
schedules have a finish time at most twice the optimal finish time. The worst
examples we could construct result in LPT schedules with finish times 1.5 times
the optimal for m. For the special case studied in [5] it is shown that
f/f*<=3/2-1/(2m).

Acknowledgment. We are grateful to the referee for providing a simpler
proof of Lemma 3.1.

REFERENCES

[1] J. BRUNO, E. G. COFFMAN, JR. AND R. SETHI, Scheduling independent tasks to reduce mean
finishing-time, Comm. ACM, 17 (1974), pp. 382-387.

[2] E. G. COFFMAN, JR. AND P. J. DENNING, Operating Systems Theory, Prentice-Hall, Englewood
Cliffs, N.J., 1973.

[3] R. L. GRAHAM, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969),
pp. 416-429.

166 TEOFILO GONZALEZ, OSCAR H. IBARRA AND SARTAJ SAHNI

[4] E. HOROWITZ AND S. SAHNI, Exact and approximate algorithms]’or scheduling non-identical
processors, J. Assoc. Comput. Mach., 23 (1976), pp. 317-327.

[5] J.W.S. LIu AND C. L. LIU, Bounds on scheduling algorithmsforheterogeneous computingsystems,
Proc. IFIP, (1974), pp. 349-353.

[6] J. W. S. LIu AND A. YANG, Optimal scheduling of independent tasks on heterogeneous computing
systems, ACM National Conference, 1974, pp. 38-45.

[7] E. HORVATH AND R. SETHI, Preemptive schedules for independent tasks, Computer Science
Tech. Rep. 162, Pennsylvania State Univ., College Park, 1975.

[8] T. GONZALEZ, O. n. IBARRA AND S. SAHNI, Bounds]’or LPTschedules on uniform processors.,
Tech. Rep. 75-1, Univ. of Minnesota, Minneapolis, 1975.

SIAM J. COMPUT.
Vol. 6, No. 1, March 1977

TASK SCHEDULING ON A MULTIPROCESSOR SYSTEM WITH
INDEPENDENT MEMORIES*

D. G. KAFURA’[" AND V. Y. SHEN:I:

Abstract. This paper considers a model of a computing system with several independent but
identical processors, each with a private memory of limited, and possibly different, storage capacity.
The tasks are assumed to have known resource demands expressed as processing times and memory
requirements. Several scheduling strategies are evaluated by worst-case performance bounds and
simulation results. Both preemptive and nonpreemptive scheduling are considered. An optimal
preemptive algorithm is given to find the shortest schedule for a task set with no precedence
constraints.

Key words, scheduling, scheduling algorithms, multiprocessor system, deterministic models,
worst-case bounds, memory constraints

1. Introduction. This paper analyzes a model of computation with proces-
sors and memory as resources. The allocation of memory has the constraint that
only fixed (but possibly different) amounts can be allocated during the scheduling
process. The analysis differs from previous investigations which consider only the
processors as the resource to be scheduled [3], [6], [9]-[11], [22], [23], or which
consider the memory resource as a contiguous quantity such that each memory
request may be satisfied by allocating the exact amount requested [8], [19], [20].
Since the problem of finding the optimal schedule for most interesting models of
computation is "polynomial complete" [4], [17], [25], this paper analyzes heuris-
tic algorithms in terms of their worst-case behavior except in the case that an
optimal algorithm is available. The measure of performance in this investigation is
the maximum finishing time ([9], [10], etc.) rather than the mean finishing time
sometimes used 1].

The model of computation being analyzed consists of m identical, indepen-
dent, abstract processors P1, P2,’", P,,. Associated with the jth processor is a
private memory with fixed size denoted by IP.I. Each memory is private in the
sense that information contained in the jth memory is accessible only by P. The
memory sizes are fixed since IPll, IP,,I remain constant throughout the
execution of a task set. For convenience, we will index the processors so that
le,-I--> le,-/al. The task set, J, consists of n tasks, {J1, J2, Jn}, where the ith task,
J: (mi, ti), specifies both a memory requirement, mi, and a time requirement, ti.
An important scheduling parameter is the number of processors which can
execute a given task under the memory constraint. For the ith task the number of
such processors will be denoted by n. The tasks in J are partially ordered by a
precedence relation, <. This relation is interpreted to mean that if J < J,, then Jk
cannot begin in any valid schedule before J has completed. In this case J is called
a predecessor of Jk. If the precedence relation is empty, the tasks are considered to
be mutually independent. An example of a task set is shown in Fig. 1.1.

* Received by the editors February 13, 1975, and in final revised form February 24, 1976.
t Computer Science Department, Iowa State University, Ames, Iowa 50011
Computer Science Department, Purdue University, West Lafayette, Indiana 47907

167

168 D. G. KAFURA AND V. Y. SHEN

Task set Precedence relation

FIG. 1.1. Example ofa task setandprecedence relation

Based on J a task list, L, is formed. L is a permutation (renumbering) of the
tasks in J, Jh, =," ",,. The scheduling of task proceeds as follows: whenever P
becomes idle, it instantaneously scans the tasks list from left to right until it finds
the first task, Ji, such that IP.[>_-mi (the task can be contained in P.’s private
memory) and all of the predecessors of J are completed. J is then removed from L
and begins executing on P. If two or more precessors become available simultane-
ously we use the "tie-breaking" rule which allows the processor with the smallest
index (largest memory) to proceed first. Figure-l.2 shows a task list and the
resulting schedule using the task set described in Fig. 1.1. A schedule is pictured as
a two-dimensional Gantt chart. The size of each memory will be indicated as in

30 J2 J4 Js

20 Jl J3[
10 J

Fig. 1.2.

J7

5 6 8 10 11 14

L (Je, Ji, J4, Js, J3, J7, J(,, J8)

FIG. 1.2. A sample schedule

The maximum finishing time (final completion time) used as a performance
measure is considered equivalent to a measure to processor utilization. The
schedule in Fig. 1.2 has a final completion time of 14. An optimal schedule is one
having the minimum final completion time among all possible valid schedules.
Figure 1.3 shows the task list which produces an optimal schedule for the task set
presented in Fig. 1.1. Since a task list defines the resulting schedule, these two
terms will be used interchangeably.

30

20

10

Ji J3 Js

J8

L (J4, Jl, J2, J3, J5, J6, JT, J)

FIG. 1.3. An optimalschedule

It may be more intuitively appealing to use the reverse rule that allows the processor with the
largest index to proceed first. However, the worst case results developed in this paper are independent
of the tie-breaking rule.

3 5 6 8 12

TASK SCHEDULING 169

It should be observed that, for a nonpreemptive scheduling strategy, this
model subsumes as a special case the model considered in 1]. Thus, the problem
of finding an optimal nonpreemptive strategy for this model is polynomial
complete.

The model may be interpreted in three ways. First, we may consider a
network of minicomputers (uniprocessors) composed of processors with identical
capabilities, but where the private memories associated with the processors may
be of different sizes. The idea of a network of small computers collaborating to
produce the computing power of a single, large machine has recently gained some
attention [5], [13], [26]. The network approach offers advantages in terms of
reliability and flexibility over a single machine and also makes possible an
incremental acquisition of computing power. The second interpretation of the
model is of a partitioned memory operating system such as the IBM 360-OS/MFT
[12] or SINGER 10. In these cases, the private memories correspond to fixed
memory partitions and the processors to the degree of multiprogramming which is
supported. Although such systems may not be in the mainstream of operating
system development, there are environments which do not require sophisticated
operating system features, and for which a partitioned memory operating system
represents adequate support with reduced overhead. The third interpretation is a
combinatorial problem related to bin-packing [15]. The problem may be viewed
as one of packing a number of two-dimensional objects into a fixed number of
unequal-size bins. The questions for various packing rules is: how long must the
longest bin be in order to accommodate all the objects.

Section 2 of this paper analyzes several basic scheduling algorithms by
deriving worst-case bounds on their performance as compared to the optimal. The
bounds are shown to be the best possible by exhibiting general examples that
achieve these bounds in the limit. Section 3 considers two more sophisticated
strategies for obtaining improved performance over the basic strategies discussed
in 2. Section 4 shows an efficient, optimal preemptive strategy for mutually
independent tasks. Finally, in 5, a summary of simulation studies is presented.
These results suggest that the worst-case bounds are good indicators of the
average performance of scheduling strategies.

2. Analysis of basic scheduling heuristics. The investigation of this model
begins with an analysis of an arbitrary demand scheduling strategy. Such a strategy
constructs task lists, hence schedules, from an arbitrary (random) ordering of the
task set. The worst-case bound for the arbitrary demand strategy bounds all other
strategies since the arbitrary task list ordering can be chosen to be the same
ordering produced by any other strategy.

If Tos represents the final completion time of an arbitrary demand schedule,
the following theorem establishes a bound on the ratio between Tos and the
length of the optimal schedule, TMIN.

THEOREM 2.1.

(2.1)

Proof.
(2.2)

TDS/ TMIN <---- m.

TDS <---- ti <- rn TMIN.
i=1

170 D.G. KAFURA AND V. Y. SHEN

The left inequality is true since at least one processor must be active at every time
during the schedule. The right inequality holds since the total time available in the
optimal schedule must be large enough to contain the total time in J.

The bound of Theorem 2.1 can be reached by the following general task set:

IP, I- 2,

J*" (2, e),

Ji, (1, 1),

J,,,: (1, e),

[Pi] l for2-<i=<m,

1 =<i =<m,
1 <-<_i <=m,

l<=i<=m, 2<=j<-m.

The task execution sequence is constrained by the precedence relation"

J <Ji,j, l <=i <=m, 2 <=j <=m.

The worst-case schedule is obtained from the task list:

L (Jl,1, J1,2,""", Jl,m, J2,1, Jm,m, Jl,’’’, Jm).

In the worst-case schedule the 2m tasks, J* , J*,,, Jl,m, Jm,m, are all
executed by P, finishing at time m + me. The optimal schedule results from the
task list:

In this schedule tasks J*, , J*m are executed by P1 in sequence overlapping the
execution of the block of tasks, Jl,1, Jl,m-1, Jm,m-1. Finally, the unit time
tasks are executed in parallel finishing at time 1 + me. As e -* 0 the ratio of these
finishing times is m.

The fact that Theorem 2.1 is best possible depends heavily on the use of
precedence constraints to delay the scheduling of tasks until a single, assigned
resource becomes available. The impact of the precedence constraints is revealed
by the next theorem which analyzes an arbitrary demand strategy for mutually
independent tasks (the precedence relation is empty).

Because of the scarcity of known results involving precedence constraints
(together with arbitrary task times and an arbitrary number of processors) the
assumption of mutually independent tasks will be used throughout the remainder
of this paper.

THEOREM 2.2. For mutually independent tasks,

(2.3) TDs/ TMIN __--</’/+ 1 + --< 1 + log2 (m),

where n and are chosen so thatm 2 + and < 2. This bound is the bestpossible.
Proof. The proof is by contradiction. Assume for a given system there exists a

list of tasks whose demand schedule has length TDS > (n + 1 + i/2) TMN where
m 2" + i. We shall analyze the structure of such a schedule and derive several
conditions that must be satisfied by the given tasks.

The demand schedule is divided from right-to-left into n + 2 intervals
{dl, d2," dn+2}. Each of thefirst n + 1 intervals has length TMIN, covering the
time period [TDs-- (n + 1)TMIN, TDS] in the schedule. The ith interval is the half

TASK SCHEDULING 171

open time period [TDs--iTMIN, TDs--(i-- 1)Trar). The final interval, dn+2, covers
the time period [0, TDS-- (n + 1)TMIN). With the ith task we have associated the
label, nj, which is the number of memories into which the task will fit.

The following notations are used in the proof:
ai is the number of processors containing no idle time in the interval di;
x is the largest label of any task beginning in the interval di;
T is the total task time in the closed interval [TDs--iTMIN, TDS].

Three relations apply to the interval dl"

(2.4) a ->_ 1,

(2.5) T1 TMIN,

and

(2.6) xl->l.
Relation (2.4) is true since every interval must have at least one processor which is
continuously active. This also implies (2.5) since the length of d is TMN. Since no
task can have length greater than TMN, at least one task begins in all. Relation
(2.6) follows immediately, as no task has label less than 1.

We now derive three recursive formulas defining ai, T, and x for 2-< _-<
n + 1. The first of these is:

(2.7) aixi_1.

This can be seen since, if there is some task in the interval d-i which can fit into the
x-i largest memories then the corresponding processors cannot be idle prior to
the beginning of the task. In particular, these processors cannot be idle during the
interval d.

The second formula follows immediately from the definitions of a and T"
(2.8) Ti >= Ti- + aiTri.
By expansion,

(2.9) Ti >= aiT+ ai_aT+. + alT,

or

(2.10) T >_- TMIN

_
8j

=1

which is an expression to be used in proving the third formula.
Also needed in proving the third formula is the inequality:

(2.11) xi>=x_.

If this inequality did not hold, there would exist a task in d_ which could fit into
some memory which no task beginning in di could fit into. This would imply that
the given task could have begun earlier, violating the demand scheduling princi2
pie. This shows that the inequality must hold in any valid schedule.

Consider the interval [TDs--iTMIN, Trs]. By definition there are T units of
task time contained in that interval. Inequality (2.11) implies that the largest

172 o.G. KAFURA AND V. Y. SHEN

number of memories which can contain the tasks in this interval is xi. By the
definition of TMN we must have:

(2.12) 7=> Ti/x,,

or

(2.13) x, >-_ TJTM,.
Substituting from (2.10), we finally obtain

(2.14)

us we obtain the third formula:

(2.15)
j=l

We thus have three recursive formulas given by (2.7), (2.8) and (2.15) with
the initial conditions given by (2.4)-(2.6). It is easy to show by induction that
formulas (2.7), (2.8) and (2.15) yield the following:

(2.16) ai 2i-2,

(2.17) xi 2i-,
and

(2. 8) 2’-r.
Now, in the large interval [Tin- (n + 1)T, Tos], Tn+ total task time has

been used. By the induction proof above, T,+ 2"Tn. is leaves at most

iT task time to be used in d,+2, since the total task time cannot exceed
mTi (2" + i)T. In the interval d,+ there begins a task with label at least 2",
since x,+2". Thus, in the interval d,+; at least 2" processors contain no idle
time. is implies that the length of the interval d,+2 is at most iT/2". Since
each of the other n + 1 intervals is at length Twe obtain

(2. 9) r.s (n + 1)r+ir,/2.
is contradicts our original assumption that the length of the demand schedule
exceeded the length (n + 1 + i/2")T. Hence, the original assumption is incor-
rect and the first part of the theorem is established.
e second inequality,

(2.20) n + 1+N 1 + log2 (m),

may be shown directly by mathematical analysis. It is of interest to know that the
function n + 1 + i/2" is a piecewise linear function lying below the curve 1 +
log,(m) and touching it at those points where m 2" for some integer n.

As with the preceding theorem we would like to demonstrate that the bound
of eorem 2.2 is best possible by exhibiting a method for constructing task sets
which achieve this bound at arbitrary values of m. The construction of this family

TASK SCHEDULING 173

of examples is directly related to the analysis of the scheduling strategies consi-
dered in Theorem 2.3. Therefore, the examples reaching the bound of Theorem
2.2 are contained in the proof of Theorem 2.3.

A comparison of Theorems 2.1 and 2.2 reveals that while the assumption of
mutual independence improves the worst-case performance, both bounds
increase without limit as m increases. This means that the guaranteed perfor-
mance level continues to decline as the number of processors increases. Even for a
fixed number of processors these bounds compare unfavorably with the bounds
derived for related models [9], [19].

One natural method to obtain improved performance over the arbitrary
demand strategy is to adopt a heuristic rule for ordering the task list. Such a
heuristic attempts to place the most critical tasks at the beginning of the task list
(assign them higher priority). We will analyze four basic heuristics. They are:

msmallest time first (STF)
msmallest memory first (SMF)
largest time first (LTF)
mlargest memory first (LMF)

In previous work, the smallest-first strategies usually lead to desirable mean-
finishing time properties while the largest-first strategies possess better final
completion time properties. The simplicity of these heuristics guarantees that they
are easy to implement, possible to analyze and modest in the time required to
produce a task list (schedule).

The next theorem analyzes the smallest-first strategies and also contains the
examples illustrating the teachability of Theorem 2.2.

THEOREM 2.3.

(2.21) TSTF/TMINj=n + 1 +i/2" --< 1 + logz(m),

where m 2" + and < 2nforintegers n and i, and th& is the bestpossible bound.
Proof. The two functions have already been shown to be upper bounds by

Theorem 2.2. The analysis to show how these bounds can be achieved is divided
into three cases. Case 1 demonstrates that the bound 1 + logz(m) can be reached
when m 2 and 0. This case establishes the important characteristic of the
smallest-first strategies. Case 2 demonstrates that the bound of n + 1 + i/2 is
achieved when m 2" and 2k for some integer k. Finally, Case 3 demonstrates
that when > 0 but not a power of 2, a lower bound "close" to n + 1 + i/2" is at
least obtainable.

Only the first of these cases is presented here. The other two cases may be
found in [16]. In each of the following examples it is assumed that the memory
sizes are distinct (i.e., IPal > IP21 >"" > IPm I). 2

Case 1. m 2" and 0. Consider the task set {J1, J2,""", J,,} where the
resource requirement of J is (]P,,-i+ll, 1), for l=<i=<m. The ordering L
(Ja, J2,""", J,,) is easily seen to be both an SMF and an STF ordering. At the

2 The example presented here was suggested by Garey [7], and relies on the tie-breaking rule
stated in 1. A more elaborate example using the reverse tie-breaking rule was presented in [16].

174 D.G. KAFURA AND V. Y. SHEN

beginning of the schedule P selects J for execution, P2 selects J2, and, in general,
Pk selects Jk. When k m/2, Pk can execute Jk since:

(2.22) mk IPm-k+i IPm/2+11 < IP,,,/zI IPk I"
However, when k >= m/2 + 1, we find that:

(2.23) mk IP-+,I >----IP-(/2+1)-11--> IPm/21 > IPm/2+ll >= IPl-
This means that the m/2 processors Pm/2/I,’’’, Pm remain idle. The interval
[0, 1), then, only contains m/2 2"-1 active processors.

The ordering of tasks in L forces the processors with the largest memory
capacity to select from the remaining tasks those with the smallest memory
requirement. This causes a progressive halving of the number of active processors
as shown in Fig. 2.1. Thus, the interval [k-1, k) contains only 2"-k processors
which are not idle. When k n, there is a single active processor. At the end of this
interval the total number of completed tasks is:

(2.24) 2"-k= 2g=2"-l=m-1.
k=l k=0

The single remaining task, Jm, has a memory requirement of IPll. This task
executes alone during the interval In, n / 1). The final completion time of the
SMF-STF schedule is then n + 1.

An optimal schedule of length 1 can be formed by executing all m tasks in
parallel, task Jk scheduled on processor Pm-k/. The ratio of these completion
times is n + 1 1 + lOgE(m).

Cases 2 and 3. See [16].
The next heuristic to be considered is the largest-time-first strategy (LTF).

Although a tight bound is not yet known, the following theorem shows that it must
contain a logarithmic factor that increases as m increases.

THEOREM 2.4. A lower limit on the worst-case bound of LTF is 3

lln(m).(2.25) max
TMIN --i= 7

2n-1

1 2

FIG. 2.1. General Case schedule

n+l

a iightly worse examples are known for this strategy [7]. We chose this example for simplicity.

TASK SCHEDULING 175

Proof. Because a lower limit is being proven, a method will be given which
achieves the bound for arbitrary m.

The general example consists of m groups of tasks. All tasks within a group
are identical. In the LTF task list (and in the resulting schedule) all tasks in group
k + 1 preceed those in group k. The total time required for group k will be 1 and
the memory requirement of each task will be IPk I- Thus, each task in group k can
only fit into k memories. The number of tasks in group k is contrived so that the
tasks in group k contributes a solid block to the schedule of length 1/k. The final
schedule length will then be i=1 1/i. Finally, it will be shown that an optimal
schedule of length 1 can be formed. The example, then, reaches the bound given in
the theorem statement. In general, the group m- k, 0_-<k _-<m- 1, consists of
2k (m k) tasks each with a memory requirement of levi and a time requirement of
1/(2k (m k)). The m tasks in group m all terminate at the same time. In an
inductive-like manner let us assume that the final k + 1 tasks in group k + 1
terminate at the same time. Hence, the k processors capable of executing the tasks
in group k begin executing these tasks simultaneously. All tasks in group k are of
the same length and by definition their number is divisible by k. Thus, each of the
k active processors will execute the same number of tasks and finish at the same
time. Group k then contributes 1/k to the schedule length. The appearance o the
general schedule for these tasks is given in Fig. 2.2.

The total schedule length is then k--1 1/k. By construction, if processor Pk
executed only tasks in group k, then all processors would terminate at time 1. This
is the optimal schedule. The bound produced by this example is the bound given in
the theorem.

The final heuristic to be considered is the largest-memory-first strategy
(LMF). The next theorem establishes a well-behaved bound for this strategy.

THEOREM 2.5.

(2.26) TLMvlT,N <- 2 1/m.

Proof. The proof is by contradiction. Assume that there exists a counterex-
ample to the theorem. Let J be the longest task in the counterexample schedule

group
m-1

group
m-2

group 1

m m-1 m-2

FIG. 2.2. General LTFschedule

176 D.G. KAFURA AND V. Y. SHEN

to finish at time TLMv. Let r be the number of memories which can contain Jk. Due
to the LMF ordering the tasks J/of 1 =< -< k- 1 all have memory requirements
at least as large as Jk. These tasks must be scheduled in the r largest memories
prior to Jk such that none of Pa, , Pr become idle prior to the beginning of Jk.
This implies"

k-1

(2.27) TLMF -’i ti .31_ tk"

The k tasks with largest-memory requirements are constrained to be scheduled
only on the r largest memories in any schedule. The optimal schedule for the
entire task set is, then, at least as long as the optimal schedule for the k tasks using
only the largest r memories. So

(2.28) TMIN => 6.
Combining (2.27) and (2.28) with the contradictory hypothesis and rearranging,
we have

ti+tk(l_l/r)
(2.29) 1 r

2
m "MIN

which simplifies to

(2.30) TMIN(1 1/m)<6(1- 1/r).

Since r -< m, this last line implies that TMIN < tk, which is a contradiction. Theorem
2.5 represents the best possible bound on the LMF strategy as shown by the
following general task set:

/,.:(IP,.I, 1), l <-_i <=m-1, l <-j <-m,

1": (IPml- , m).

The LMF task list is given by:

L (Jl,1, J1,2, ", J,,,,, J2,1, J2,2, ", J2,m," ", Jm-l,m, J*).

In the LMF schedules the first m(m- 1) tasks form a solid block ending at time:
m 1. Task J*, of length m, then completes at time TLMF 2m 1. In the optimal
schedule task J* begins at time 0 and the remaining m (m 1) tasks are distributed
among the other m- 1 processors. All processors finish at time TMIN--mo SO
TLMF/TMIN (2m 1)/m 2-- 1/m.

3. Analysis o[improved scheduling strategies. This section presents the
analysis of two scheduling algorithms which attempt to improve on the LMF
bound by expending more time in constructing the task ordering.

Consider two tasks, Ji and Jk with ni nk. Given a choice between these two
tasks, past results in similar models [9], [19] suggest that the task with the larger
time requirement should be scheduled earlier in order to reduce the final
completion time.

TASK SCHEDULING 177

An LMTF-ordered task list is defined by the following principle: task
preceeds task Jk if: (i) ni < nk or (ii) ni nk and ti

The analysis of the LMTF strategy is presented in two parts. The first part
develops the bound for m -> 3.

THEOREM 3.1. For m >- 3,

TLMTF/TMIN < 2 1 /(m 1).

Proof. Renumber the tasks in J so that (J1, J2, ",Jn) is an LMTF ordering.
Let Jk be the longest task to finish at time TLMT- Define r nk. Consider the
truncated task list (J, J2, ", Jk). Let T[.MTF denote the completion time of this
truncated list on P1, P2,""", Pr, and let TIN denote the corresponding optimal
completion time. Clearly, T[MTF TLMTF. By the definition of an LMTF order,
n >--nk, for <k. Thus, Ja,..., Jk can only be executed by Pa,..-, Pr. This
implies that TIN <- TMIN- The conclusion of this argument is that

(3.2)

The analaysis, then, need only be concerned with the truncated task list and
P,,.-. ,Pr.

Now let y be the time in the LMTF schedule at which Jk begins. Since

mk -<- IP, I, no processor can become idle prior to the beginning of Jk. In addition,
the scheduling algorithm requires that all tasks executing on Pr have at least as
long a time requirement as Jk. Thus, the total task time on Pr is at least tk. Figure
3.1 illustrates the form of the LMTF schedule using these facts.

By examining the total task time we find

k

(3.3) (r 1)y + 2tk <---- Y, t <= rTIN.
i=1

Rearranging terms yields the following definition for y"

(3.4) y

By the definition of y it is also true that"

(3.5) TMTF< y + tk.
L,

P

Jk

-. tk

FIG. 3.1. Generalform ofthe LMTF schedule

178 D.G. KAFURA AND V. Y. SHEN

Substituting for y produces"

rTiN- 2tk rThN+ (r- 3)tk(3.6) +t,
r-1 r-1

The ease r 2 is covered in Theorem 3.2. Assume r ->_ 3. Since t -< TIwe obtain

(3.7) rT+(r 3) 1
TLMTF<

Finally, since m -> r this last line becomes

(3.8) TLM/Th, <2 1/(m 1)

e general task set which illustrates that the bound of eorem 3.1 is the best
possible is defined by:. (ip_],),m2 1 < <m 2,

IP - l,
(m

m 1 N N 2(m 2),

"(P], 1), 2(m 2) + 1 N N 2(m 2) + 2.

Clearly, the task list (J, J,..., J_) is an LMTF ordering. e schedule
resulting from this task list is shown in Fig. 3.2. e corresponding optimal
schedule is given in Fig. 3.3. e ratio of the completion times of these two
schedules is the value predicted by Theorem 3.1.
e situation for the LMTF strategy is slightly different when there are only

two processors (m 2). is also covers the case of r 2 for the previous theorem.
THEOREM 3.2. For m 2,

(3.9) TF/TN5/4

PI

m -2 2m -3

J1

J2

J,,,

J21,,,--21+

J2(m- 2) -2

FIG. 3.2. Worst-case schedule illustrating Theorem 3.1

el

TASK SCHEDULING 179

J1 J(m-2)+l

Jim -2)+2

J2(m -2)+

J2(m -2)+2

FIG. 3.3. Optimalschedule illustrating Theorem 3.1

and them exist task sets which realize this bound.
Proof. See [16].
The LMTF performance bound is not significantly better than that of LMF

itself. Another possible technique for achieving such improved performance,
called a two-dimensional strategy, is suggested by previous research results [14],
[19], [20]. In general, such a strategy iteratively selects a final completion time
and, by means of a placement policy, attempts to construct a schedule completing
at the chosen time. Improved performance can be achieved if the placement policy
is effective and the iteration scheme tends toward minimal-length schedules.

In the two-dimensional strategy considered below the placement policy will
be used which selects tasks from an LMF ordering and assigns the next task to the
processor with the largest available memory such that the task’s finishing time
does not.exceed the current schedule completion time. More formally, assuming
that the tasks are in LMF order and the current schedule length is T, the placement
policy is defined as:

Step 1. Set 1; set T1 T2 ,= Tm= O.
Step 2. Let j be the smallest integer such that T + ti --< T and mi _-< IP I. If such

a] exists then proceed to Step 3; otherwise, indicate failure.
Step 3. Set T. T + ti; set + 1;
Step 4. If _-< n, then return to Step 2; otherwise indicate success.

The iteration scheme to be analyzed is an incremental method (INC). In this
method, u is defined as the greatest common divisor of all tasks in the system.
Beginning with a lower bound, Lo, on the optimal schedule length, the target final
completion time is successively incremented by u until the placement policy is
successful in creating a schedule.

An example of this strategy is seen by examining the task set and system
described in Fig. 3.4. If the incremental method chooses L0 9(= Y’. t/m) and
u 1, then it will successively try schedules of lengths 9 and 10 before succeeding
at Tirc 10. This compares to TMxN 9 and TItF 12.

!80 D.G. KAFURA AND V. Y. SHEN

Task set
Jl: (30, 1) J4: (10, 5)
J2: (10, 4) J5: (10, 5)
J3: (10,4) J6: (5, 8)
Processing.system: m 3, IPll 30, IN21; 20, IP l- 10.

FIG. 3.4. A task setandsystem

The final schedules produced by the two-dimensional algorithm may violate
the demand principle since tasks are assigned to each processor regardless of the
earlier availability of another processor, so long as the total schedule length is not
exceeded. However, the demand principle may be satisfied by allowing some tasks
to start earlier in previously idle periods. The result of this rearrangement is a valid
schedule with length no longer than the final schedule produced by the algorithm.

Formally, the INC algorithm is stated as:
Step 1o Order the task list on a largest-memory-first basis. Set u equal to the

maximum divisor of the ti’s.
Step 2. Select an optimistic value for the final completion time

TINC max max (ti), . ti/m, miti/
i=1 i=1

where M is the total available memory.
Step 3. Apply the placement policy to a schedule of length TNC. If this

succeeds then stop, otherwise set TNC TNC+ U and repeat Step 2.
The optimistic value chosen as the initial value for TINC is actually a lower bound
on the optimal schedule length. This lower bound is the smallest integer greater
than the maximum of three quantities. ese three quantities correspond to the
length of the longest single task, the completion time if all processors are busy all
the time, and the completion time if all the memory is used all the time. e
optimal schedule cannot be shorter than the maximum of these three quantities.
Analysis of this algorithm shows that it also produces only a slight improvement
over the LMF strategy.

THEOREM 3.3.

(3.10) Tiyc/TiyN2-2/(m + 1).

Proof. For task set J suppose the INC algorithm stops with final completion
time TNc. If the algorithm succeeded in placing all the tasks on its first attempt,
then the schedule is optimal. However, if several iterations were required to
produce the final schedule, then consider the partial schedule, S, formed by the
algorithm when attempting a completion time of TNC- U. Let J, J2, Jk-1 be
successfully placed in S and Jk be the first task which cannot be placed using this
estimate for the schedule length. Define r as the number of memories which can
contain Jk. Since an LMF task list is being used, tasks J, , Jk can only be placed
on P, , P in any schedule. Thus, if TIIN represents the optimal schedule for
Ja, ", Jk on Pa, , P, then it follows that

(3.11) TINC/TMIN -< TINC/TIIN.

TASK SCHEDULING 181

The analysis, then, will only consider the case of the first k tasks and the first r
processors.

Define T, 1 <= <= r, as the time in S when Pi becomes idle. The operation of
the algorithm requires that for 1 =< i, j <- r and # j:

(3.12) T + V] > TINC U.

If this were not true then for some and j the algorithm would have successfully
scheduled all tasks contributing to T on Pi, which is a contradiction. In addition,
since Jk cannot be placed in S, it follows that for 1 _-< _-< r:

(3.13) T + tk > TNC--U.
By the definition of u, these last two conditions are equivalent to:

T/+ T/. > TINC(3.14)

and

(3.15) Ti-Jr-tk TINC,

for 1 _-< i,/" _-<r and # j. Equation (3.14) implies that there is at most one Tx,
1 =< x -<- r, such that

(3.16)

Hence, for 1 _-< _-< r and # x,

(3.17)

or

Z < ZINC/2.

T/> TINC/2,

(3.18) T => (r- 1)TINc.
i=1 2

By (3.15) it is apparent that

(3.19) Tx + tk >- TINC.
Examining the total task times reveals

k

(3.20) Y. t, T + (1’ + tk 1.
i=1 i=1

Using (3.18) and (3.19) in (3.20) we conclude that

k

(3.21) Y t>=(r-1)TiNc/2+ Txyc>=(r+ l)TiNc/2.
i=1

ThN > ti/r. Thus,By definition i=1

(3.22) ThN => (r + 1)TiNc/(2r).

Rearranging terms yields

(3.23) TINc/TaIN<--2r/(r+ 1)= 2- 2/(r + 1).

182 D. G. KAFURA AND V. Y. SHEN

Since r _<-m, we finally obtain

(3.24) Tirqcl T,rq <- 2 21 rn + 1).

This bound can be reached for arbitrary m by the following general task set:

" (Ie, I, 1), l<=i<=rn,

Jm+" ([P.,l,m), l<=i<-m.

The final completion time of the schedule produced by INC is 2rn. The optimal
schedule finishes at time m + 1. The ratio of these times is 2-2/(m + 1).

The bounds derived in this section indicate that two more sophisticated
scheduling techniques cannot perform significantly better than the LMF strategy.
It may be conjectured that the inherent complexity of the model precludes such a
possibility.

4. Preemptive scheduling. The results of the previous section indicate that
significantly improved scheduling performance mayonly be possible by enhancing
the basic capability of the model. One standard improvement is the addition of a
preempt-resume feature which allows an executing task to be suspended and
removed from the memory of the processor to which it was assigned. The
processor is then assigned to execute another task from the task list or to resume
some previously preempted task. At some later time the preempted task resumes
its execution on a possibly different processor constrained only by the task’s
memory requirement. It is assumed here, as in [20], [22] and [23], that the
preempt and resume operations are instantaneous and do not affect the computa-
tion performed by the task.

There are several conditions which must be observed in constructing valid
preemptive schedules. First, the total execution time of a task, over all the
processors to which it has been assigned, must satisfy the task’s time requirement.
Second, no two processors can ever simultaneously execute parts of the same task.
Lastly, the demand principle must still be observed. No processor is allowed to
remain idle if there is a task in the task list or in a preempted state which it could
execute. A preemptive, two-dimensional algorithm P2D, is presented for con-
structing such schedules. This algorithm is an extension of [24].

The preemptive capability allows the optimal final completion time for a
given task set to be calculated exactly. This computation requires the following
notation. Let F be the set of all tasks which, because of their memory require-
ments, can only be scheduled on P1, P2, P- Thus, F

_
F2 -----" F,, J. Let

X be the sum of all the task times in F (if F is empty, then X 0).
Using this notation, the P2D algorithm is formally defined by"
Step 1. Order the task list on an LMF basis.
Step 2. Compute the values of F and X, for 1-<i =<m, and set Tx

max/(Xi/i), tmax max/(ti), and T2D max(tmax, Tx). Set] 1.
Step 3. (a) If all tasks have been scheduled, then stop. Otherwise, select the

next task, Jk, from the task list and proceed to Step 3(b).
(b) If the placement of Jk on Pdoes not cause the completion time of

the task to exceed Tp2D, then schedule Jk on P and return to Step
3(a). If Tp2D is exceeded, proceed to Step 3(c).

TASK SCHEDULING 183

(c) Suppose the placement of Jk on P causes ta (of Jk’S total time
requirement, tk) to occur before Te2D and to after TpzD. Schedule
ta of Jk on P and tb on P+I. Increment] by 1 and return to Step
3(a).

An example of the P2D strategy is shown in Fig. 4.1.

Task set

J: (30, 4) J: (20, 1)

z: (20, 4) J6: (20, 2)

J3: (20, 5) J7: (10, 4)

J4: (20, 4)

El= {J} X =4

F: {J, J,""", J6} X2-" 20

F3={J,,J2,’.’,JT} X3 24

Tx max{X/i} max {4, 10, 8}= 10

tma maxi{ti} 5

Tpo max{tmax, Tx} max{5, 10} 10

Schedule

3O

20

10

4 8 10

J3(3)

J2

J4 Js

Fit3. 4.1. Example o’the P2D strategy

To show that the P2D strategy generates valid schedules we need only
examine the placement of tasks as determined by Step 3(c) of the algorithm. Each
task, Jk, is preempted at most once into a portion of length t and one of length
Since Tp2D => tmax :> tk t + tb, we are assured that sufficient processor time has
been allocated to the task and that its two parts do not overlap. The strategy also
guarantees that if some part of Jk is scheduled on P, then mk PI. If this were not
true, then the tasks being in an LMF order, we would have the following
contradiction:

Xk/k > Tp2D >- Tx max (X//i).

Since Tp2D is clearly a lower bound on TMIN, we have the following:
THEOREM 4.1. The P2D strategy is optimal.

184

z

D. G. KAFURA AND V. Y. SHEN
SMF

1 2 3 4 5 6 7 8

m (number of processors)

FIG. 5.1. A sample result

SPF

RANDOM, STF
LTF

LPF, LMF
LMTF
INC

The P2D algorithm is computationally efficient. Step 1 (sorting) can be
performed in the order of n log n steps, where n is the number of tasks (see, for
example, [18]). Once the tasks are sorted in LMF order the computation of the
F’s and the X’s can be performed in the order of n steps. The deterrr,ination of
the processor assignments can also be carried out in the order of n steps. Thus,
O(n log n) steps are required to produce the final schedule.

This algorithm also requires few preemptions to achieve the optimal
schedule. In fact, it never requires more than rn- 1 preemptions, since preemp-
tions occur only at the end of the assignments for the first m- 1 processors.

5. Simulation results. The scheduling strategies considered in 2 and 3
were evaluated by bounding their worst-case performance. This method of
analysis is applicable to systems where a guaranteed level of performance must be
provided. Such systems arise when dealing with critical, real-time events. A
contrasting type of analysis evaluates the performance of a scheduling strategy by
its expected (average, mean) behavior. In systems where there are no critical

TASK SCHEDULING 185

deadlines, the expected performance of a strategy may be a more meaningful
measure than the worst-case bound. Aside from the obvious fact that the
worst-case bound limits the expected performance, the literature contains little
evidence relating these two measures of scheduling performance.

To examine the relationship between expected and worst-case behavior, a
computer program was written that simulated the model of computation and
evaluated the various scheduling strategies by computing the maximum finishing
times for different task sets to determine the expected performance. Results on
the correlation (or lack of) between the two measures should be of value in the
continuing effort to understand the underlying behavior of multiprocessor sys-
tems.

A number of parameters are used to define the simulation experiments.
These parameters describe the processing system (the number of processors, the
size of the private memories) and the characteristics of a randomly generated task
set (number of tasks in the task set, distribution functions governing the selection
of time and memory requirements). Once these parameters are determined a
number of trials (samples) are made. Each trial constructs a random task set
according to the parameters of the experiment. This task set, together with the
processing system defined by the experiment, is presented to each of the seven
scheduling strategies (RANDOM, SMF, STF, LMF, LTF, LMTF and INC) and
the final completion time of each strategy is calculated. In addition, the SPF and
LPF strategies4 are also included for comparison. Since it is impractical to
determine the optimal completion time for an arbtirary task set, an estimate of the
optimal will be used. This estimate is the length of the optimal preemptive
schedule which is efficiently derived by the P2D strategy presented in 4 (see
Theorem 4.1). At the end of each trial, statistics are collected on the ratio of the
completion time of each strategy as compared to the estimated optimal comple-
tion time. As successive trials are performed the mean of each statistic should
converge to the expected completion time ratio of the corresponding strategy for
the given probability distribution on tasks. In order to determine the number of
trials which must be made to obtain meaningful results a 95 percent confidence
interval is calculated for each statistic according to the method described in [21].
In statistical terms this means that the probability of the true means of the statistic
(i.e., the expected performance of the strategy) lying within the calculated
confidence interval is 0.95. Two strategies will be ranked according to their
computed mean performance only when their respective 9 percent confidence
intervals are nonoverlapping. In case the confidence intervals do overlap the
strategies will be considered identical.

A sample result of the simulation experiments is shown in Fig. 5.1. The tasks
in this experiment were generated by selecting the time requirement from a
uniform distribution in the range [0, 100] and the memory requirements from a
uniform distribution in the range [25, 25 + 5(m 1)]. The processor memory size
for processor P was set at 25 + 5(m i). In each trial the task set consisted of 50

4 Smallest-product- or largest-product-first strategies use the product of time and memory
requirements to order the task list for additional information. It has been shown 16] that the bounds of
the LPF and SPF strategies also approximate that of Theorem 2.2.

186 D.G. KAFURA AND V. Y. SHEN

tasks. Figure 5.1 shows theaverage ratio between the final completion time and
the estimated optimal value as m, the number of processors, is increased. The
results of this experiment are typical in that other experiments with different
distributions and parameters were not essentially different.

Four conclusions can be drawn from this and other experiments. First,
strategies which have identical worst-case bounds may have significantly different
expected performance. This is illustrated by the four strategies SMF, STF, SPF,
and RANDOM. Second, strategies with distinct, though close, bounds may
possess expected performances which are indistinguishable by simulation tech-
niques. Such is the case of the LMTF and INC strategies. It is not until m 6
that their confidence intervals become separated. At m 5 the differences in their
worst-case bound is less than 4 percent. So, it is not surprising that their expected
performance should be so close as to be beyond the practical resolution of simple
simulation methods. Third, the improved strategies presented in 3 (LMTF and
INC) display very good performance characteristics. For the experiments shown
in Fig. 5.1 the average difference between these strategies and the estimated
optimal is approximately 6 percent. It should be remembered that the estimated
optimal is a lower bound on the true optimal. Thus, the strategies may actually
pertorm better than indicated. Fourth, and finally, or the parameter used in these
experiments, there is perfect agreement between the ranking by expected per-
formance and worst-case performance.

The last conclusion may be due only to a fortunate choice of parameters
defining the experiment. Different parameters are used in other tests, some with
task sets whose resource requirements are not uniformly distributed. The results
are reported in detail in [16].

Three observations are made as a result of these experiments. First, the
worst-case rankings are not exact indicators of rankings by expected performance
under all circumstances. The LPF strategy, in particular, has consistently shown
that it can perform better in an expected performance sense than would be
predicted by its worst-case bound. Second, the rankings show general stability
under a variety of assumptions, consistency with the results of simpler models and
considerable agreement with the worst-case rankings. This evidence supports the
conjecture that the ranking of strategies by worst-case performance is highly
correlated to the ranking by expected performance. Third, two strategies (INC
and LMTF) display very desirable expected performance figures in all of the cases
considered.

REFERENCES

[1] J. BRUNO, E. G. COFFMAN, JR. AND R. SETHI, Scheduling independent tasks to reduce mean
finishing time, Comm. ACM, 17 (1974), pp. 382-387.

[2] E. G. COrFMAN, JR., A survey of mathematical results in flow-time scheduling for computer
systems, Lecture Notes in Computer Science, Vol. 1, A. Goos and J. Hartmanis, eds.,
Springer-Verlag, New York, pp. 25-46.

[3] E. G. COIFMAN, Jl. AND R. L. GRAHAM, Optimal scheduling]’or two processor systems, Acta
Informat., (1972), pp. 200-213.

[4] S. A. COOK, The complexity o]’ theorem proving procedures, 3rd ACM Conf. on Theory of
Computing, Shaker Heights, Ohio, May 1970, pp. 151-158.

TASK SCHEDULING 187

[5] D. J. FARBER, Networks: Introduction, Datamation, 18 (1972), No. 4, pp. 36-39.
[6] M. FuJII, T. KASAMI AND K. NINOMIYA, Optimal sequencing of two equivalent processors,

SIAM J. Appl. Math., 17 (1969), pp. 784-789.
[7] M. R. GAREY, Private communication, Nov. 1974.
[8] M. R. GAREY AND R. L. GRAHAM, Bounds on scheduling with limited resources, 4th Symp. on

Operating System Principles, Yorktown Heights, N.Y., Oct. 1973, pp. 104-111.
[9] R. L. GRAHAM,Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969),

pp. 416-429.
[10], Bounds on multiprocessing anomalies and related packing algorithms, Spring Joint

Computer Conf., Atlantic City, N.J., 1972, pp. 205-217.
11] T. C. Hu, Parallel sequencing and assembly line problems, Operations Res., 9 (1961), pp. 841-

848.
[12] IBM, System/360 Operating System MFTGuide, International Business Machines, Poughkeep-

sie, N.Y. GC27-6939-10, 1972.
13] E. C. JOSEPH, Innovations in heterogeneous and homogeneous distributed-]:unction architectures,

Computer, March 1974, pp. 17-24.
[14] D. S. JOHNSON, Fast allocation algorithms, 13th Ann. Symp. on Switching and Automata

Theory, College Park, Md., 1972, pp. 144-154.
[15] D. S. JOHNSON, A. DEMERS, J. D. ULLMAN, M. R. GAREY AND R. L. GRAHAM, Worst-case

performance bounds for simple one-dimensional packing algorithms, this Journal, 3 (1974),
pp. 299-325.

[16] D. G. KAFURA, Analysis o scheduling algorithms for a model o]’ a multiprocessing computer
system, Ph.D. thesis, Purdue Univ., W. Lafayette, Ind., 1974.

[17] R. M. KARP, Reducibility among combinatorial problems, Complexity of Computer Computa-
tions, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972.

[18] D. E. KNUTH, Searching and Sorting, Addison-Wesley, Reading, Mass., 1972.
[19] K. L. KRAUSE, Analysis of computer scheduling with memory constraints, Ph.D. thesis, Purdue

Univ., W. Lafayette, Ind., 1973.
[20] K. L. KRAUSE, V. Y. SHEN AND n. D. SCHWETMAN, Analysis of several task-scheduling

algorithms for a model of multiprogramming computer systems, J. Assoc. Comput. Mach, 22
(1975), pp. 522-550.

[21] E. KREYZIG, Introductory Mathematical Statistics, John Wiley, New York, 1970.
[22] R. R. MUNTZ AND E. G. COFFMAN, JR., Optimal preemptive scheduling on two-processor

systems, IEEE Trans. Computers, C-18 (1969), pp. 1014-1020.
[23] ., Preemptive scheduling o]: real time tasks on multiprocessor systems, J. Assoc. Comput.

Mach., 17 (1970), pp. 324-328.
[24] R. H. ROTHKOPF, Scheduling independent tasks on parallel processors, Management Sci., 12

(1966), pp. 437-447.
[25] J. O. ULLMAN, Polynomial Complete Scheduling Problems, 4th Symp. on Operating System

Principles, Yorktown Heights, N.Y., October 1973, pp. 96-101.
[26] W. A. WULF AND C. G. BELL, C. mmpmA multi-mini-processor, Proc. Fall Joint Computer

Conf., Anaheim, Calif., 1972, pp. 766-778.

SIAM J. COMPUT.
Vol. 6, No. 1, March 1977

ADDITION REQUIREMENTS FOR
RATIONAL FUNCTIONS*

DAVID G. KIRKPATRICKt AND ZVI M. KEDEM$

Abstract. A notion of rank or independence for arbitrary sets of rational functions is developed,
which bounds from below the number of additions and subtractions required of all straight-line
algorithms which compute those functions. This permits a uniform derivation of the best lower bounds
known for a number of familiar sets of rational functions.

The result is proved without the use of substitution arguments. This not only provides an
interesting contrast to standard approaches for arithmetic lower bounds, but also allows the algebraic
setting to be somewhat generalized.

Key words, additions, algorithms, analysis of algorithms, arithmetic complexity, computational
complexity, dimensionality, lower bounds, matrix multiplication, optimality, polynomials, rational
functions

1. Introduction. A central problem in arithmetic complexity is to take some
set of rational functions and determine a lower bound on the number of arithmetic
operations which is sufficient to compute the functions. It is a symptom of our
lack of understanding of the interaction between multiplicative operations (i.e.
multiplication and division) and additive operations (i.e. addition and subtrac-
tion), that this problem is rarely treated in its full generality. Indeed, most research
in arithmetic complexity has focused on one, most often the multiplicative,
operation type.

While there is evidence that multiplication is inherently more difficult than
addition, this does not justify the relative lack of attention paid to additive
complexity. This lack is perhaps most effectively illustrated by the fact that, prior
to the work presented in this paper, there did not exist any general framework for
directly proving a nontrivial lower bound on the additive complexity of the
simplest of expressions, a + a2 +’ + an. While it is this lack which motivates our
study, we emphasize that both our techniques and our results tend to complement
as well as supplemerrt previous work in arithmetic complexity.

We shall first present some basic definitions and a survey of related work.
Section 3 describes the algebraic setting for our work, and introduces our notion
of independence. This notion is developed in the context of multivariate polyno-
mials in 4, and extended to general rational functions in 5. Section 6 contains
applications of our central result to a number of common arithmetic expressions.
Finally, in 7, we mention a few open questions related to our work.

* Received by the editors August 4, 1975, and in revised form April 20, 1976.

" Computing Science Program, Simon Fraser University, Burnaby, British Columbia, Canada
V5A 1S6. This work was done in part at the University of Toronto, with the support of the National
Research Council of Canada. It was completed at Cornell University, Ithaca, New York.

$ Mathematical Sciences Program, University of Texas at Dallas, Richardson, Texas 75080. This
work was done in part at the Massachusetts Institute of Technology. It was supported in part by the
National Science Foundation Grant GP 22796.

188

ADDITION REQUIREMENTS 189

2. Related work. If F is any field and a o_
al, , an is a sequence of distinct

indeterminates over F, then elements of F(a) are called rational functions in
a 1, ", an over F.

Following Winograd [11], we say that 5g is a (rational) algorithm over
(F(a), G), computing g

__
F(a) given G, if:

1. G__ F(a);
2. is a finite sequence of pairs (a l, 1),"’, (at, fit) where either

(a) ai (y) and fli Y, where y G or
(b) ai (o, j, k) where {+, -, , / }, j, k < i, and fli flj fig. Further-

more, if / then fig 0; and

If we restrict 2(b) so that e {+,-, x}, then we say that s is a polynomial
algorithm over (F(a), G).

We will denote by u(sg) the number of additions and subtractions in
In pioneering the area of arithmetic complexity, Ostrowski [10], considered

the problem of determining both additive and multiplicative operation require-
ments for computing a general nth degree polynomial. Using straightforward
substitution techniques, he showed that for polynomial algorithms, n additive
operations are necessary.

Techniques which apply to more general classes of functions are presented by
both Belaga [1] and Winograd [11]. Belaga employs the notion of degrees of
freedom for rational functions in a single indeterminate. The degree of freedom of
such an expression corresponds to the number of algebraically independent
coefficients.

THEOREM A (Belaga [1]). Any algorithm which contains p additions, com-
putes a rational expression with at most p + 1 degrees o[]reedom.

In a sense, Belaga’s result is restricted by a dual theorem due to Motzkin [9]
which relates the same degrees of freedom to multiplicative requirements.
Combining the two, we find that if a function can be computed using k
multiplication/divisions then the best lower bound on additions that can be
obtained by degrees of freedom arguments is about 2k. Degrees of freedom
arguments provide tight bounds for polynomials whose terms are all algebraically
independent, but they can easily fail to do so if this condition is relaxed. For
example, the polynomial a 2x2---ab3x + b requires two additions despite having
algebraically dependent coefficients.

Winograd 11] deals with the computation of functions which are linear in the
indeterminates xl, ",xn. A set of such functions can be expressed as a matrix-
vector multiplication, x, where is a n matrix whose elements are drawn
from some field F, and x denotes the vector (Xl, , xn). Winograd’s theorem can
be stated as

THEOREM B (Winograd [11]). Any algorithm over (F(x), F t_J x) which com-
putes the product x, requires at leastN(dp) t addition/substractions, (where N(dp)
is the column rank of with respect to a rational subfield G F).

Actually, this can be strengthened in the case that F G(yl, ",Yt) and G is
a subfield of the complex numbers. In this case, Theorem B holds for all

F(a) denotes the field extension of F by the indeterminates a 1, , an.

190 DAVID G. KIRKPATRICK AND ZVI M. KEDEM

algorithms over (F(x), FU G(x)), which means that preconditioning of the set x is
not charged. Winograd also has the following unpublished result.

THEOREM C (Winograd [12]). Any polynomial algorithm over (F(x), Fl3x)
which computes the product dpx, requires at least N*(dp)- t addition
(where N*() is the number of nonzero columns in).

Since N*() ->_ N(), this gives a uniformly stronger bound than Theorem B,
at the cost of restricting the class of algorithms.

The principal advantage of Winograd’s framework is that it allows a
straightforward analysis of problems which concern the computation of a family of
expressions. The obvious drawback is that many problems cannot be advantage-
ously expressed in this framework. For example, it appears that Theorem B would
give a lower bound of zero for both the expression xl +" "+ xn and the pair of
expressions, axl- bxa, bXl + ax2 (complex product).2

Morgenstern [7] also deals with the computation of functions which are linear
in the indeterminates x,-.., xn. Restricting his attention to linear algorithms,
(all multiplications are scalar multiplications), he is able to provide an interesting
characterization of the minimum number of additions necessary to compute a
given set of linear forms.

In this paper we present a new complexity measure which has its roots in
linear independence. Unlike earlier measures, our measure applies to arbitrary
multivariate rational functions. The results apply to all rational algorithms.
Furthermore, straightforward applications of our central result generalize both
Theorems B and C.

The measure is a refinement of the notion "rational independence" defined
by Kirkpatrick [6]. The present formulation was influenced by the observations of
Kedem [4] and Morgenstern [8].

3. Algebraic preliminaries. Let D be any integral domain3 and let F be the
quotient field of D. Let a _o a, , an and b __o b, , b,, be sequences of distinct
indeterminates over F. We are interested in finding lower bounds on the number
of additions and subtractions required to compute finite subsets of F(a) using
algorithms over (F(a), D 13 a).

Let N and O denote the natural and rational numbers respectively. Let
A 8N(a,b)={a!.." an"b1’’’ b;mlAi, 6i N}. We make use of the injection

: N(a, b)- Qn+,, defined by

19 extends to subsets X_ N(a, b) by (R)(X) o_ {(R)(X)IX X}. Thus (R) maps a set of
monomials onto a set of vectors in Q"+’. So, if we let pv(S) denote the
vector-rank4 of any finite subset S c Qn/,, then we can define the monomial-rank
(denoted pM) of any subset Xc N(a, b) as pM(X) o__ pv((R)(X)).

The only straightforward adaptations are

(1,... 1) and
a -b

b a

An integral domain is a ring D for which uv 0 u 0 or v 0, for all u, v e D.
The vector-rank of S is just the dimension of the subspace { AisilAi e 0 and si e $} __c 0’*.

ADDITION REQUIREMENTS 191

Two important properties of monomial-rank are summarized in the follow-
ing lemma.

LEMMA 1. Let Y
_
X c_ N(a, b1," ", bk) and e N(a). Then,

(a) p(Y) <- p(X) <- pu(lO + iX -[Y[and
(b) p(XU {ebk+,}) pu(X) + 1.
Proof. These follow by straightforward applications of the definitions.

4. Computing multivariate polynomials. We start by restricting our attention
to the computation of arbitrary elements of D[a],6 using polynomial algorithms
over (F(a)), D U {a}). If R is any ring, let R + denote the set R -{0}.

Let E e D[a, b]+. We define the term set of E,/, by

E --e-{ e N(a, b} and e appears with }.a nonzero coefficient in E
We can now define the expression-rank (denoted p) of a set of expressions
{E,’’’, E,} c D[a] as

pE(E1, Et) o= pM(Elb +... 4-Etbt)- t.

That is, in order to find the expression-rank of a set of expressions one must first
combine the expressions, using new indeterminates, and then find the monomial-
rank of the term set of the resulting expression.

The following simple properties of the expression-rank of a set of expressions
should indicate its potential as a measure of arithmetic complexity.

LEMMA 2. Let El,"’, Ek+l D[a]+ and let HD/U{a}. Then, for all
l<-i,j<-k,

(a) pE(E1, Ek, Ek/l) pE(E1, Ek),
(b) pE(E1, Ek, H)= pE(E1, Ek),
(c) pe(E, Ek, E, Ei)- pv,(E, Ek) and
(d) pE(E1, ,Ek, E;+Ei)p(E1, ,Ek)+ l.
Remark. These statements assert that, (a) expression-rank is not decreased

by the addition of new expressions, (b), (c) the addition of "free" expressions or
products of earlier expressions does not alter the expression-rank, and (d) the
addition of an expression formed by addition/subtraction of earlier expressions
can increase the expression-rank by at most one.

Proof. Let e and e denote a fixed and an arbitrary element of , respec-
tively. Then,

(a) pE(E1, Ek, Ek+l)
o= p(Ebl +’’" +Ek+bk+l)-(k + 1)

-pM(Elbl +’" "+EkbkEk+lbk+l)-(k + 1)

>-pM(Ebl +" "+EkbkU{ek+lbk+l})--(k + 1)

pM(Elbl +" + Ekbk)- k-- pE (E1, Ek).

IX[denotes the cardinality of the set X.
6 D[a] denotes the ring extension of D by the indeterminates al,- ",

Lemma 1 (a)

Lemma 1 (b)

192 DAVID G. KIRKPATRICK AND ZVI M. KEDEM

(b) Since HeD+ U {a},/- contains exactly one element which we denote by
h. Hence,

p(E,..., Ek, H)- pM(Elba +’" .+E,b, +Hbk+a)-(k + 1)

p,(b +... +bU{hb+,})- (+ 1)

pt(Eb +" +Ekbk)-k Lemma l(b)

pF_. (E, Ek).

(C) Since eieibk+l--(eiebk+l)(eibi)(eibi)-(eibi)(ebi)- it follows that

O(Ebt_JEibit..J{eiebk.+}) generates all of O((E x E-)bk+l). Hence,

p(Ebl +’’" + Ekbk (.J (E x Ei)bk+l)
pM(Elb +" + E,bk U {e oie]bk+l}).

Consequently,

p(E, ", Ek, E Ei)
o= pM(Ebl +"" + Ekbk + (Ei X Ei)bk+l)-(k + 1)

pM(EIbl +’" + Ekbk [_J {ei e. bk+a})- (k + 1)

pM(Eb +" +Ekbk)-k Lemma l(b)

=pE(EI, ,Ek).

(d) Since eibk+a (eb,+)(eib)(eb)- and ejbk+ (e.bk+)(e_jbi)(ebj)-’ it
follows that (R)(EbEibi{ebk+a,ebk+a}) generates all of (R)((Ei+/-Ei)bk+).
Hence,

pzvl(Eb +’" +Ekbk [..J (Ei +Ey)bk+)

<-p(Elb +"" +Ekbk LJ{ebk+l, ebk+}).
Consequently,

pE(E1, E, E-4-Ej)
o_ ,(Eb +...+E,,b, +(E,+/-E)b,/)-(+ 1)

pM(Elbl +’" "+Ekbk[..J{ebk+l, e.bk+l})-(k 4- 1)

<-pM(EIbl +’" "+Ekbk)-k + 1 Lemma l(a)
0_9_ PM(EI, Ek)

It is now possible to give a straightforward proof of the following:
THEOREM 1. Letg (o 1, fl), , (at, fl) be any polynomial algorithm over

(F(a), D LJ {a}). Then, ,() >- p.(fla, fit).
Remark. This asserts that the number of addition/subtractions in a polyno-

mial algorithm is at least the expression-rank of the set of expressions
computed by

ADDITION REQUIREMENTS 193

Proof (by induction on t).
(t-1) In this case/31 D/U{a}, and hence PE(fll) 0. Thus the theorem

holds trivially.
(t-<_s) Assume that the theorem holds for all =<s.
(t- s + 1) Let sO’- (al,/31)," , (as,/3s). It follows from the induction

hypothesis that u(,")
There are three cases to consider:

(i) The tth step introduces a new input. That is,

at=(H) and fit=HD/U{a}.
Then,

p(fl,,..., fl,)= p(fl,,... ,fl) Lemma 2(b)

<= (s’)= ().

(ii) The tth step is a multiplication. That is,

Then,

ozt=(x,i,j) and

p(fl,,’’’ fl, o, (fl
<_ ,,,(,)= ,,,().

(iii) The tth step is an addition/subtraction. That is,

Lemma 2(c)

Then,

ozt= (+, i, j) and /3,=,8i+,8

PE(fll,’’’, fit) -<-Oe(fll,’’’, fis)+ 1 Lemma 2(d)

=< (s’)+; (s).

Hence, the hypothesis holds for s + 1, and by induction the theorem is true for
all >= 1. El

COROLLARY l. If ,f is any polynomial algorithm over (F(a), D U {a}) which
computes the expressions El,’", Ek D[a]+ then ,(s) > pn(E1 Ek)

Proof. If =(cl, fll)," ",(ct, fit), then by the theorem u()
P(fll,""" ,fit). But, by definition {El,’"" ,E}_{fll,’"" ,fit}, so by Lemma
2(a),

P(fll, fit) PE(E1, E,).

5. Computing rational functions. We now remove our earlier restrictions and
consider the computation of arbitrary finite subsets of F(a) /, using general
algorithms over (F(a), D [3 {a}).

Given any rational algorithm, we can construct a polynomial algorithm which
simulates the first by keeping track of the numerator and denominator of every
intermediate expression. The following lemma shows that this can be done
without increasing the number of addition/subtractions.

194 DAVID G. KIRKPATRICK AND ZVI M. KEDEM

LEMMA 3. Let M=(a,fl),..., (at, fit) be any rational algorithm over
(F(a),DU{a}). Then, there exists a polynomial algorithm, s’=(a,fl[), --.,
(at, fl’2,), where v(’) v(M) and]’or all satisfying 1 <-_ <- t, (fl’2i-1/fl.i) fli.

Proof (by induction on t). We shall first make two assumptions concerning the
form 0f /, neither of which affects the generality of our arguments"

(i) We assume that (al,/3) ((1), 1). That is, the first step of introduces
the constant 1.
(ii) We assume that all addition/subtraction steps are of the form (ai,
where ai (+, j, 1) and fli flj + 1, for some j < i.
Given the identity, flj +/- fig ((flJflk) + 1)X fig, it follows that both of these

assumptions can be ensured without modifying the number of
addition/subtractions in an algorithm.

(t= 1) Since (al, ill) ((1), 1) it suffices to make a- (1) and fl
fl=l.

(t =< s) Assume that the theorem holds for all t =<s.
(t= s + 1) Let N (al, ill), , (as, fls) and let N’= (, fl), , (c,, fl,)

satisfy the induction hypothesis. There are four cases to consider:
(i) The tth step iptroduces a constant. That is,

(a,, fl,)= ((H), H) where HD+U{}.
Then, let (a’2,-,/-a) ((H), H) and (a’2,,/3.,) ((1), 1)

(ii) The tth step is a multiplication. That is,

(a,, fl,)= ((x, i, j), fli x fl).
Then, let (air-l, Jt--l)
((x, 2i, 2j), flix

(iii) The tth step is a division. That is,

and (c,, fl’2,)=

(cq, fl,)= ((/, i, j),

Then let (a’2t--1, flt-,)= ((x, 2i- 1, 2j), i--1 X

((x, 2i, 2/’- 1) fl,x fl’2/-1)"
(iv) The tth step is an addition/subtraction. That is,

and (a ,, fl,)

(a,, fl,)= ((+, i, 1), 18, + 1).

Then, let (a2,-1 /3,-1)= ((+, 2i- 1 2i),/3’2i- +/3i) and (a’
((x, 2i, 1), fl,x 1).

In all cases let s’= N’, (c’2,-1, fl,-1), (c ,, fl,). It follows from our construc-
tion that v(a’)= v(sg), and (fl,_l/fl)=fl,. Hence, the hypothesis holds for

s + 1, and by induction the lemma holds for all -> 1. 1-1
COROL.ARY 2. Leta= (G1,/31)," , (G,,/3,) be any rational algorithm over

(F(), D U {}), and suppose AJB, where A, B D[]+ are relatively prime.
Then, there exist polynomials C,. , C, e D[]+ and a polynomial algorithm sg’,
over (F(), D U{}), such that v(al’)= v(a) and a’ computes the polynomials
A C1, B C1, A,C,,

Proof. Let ag’ be constructed as in Lemma 3. Then fl’2-1/fl’2 AJBi. But, Ai
and Bi relatively prime implies that, for some C e D[a]+, fl-i AC and

’2 B C, F!

ADDITION REQUIREMENTS 195

As a result of Corollary 2, we are led to ask whether it is possible for the
expression-rank of a sequence of expressions to be decreased through multiplica-
tion by nonzero polynomials. The following two lemmas provide the desired
answer.

Suppose X, Y D[a]+. We denote by . " the set {xylx , y ’}. Note,
XYis contained in but not necessarily equal to X. Y, since some terms may cancel
in the product XY.

If Wc N(a, b), then we define the convex interior of W,

I(W) = {H w- ’l wj W,O_-<Aj<I and YAi=I}.

We call the set V(W) o__ {w WIw: I(W)}, the set of vertices of W. An elementary
result in the study of convex regions (see for example [3]) is that I(W) I(V(W)).

LEMMA 4. If X, Y D[a]/, then V() XY.
Proof. By definition, V(X. Y)_X. Y. Assume X. Y-XY , (other-

wise there is nothing to prove). Let e X. Y-XY, i.e., e is canceled in the
product XY. Since D is an integral domain, there must exist distinct x, x’ X, and
distinct y, y’ Y, such that e xy x’y. Hence,

e (xy’)l/2(x’y)l/2 I(. ").

Thus, e V(X. Y), and in general V(X. Y)_ XY. F1
This technical lemma allows us to give a very simple proof the following"
LEMMA 5. Let X1," , Xt, Y1," ", Yt D[a]+. Then,

p(x Y, x,Y, >-_p(x,, x,).

Proof. Let W=X.Yb, and let V=V(W). Since Vc_Wc_
I(W) U V(W) I(V) U V, it follows that t9(V) generates all of t9(W), and
hence

PM(Vl U’’" U Vt)-- pM(W1 U... U Wt).

But, by Lemma 4, we know that V_XY/bi, and so, by Lemma l(a),
pM(V1 U" U Vt)<-pM(Xl Ylbl +’" "+Xttbt).

Thus, if yi denotes an arbitrary element of Y, we have

pE(X, Y1,’’’, StYt)

pM(X1 Ylbl +’" .+X,Y,b,)-t

pM(V1 U U Vt)- t

=pM(W1 U oU Wt,)-t

o= pM(X Ybl U" U Xt Ytbt)- t

>--pM(Xayabl U" U Xtytbt)-

pM(Xlb +’’" +X,b)-
o_ p(x x,).

Lemma 1 (a)

196 DAVID G. KIRKPATRICK AND ZVI M. KEDEM

Finally, we have
THEOREM 2. Let s be any rational algorithm, over (F(a), D I..J {a}), which

computes the rational functions A1/B1,"" ,Ak/Bk, where Ai, BiD[a]+ are
relatively prime. Then,

u(sg) >=pz(A, B, , Ak, Bk).

Proof. By Corollary 2, we know that there exist polynomials Ca," , C e
D[a]+, and a polynomial algorithm sg’, with u(s’) u(s), such that sg’ computes
A Ca, BICa, , AC, BkC. But,

u(s’) _>--_ pv. (A C, B C1, AkG, B,Ck Corollary 1

Hence,
>= pe (A B1, Ak, Bk

,() >=pz(A,, B,, Ak, B).

Lemma 5

COROLLARY 3. Let be any rational algorithm over (F(a), D LJ {a}), which
computes the rational functions, A,/B,,. , Ak/Bk where Ai, Bi D[a]+ are
relatively prime. Then,

(,";.() >=pv(O(Aab, +Bab2 +" "-k-Akb2k-1 +Bkb2k))-2k.
In the case that the functions to be computed are all multivariate polyno-

mials, the following corollary provides the same bound as Corollary 3, while being
somewhat less cumbersome to apply.

COROLLARY 4. Let sd be any rational algorithm over (F(a), D {a}), which
computes the polynomials’, A 1, ",A Dial+. Then,

v(s) >=Ov((R)(Aba +" +Abk))- k.

Proof. This follows directly from Theorem 2 and the definitions, given the
equality,

pz CA,, 1, A2, 1,..., Ak, 1) oCA,,’", Ak
which was established by Lemma 2(b).

6. Applications. Corollaries 3 and 4 provide straightforward procedures for
reducing the problem of determining addition/subtraction requirements for
arbitrary sets of rational functions to the problem of determining the rank of a set
of vectors in (Y. In this way, we can generate the best lower bounds known, in a
number of cases optimal bounds, for a large number of familiar arithmetic
expressions.7

As before, we let D denote an arbitrary integral domain, and F the quotient
field of D. For the sake of uniformity, let I denote the set of symbols formed from
{a, x, y } by the possible addition of primes or subscripts. I can be thought of as an
arbitrarily large pool of distinct indeterminates, and will take the place of the set

{a} of the preceding development.
Let be any rational algorithm over (F(I), D U I). As before, ,(s) denotes

the number of addition/subtraction steps in s.
A1. If sg computes the expression a + ae +. + a,, then u(s) >= n 1.

Most of these first appeared in [5] or [6]. Others were given in [4].

ADDITION REQUIREMENTS 197

Proof. We know, by Corollary 4, that

,(s) >-_ pv(iO((al +"" + an)bl))- 1.

But, it is easy to verify that the vectors in (R)((a +. + an)b1) are all independent,
over O, and hence pv(19((al +’" + a)bl))= n.

More generally, we have
A2. If sd computes the expression

al+a2+" "+an
an+ + an+2+" "-t-an+m’

then o)(sg) >- n + rn 2.
A3. If sg computes the pair of expressions, ala3-a2a4 and ala4 + a2a3, (the

real and imaginary parts of the complex product (a
2.

Proof. By Corollary 4, it suffices to verify that

pv()((ala3 + a2a4)bl + (ala4 + a2a3)b2)) 4. [’1

A4. Ifs computes the general rational function,

Xn--1anx -t- an-1 "- + ao
amX + am- +" + ao

then u(sg) >- n + m.
The following result generalizes both Theorems B and C.
A5. Let dp be an x n matrix over D, and let N*() denote the number of

columns of which are not identically zero. If sd computes the matrix-vector
product,

rb
t,

then ,(s) >= N*()- t.

Proof. Let k N*(), and assume, without loss of generality, that the first k,, ,1.tcolumns of are not identically zero. Let and for 1-5 _-< k,

define [i] min {]14ji 0}. By Corollary 4, it suffices to show that pv((R)(E)) >-_ k,
where

E (41a+""

+

+ (ckta +’" + ch,a,)b.

But, by the definition of [i], we know that

{albta1, a2bt21, akbkl}__ E.

Hence, pv(19(E))>=pv(tO({aabtl,’", akbtj}))= k. [-1

198 DAVID G. KIRKPATRICK AND ZVI M. KEDEM

A6. LetA o_ (aq) andX o_ (xq) be m n and n p matrices, respectively. If4
computes the matrix product A X, then v()>-(m +p- 1)(n- 1).

In particular, this gives addition/subtraction lower bounds of m(n- 1), for
the product of an m n matrix with an n-vector, and 2n2- 3n + 1, for the product
of two n n matrices.

A7. Let
n-1x x x 1

X_-

n--1
Xm Xm. Xm 1

Ifs computes the matrix-vector product

an

X all then v(s) >- n + m -1.

o

The obvious interpretation of the above is that it requires at least n + m- 1
addition/subtractions to evaluate an nth degree polynomial at m arbitrary points.

;,n(i)AS. LetP z.i=o aqXi, for 1, , t. If4 computes the set P,, Pt, then
u(’) --> El:, n(i).

A9. If1 computes the expression =o=o aqxiY, then v() >- (n + 1)2-1.
7. Open questions. The results and techniques of this paper leave un-

answered a number of interesting questions. Some of these, including both a
related development using substitution techniques and observations on the
structure of algorithms (if they exist) which achieve the lower bounds given by our
independence measure, will be considered in future papers.

Of major importance is the problem of developing techniques for lower
bounds on additions, which are nonlinear in the number of indeterminants. We
should mention the initial success of Borodin and Cook [2] in this direction. It is
hoped that, perhaps through consideration of the geometrical interpretations
employed in Lemma 4, our techniques might be modified to provide this kind of
bound.

Acknowledgment. We would like to thank both A. B. Borodin and S.
Winograd for their encouragement and numerous helpful comments.

REFERENCES

[1] E. C. BELAGA, On computing polynomials in one variable with initial preconditioning of
coefficients, Problemy Kibernet., 5 (1961), pp. 7-15.

[2] A. B. BORODIN AND S. A. COOK, On the number of additions to compute specific polynomials,
Proc. 6th Annual ACM Symp. on Theory of Computing, Association for Computing
Machinery, New York, 1974, pp. 342-347.

[3] B. GRONBAUM, Convex Polytopes, John Wiley, London, 1967.
[4] Z. M. KEDEM, Studies in algebraic computational complexity, Doctor of Science thesis, Israel

Institute of Technology, December, 1973.

ADDITION REQUIREMENTS 199

[5] D. G. KIRKPATRICK, On the additions necessary to compute certain functions, Proc. 4th Annual
ACM Symp. on Theory of Computing, Association for Computing Machinery, New York,
1972, pp. 94-101.

[6] an expanded version of [5], Tech. Rep. 39, University of Toronto, Canada, 1972.
[7] J. MORGENSTERN, The linear complexity of computation, J. Assoc. Comput. Mach., 22 (1975),

pp. 184-194.
[8],private communication, 1972.
[9] T. S. MOTZKN, Evaluation of polynomials and evaluation o.f rational functions, Bull. Amer.

Math. Soc., 61 (1955), p. 163.
[10] A. M. OSTROWS, On two problems in abstract algebra connected with Horner’s rule, Studies

Presented to R. von Mises, Academic Press, New York, 1954.
[11] S. WINOGRAD, On the algebraic complexity o]’]’unctions, Actes, Congres Internat. Math., 3

(1970), pp. 283-288.
[12] ., private communication, 1971.

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

OPTIMUM SEQUENCE TREES*

MASAHIRO MIYAKAWA, TOSHITSUGU YUBA, YOSHIO SUGITO
AND MAMORU HOSHI’

Abstract. The construction problems of optimum sequence trees (or digital search trees) are
considered in the following frameworks: 1. construction of optimum trees from a set of keys, 2.
transformation of an arbitrary tree into an optimum one, 3. optimum insertions of keys into an
optimum tree, 4. optimum deletions of keys from an optimum tree.

Algorithms are shown. The number of operations needed for the algorithm in the framework is
at most O(N:L), and in the framework 2 it is at most O(N3L) both with O(N) storage locations, where
N and L are the number of keys and the length of coded keys respectively.

Necessary and sufficient conditions for the optimality of sequence trees are also given.

Key words, algorithm, digital search trees, optimization, searching, sequence trees

CONTENTS

List of Notations 201
1. Introduction 203

file systems, searching, search trees, digital search trees, description of the problems,
self-optimizing file systems

2. Basic operations on sequence trees 204
binary trees, keys, codes, sequence trees, weighted number of comparisons (cost), optimum
trees, transformations of trees, permutations on a tree, cycle, shift, value of permutations,
decomposition lemma, cycle decomposition lemma

3. Regular trees 209
regular trees, exchangeable sequence, support, backtrack-free, minimum ascending shift,
minimum descending shift, minimum shift, the optimality theorem

4. Transformations into optimum trees 218
preoptimum trees, quasioptimum trees, bottom-up optimization algorithm, construction of
an optimum tree from a prefix tree, optimum insertion, optimum deletion

5. Algorithms to find minimum shifts 222
5.1 Algorithms to find Vr[r, p]andAz[p, r] 222

canonical value function associated with r
5.2 An optimum insertion algorithm 225

6. Implementations of the algorithms 226
6.1 Computation of V[r, .]andA[., r] 227
6.2 Computation of/z[r, 230
6.3 An upper bound of the computation of Algorithm 4.1 230

7. Conclusions 231
problems for further investigations

Acknowledgment 233
References 233

List of notations.

a, b, c, d
ADDR(p)
C
CODEr(p)

codes in general (with suffixes).
the address of a node p.
the set of given N codes.
the code placed at p in T.

* Received by the editors August 2, 1974, and in revised form April 15, 1976.

" Electrotechnical Laboratory, Tokyo, 100, Japan.
201

202 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

h,i,],k,l,m,n
L
lev(p)

mas
rods
N
p, q, r, s
p(a)
p*
[P,q]
R
SON(p)

T

valr(r)
wtr(pi)
W

Ar[p, r]
At[, r]
Vr[p, r]
V[p, ,]
E

/.r[P, q]

/xr[p, q]

/xr[*, p]
txr[p, *]
"n’r[p, q]

suffixes representing natural numbers.
the code length (given).
the level of p (lev(R)= 0).
lev(pi) or lev(qi).
lev(p).
minimum ascending shift.
minimum descending shift.
the number of codes (given).
nodes in general (with suffixes).
the node p containing a code a.
the support node of p.
the path from p to q.
the root of a tree.
the left or right son of p (a 0 or 1, respectively).
a leaf in general.
a binary tree, or a sequence tree in general.
the subtree of T whose root is r.
the weighted number of comparisons or the cost of the tree

T.
an external node (i.e., a son of a leaf).
the value of r in T.
the weight of the code of pi in T.
a weight in general or wtr(p).
the number of primitive operations needed for an A-test.
the number of primitive operations needed for a C-test.
a transposition of codes.
an mas originating from p and terminating at r in T.
an mas terminating at r in T.
an mds originating from p and terminating at r in T.
an mds originating from p in T.
the identity permutation.
the exchangeable sequence originating from p and ter-

minating at q in T.
the address of the root R, or null code, or empty sequence.
a minimum shift originating from p and terminating at q in

T.
a minimum shift terminating at p in T.
a minimum shift originating from p in T.
a permutation sequence (p-sequence) originating from p
and terminating at q in T.

the first part of
the second part of zr.

a a (or p --pi) means that these codes are exchange-
able for each other.

p > q means that p is higher (larger) than q.

OPTIMUM SEQUENCE TREES 203

1. Introduction. The digital tree search is originally due to Coffman and Eve
[1]. In their original paper digital search trees are called sequence (hash) trees.
Much discussion about digital tree search method is to be found in the book by
Knuth (see [5, pp. 481-505]). We will slightly extend the original definition of
sequence (hash) trees still calling them sequence trees. This is partly because we
hope that sequence trees may have other applications in addition to searching.
Therefore, in our description, we focus on the general structural characteristics of
the trees. However, the motivations of our problems to be considered here are
from computer file systems, in which the reduction of search time is one of the
major concerns.

In this paper we solve the optimization problems of sequence trees in the
following frameworks:

1. Given a set of keys, construct an optimum tree.
2. Given an arbitrary tree, transform it into an optimum one.
3. Given an optimum tree, insert a new key into it in such a way that the

resulting tree becomes optimum (optimum insertion).
4. Given an optimum tree, delete a key from it in such a way that the

resulting tree becomes optimum (optimum deletion).
These four problems are mutually dependent. If we construct a tree, for

example, the prefix tree [1] from the key set, then problem 1 is reduced to problem
2. The solution to problem 3 is also a solution to problem 1, since we can construct
an optimum tree by successive insertions. After inserting (deleting) a key by any
method into (from) an optimum tree, we can optimize the resulting tree by using
the solution of problem 2. However, in problem 3 or 4 we require some algorithm
to decide how a key should be inserted or deleted respectively.

In practical file systems, insertion and deletion of keys play an important role.
Hence optimum insertion and deletion algorithms are very important, since we
can always keep the file structure optimum if we use them.

Next, let us consider situations of on-line file systems. In these cases, access
frequency of each file changes momentarily, so we need to reconstruct the file
from time to time in order to make its structure optimum. This self-optimizing file
system is our motivation of framework 2.

In framework 2 our optimization algorithm needs at most O(N3L) opera-
tions with O(N) storage locations, where N and L are the number of keys and the
length of coded keys respectively.

The case of uniform weights is considered in [8], [9] and [10] (each paper
considers the problem in frameworks 1, 2, 3 and 4 respectively).

In this paper 2 gives definitions and basic operations on sequence trees. In
3 properties of regular trees, a subset of sequence trees, are investigated.

Necessary and sufficient conditions for the optimality of sequence trees are given.
Section 4 describes transformations into optimum trees. In 5 descriptions of
algorithms are given in detail. Section 6 is devoted to the evaluation of the number
of operations for the bottom-up optimization. In the concluding discussion of 7
some related problems are given.

Recently we found that the same problem of constructing optimum digital search trees is listed as
a research problem in [5, p. 504, problem 39].

204 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

2. Basic operati?ns on sequence trees. In this section we give definitions of
terms used in this paper. Search, insertion, and permutation sequences on
sequence trees are explained. Unless stated explicitly to the contrary, all
definitions and notations are the same as those used in the book by Knuth [3, pp.
205-405].

We consider binary trees and say simply trees for binary trees. (The formula-
tion in this paper is also valid for M-ary trees.) The level of a node p (denoted by
lev(p)) is the number of edges from the root R to the node p (thus lev(R) 0). The
path of a node is the set of nodes which are on a chain of edges from the root to the
node. If nodes p and q are on the same path, then the path)rom p to q (denoted by
[p, q]) is the set of nodes which are on a chain of edges from p to q (we put
[p, p] {p}). The number of the edges of a path is called its path length.

If p and q are on a path and lev(p) _-< lev(q), then we write p

_
q (p is higher

than or equal to q). Thus we consider a tree as a set of nodes partially ordered by
the relation >-. The root is the maximal (or highest) node of the tree.

For our purpose we consider a tree T with a maximum level L and with 2
nodes at each level for 0 _-< _-< L, where L is a nonnegative integer. Thus every
node of Thas two sons if its level is less than L and each node at level L has no son
(T has 2L/I- 1 nodes). With each node p we associate an address (a bit sequence
denoted by ADDR(p)) as follows:

ADDR(R) A,

ADDR(SONo(p)) ADDR(p). O,

ADDR(SON(p)) ADDR(p) 1,

where SONo(p) and SONI(p) denote the left and right sons of p, and I denote
concatenation and the empty sequence respectively.

We represent a node by its address. Figure 2.1 shows an addressed binary tree
with a maximum level L 2.

00

FIG. 2.1. An addressed binary tree

To represent the relations of nodes by using their addresses, we define the
prefixes of a bit sequence. Let b blb2" bn be a bit sequence (hi 0 or 1), then
the set {I, b, bib2," ", bab2 bn} is the set of prefixes of b. Then we note the
following relations:

p >_ q :>ADDR(p) is a prefix of ADDR(q).

OPTIMUM SEQUENCE TREES 205

The symbol >- is used for bit sequences as well. Thus a _>- b means that a is a
prefix of b, where a and b are bit sequences.

Next, we define a set of weighted codes. Suppose that a set on N records
should be stored for use of searching. In general, each record includes a special
field called its key to identify the record. Here we map keys into bit sequences and
call them codes. A code set is denoted by C={ci[i 1,..., N} (N<2L), where
each code ci is a bit sequence with the length L (L is the fixed code length and N is
the number of codes in C). We assume that codes are distinct from each other.
With each code we associate its weight, a nonnegative real number. Each weight
may correspond to an access frequency of the record. We can construct a tree
where search, insertion and deletion of codes are conveniently performed [1].

Example 2.1 (Insertion algorithm). We illustrate an algorithm which inserts
a code into a tree (see Fig. 2.2). Let the code set be C-{a 00, b 01, c 10}.
We insert c, a and b in this order. Initially the tree consists of all empty nodes.

First we will insert c. Since the root is empty, c is placed there. Next we will
insert a. The algorithm compares a with the code at R (now it contains c). Since
they do not match, the algorithm checks the first bit of a. Since it is 0, the algorithm
traverses the left edge of the node (thus the code "guides" in the tree). Since the
newly current node 0 is empty, a is placed there. Finally we will insert b. The
algorithm accordingly arrives at the empty node 01 and places the code b there,
since the first and second bits of b are 0 and 1. Thus we have constructed the tree
T1 in Fig. 2.2 (we associate the null code , with each empty node). Almost the
same algorithm can be used for searching. Different insertion sequences lead in
general to different trees.

FIG. 2.2. Insertion ofcodes c, a and b

Thus we consider that with each node of a tree T an address and a code are
associated. Therefore, a node can be represented by p(a), where p is the address
of the node and a is the code placed at p. Symbols p, q, r, s and a, b, c, d possibly
with suffixes denote nodes (addresses) and codes respectively. The code placed at
p in T is denoted by CODET(p). The weight of the code of p in T is denoted by
WtT(p). The weight of the null code i is defined to be zero.

The insertion algorithm suggests that each code specifies a path on which that
code should be placed. For each node p we define its admissible codes as f611ows.

206 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

If the address p is a prefix of a code a (i.e., p >- a), then a is admissible to p.
Besides, the null code , is admissible to any node, by convention. Each node at
level L has at most one admissible code except &. In Example 2.1 admissible codes
of the node 0 are {,, a, b), and of the node 01 are {&, b).

A tree Tis a sequence tree if every node of Thas an admissible code. That is, T
is a sequence tree if for every nonempty node p(a), the address p is a prefix of the
code a. We may simply write trees for sequence trees. A leaf of T is a nonempty
node whose descendants are all empty. Thus leaves are the minimal nonempty
nodes of T. An external node is a son of a leaf. Thus every leaf has two external
nodes if its level is not L. A subtree of T is denoted by Tip], where p is the root of
the subtree. Two examples of sequence trees are shown. The first one is a packed
tree,2 where p(a) T and a # , imply that q is nonempty for any q >- p. The
insertion algorithm shows that packed trees can be constructed by successivel.y
inserting codes from the root. Our second example is a prefix tree,3 where each
code is placed at the node whose address is identical to the code (see Fig. 2.3).
Thus in a prefix tree all nonempty nodes are at the level L and every nonempty
node is a leaf. The prefix tree is uniquely determined by a code set.

00

FIG. 2.3. Aprefix tree

A code a is admissible to any node of the path [R, pl, if the address p is
identical to a (the path is called the admissible path of a). Hence a code placed at q
is admissible to either SONo(q) or SONI(q). This is an interesting characteristic of
sequence trees.

Consider searching the tree T1 of Example 2.1. We need two, three, and one
comparisons to search a, b, and c respectively. Let the weight (access frequency)
of codes be w=4, w=3, and w=5. Then we need on the average
(4.2 + 3 3 + 5 1)/(4 + 3 + 5) 22/12 comparisons for a successful search. Thus
the relative amount of work to search a tree T can be measured by the weighted
number of comparisons, or the cost TI of the tree defined by

ITI Z wt(p)(lev(p)+l)/Zwt(p),
peT

where the summation can be restricted to the nonempty nodes of T, since empty

A packed tree is called a sequence hash tree in [1], and a binary digital search tree in [5]; however
the former has no code at the root.

This definition differs slightly from that in 1].

OPTIMUM SEQUENCE TREES 207

nodes carry no weight. We omit the normalization factor Y’. wt(p), because we
compare different trees for a fixed set of codes and weights.

The set of all sequence trees over a code set is finite. A tree is optimum if its
cost is a minimum in the set of all sequence trees over the code set. A subtree is an
optimum subtree if it is optimum for the codes which are contained in the subtree.
For any nonpacked tree there is a packed one whose cost is not greater than the
former’s.

Example 2.2. Let C {a 00, b 01, c 10} as in Example 2.1. Figure 2.3
shows the prefix tree of C. Figure 2.4 shows all the packed trees over C (empty
nodes lower than leaves are usually omitted). Figure 2.5 shows the ranges of wa, wb
and wc (the weights of a, b and c respectively, with Wa + Wb H- W 1) for which
each tree is optimum. (This diagram is due to Knuth [5, p. 434].)

r2 r 4

A

O0

FIG. 2.4. Allpacked trees overC {a, b, c}

c(o,o.)

FIG. 2.5. Optimum domain o[T (W + W %" W 1)

208 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

In an attempt to construct optimum trees, a fairly reasonable strategy is to
repeatedly insert codes in decreasing order of their weights. However this idea
does not always work:

Example 2.3. Consider the same code set C as in Example 2.1. Let the
weights be Wa 4, Wb 3, and wc 5. Then we have ITif--22 and T2I 20. T2
is optimum (cf. Fig. 2.5). This example also shows that in optimum trees the weight
of the root is not always greater than the weights of its descendants. We can
transform T1 into T2 by a permutation of codes; namely Ol(b)-O(a)-A(c)-,
l(h) (see Fig. 2.6). However moving the code b from the node 01 to the node 1,
which would obviously result in a "better" tree, is forbidden, because b is not
admissible to the node 1.

7-1

O(b) {3}

7-2

I(O(b) (c)

FIG. 2.6. A transformation by the p-sequence

This observation leads us to define the following transformations.
Let 7r:p0(ao), p(aa),... ,pn(a,) be an ordered sequence of nodes of T

satisfying:
1. Po," ",Pn are distinct,
2. ai h (i 0, 1, , n 1, note that an may be h),
3. ai is admissible to both p and Pi+l (i --0, 1,’" ", n), where Pn/a P0.
We transform the tree T by replacing the code a/ with a for 0, 1, , n

(we put an/a ao, thus the code a0 is replaced by an). The resulting tree is also a
sequence tree from condition 3. Note that this condition implies the comparability
of p and Pi/ by the relation >- for 0 =< < n (also, of Pn and Po when an ,). We
call the sequence 7r a permutation sequence (abbreviated to p-sequence). The term
p-sequence is used to represent the transformation by 7r as well. In the
p-sequence, if an , then r is a shift, else 7r is a cycle. The nodes P0 and Pn are the
initial node and the terminal node of 7r respectively (the p-sequence 7r originates
from P0 and terminates at Pn). The number n is called the length of the p-sequence.
To represent the initial node and the terminal node of 7r explicitly, we use the
notation 7r[po, Pn]. However we may omit [Po, Pn] as well as T.

We can transform a given tree to an arbitrary tree by successively applying
p-sequences. The tree resulting from successive applications (composition) of

OPTIMUM SEQUENCE TREES 209

p-sequences /’1, 7T2, "/Tin to T is written as qT 7"/’m_ 7/"1T (dots may be
omitted).

An essential property of p-sequences is their ability to change the cost of a
tree. We define the value of the p-sequence 7r on the tree T by:

ValT(r)--]’rrT]-]T[E (/+1- ()" wt(p,),
i=0

where gi is the level of Pi. Note that this value is negative when 7r maps the tree T
into a "better" one (with smaller cost). For optimization purposes, interest lies
primarily in minimum p-sequences.

Two p-sequences rl[p, q] and "rrz[p, q] are equivalent (in symbol 7r 7/’2) iff
val(Trl) val(r2). A p-sequence 7r with val(r) 0 is called a dummy p-sequence.
An important special case of a dummy p-sequence is the identity permutation e,
such that eT T for all trees T. Note that any p-sequence of length 0, 7r po(ao), is
just another representation of the identity permutation.

A fundamental property of p-sequences, namely that they form a "complete"
set of transformations on sequence trees, is expressed in the following lemma:

LEMMA 2.1 (decomposition lemma). Let To and T1 be two sequence trees over
the same code set. Then To can be transformed into TI by the composition
independent p-sequences. In other words, there exist p-sequences 7ra, 7r2," , rm
such that T 7rm r,,_ 7r To, and if # j then rri and 7rj have no node in
common.

Proof. This is an extension of the usual decomposition lemma of permuta-
tions. We omit the details here. [-1

It should be noted that the order of 7rl, r2, , r,, is arbitrary, since they are
independent of each other. Further if a node pi is empty in To and if it is nonempty
in Ta, then the lemma implies that there is a p-sequence (in fact a shift) which
terminates at pin To.

A cycle with length 1 is called a transposition. We can prove the following
lemma:

LEMMA 2.2 (cycle decomposition lemma). A cycle is decomposed into the
composition of transpositions.

Proof. The proof is not obvious, since arbitrary transpositions are not always
possible on a sequence tree. An induction on the length of the cycle is used.

An efficient optimization procedure can be designed in terms of the repeated
application of "minimum" p-sequences.

3. Regular trees. In this section we define a subset of sequence trees which
we call regular trees. Properties of regular trees are investigated. With each empty
node a real number called the "potential" of the node is associated. Necessary and
sufficient conditions of optimality are presented in terms of the potentials of
empty nodes.

Let p(a) and q(b) be nodes of a tree T. If a is admissible to q and if b is
admissible to p, then we say that a and b or, for convenience, p and q are
exchangeable in T (in symbol a <--->b, p<-->q or p(a)<-->q(b) in T). We say that p is
admissible to q if the code of p is admissible to q. Here we note a few immediate

210 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

consequences of the definitions. If p > q, then poq iff p is admissible to q, since q
is always admissible to p. If p-q, then p-r holds for any node r such that
p > r > q (note that q r does not necessarily hold). If p and q are exchangeable
and not both empty, then they are comparable by >-. We use the notational
conventions wi and wp for Wtr(Pi) and Wtw(p) respectively. A tree T is regular if
for any two nonempty exchangeable nodes p and q in T, p >_ q implies Wp >= Wq. In
other words, T is regular if no transposition can decrease its cost. Optimum trees
are regular. Note that any tree over uniformly weighted codes (the weights of all
codes are equal) is also regular from this definition.

Let P0 be a node of T and 7r’pn,""", Po be a p-sequence of distinct nodes
satisfying for 0, 1, , n 1"

1. Pi Pi+
2. Pi -Pi+l,
3. Pi+l is minimal that is admissible to p.

We say that 7r is an exchangeable sequence of Po. Note that Pi+l is uniquely
determined from pi as the nonempty ancestor of p exchangeable with p which is
the closest to p. To represent an exchangeable sequence we use the notation
r/TiP,,, Po] instead of 7rT[p,, P0]. If there is no exchangeable sequence originating
from p, and terminating at Po, then r/rip,, Po] is defined to be the identity
permutation e.

Let r/r[p,, Po] be the exchangeable sequence of Po of maximum length, i.e.,
there exists no node Pn+l that is admissible to pn and Pn+l Pn" Then the node p, is
called the support node (or simply support) of Po in T.

The support of p is denoted by p*. Unless stated explicitly to the contrary we
usually understand the exchangeable sequence of p as one that originates from p*
(i.e., tiT[P* p], see Fig. 3.1). Note that a nonempty node p >p admissible to p is
included in the exchangeable sequence of p by definition. If there exists no
nonempty node p >p admissible to an empty node p, then we put p*=p (an
empty node can be a support only of itself). In case that the support p* coincides
with p, the exchangeable sequence is the identity permutation e. The supports of
empty nodes play an important role in the definition of the potential of the nodes.

For an empty noder(A) and a nonempty node p(a) of a tree T, a minimum
shift originating from p and terminating at r denoted by tzT[P, r] is a shift whose
value is a minimum in all these shifts. Further, we denote by/ZT[*, r] a minimum
shift terminating at r(A) (or minimum shift of r(A)) whose value is a minimum in all
shifts terminating at r(,), where denotes a certain nonempty node of T.
Analogously, a minimum shift originatingfrom p(a) (or minimum shift ofp(a)) is
denoted by tzT[P, *], where denotes a certain empty node of T.

We call a shift 7r’po, Pl,’",p, ascending if pi<p+l holds for i=
0, 1, ., n- 1. If Pi >Pi+ holds for 0, 1, , n 1, then 7r is descending.

Let r(A) and p(a) be nodes of T. If p(a)< r(A), then a minimum ascending
shift (abbreviated to mas) originating from p and terminating at r is a shift whose
value is a minimum in all these ascending shifts (we denote it by AT[p, r]). If
p(a) r(A), then a minimum descending shift (abbreviated to mds) originating
from p and terminating at r is a shift whose value is a minimum in all these
descending shifts (we denote it by VT[p, r]).

OPTIMUM SEQUENCE TREES 211

/

\
\
\
\
\

\
\

FIG. 3.1. An exchangeable sequence and a support

For r(A) T, an mas terminating at r(a (or mas o[r(A)) denoted by Ar[,, r] is
an mas whose value is a minimum in all mas terminating at r(A). Analogously, for
p(a) T, an mds originating from p(a) (or mds ofp(a)) denoted by Vr[p, *] is an
mds whose value is a minimum in all mds originating from p(a). Note that mas and
mds are not necessarily unique (there may be many equivalent mas and mds, and
equivalent mas or mds are identified), and in case that there are no such shifts, they
are defined to be the identity permutation e. Parameters [p, r] may be omitted as
well as suffix T in mas A, mds V and minimum shifts/ in our notations.

Let 7r p0, p," , p be a p-sequence in T. The maximal (highest) node of
is called the top of 7r (the top is uniquely determined). Minimal nodes of 7r are
called bottoms of 7r. When r is a cycle, we adopt the convention that the initial
node Po always represents a bottom. Let p be the top of yr. Then the sequence
P0, P,"’,P is called the first part of r (denote it by r-). The sequence
Pi, Pi+l, P is called the second part of rr (denote it by

If r is a shift, then 7r* also represents a shift in T and 7r- represents a shift in
7r T (note that p becomes empty in 7r/T and hence the sequence 7r satisfies the
condition of p-sequence in 7r

/ T). Thus a shift rr is represented by the composition
of two shifts as r 7r 7r

A p-sequence zr is called backtrack-free if r+ is descending and r- is
ascending (see Fig. 3.2). Thus a backtrack-free cycle has a unique bottom and a
backtrack-free shift has at most two bottoms (initial node and terminal node). In a
p-sequence either p >p+ or p <p+ should hold for any two successive nodes.
Therefore in 7r

+ (7r-) any pair of nodes p and Pj+I such that p <p+a (p > p+a) is
called a backtrack of 7r (Tr has a backtrack at p).

212 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

FIG. 3.2. Backtrack-tree p-sequences

The following property holds for the mds and mas in a regular tree. We use
the notational conventions i and p for lev(pi) and lev(p) respectively.

LEMMA 3.1. Suppose T is regular. Let an mds V[po, Phi (mas ALP0, phi) be
7r :po, Pl,""", pin T; thenpi_l >q >Pi (pi-a < q< pi) andq-pi (pi_l --q) imply
wi- Wq (wi Wq) for each i= 1,..., n.

Proof. (i) In case of mds. Assume that there exists a node q satisfying the
coriditions of the lemma. Then we have Pi-1-q, so w_ >- Wq, since T is regular.
Assume wi-1 > Wq. Then a sequence 7r’:po, Pl, Pi-1, q, Pi, P, is a
descending shift of P0 (note that q-Pi). And val(Tr)-val(Tr’)=
(i i-1)Wi-l ((gq i-1)wi-1 + (i q)Wq) (i q)(wi-l Wq) > O. This con-
tradicts the minimality of

(ii) In case of mas. The proof is analogous to (i).
The next lemma asserts that the regularity of trees is preserved under

transformations by mas and mds.
LEMMA 3.2. Let T be regular and 7r be any mds (mas) in T. Then 7rT is a

regular tree.

Proof. (i) In case of mds. Let 7r:p0,." ", p, be an mds in T and Tx 7rT.
Assume Ta is not regular; then there exist nonempty nodes p and q in T1 such that
p q, p -- q, and wtr(p) < wtr(q). Since T is regular, either p or q must belong to
7r (note that p and q cannot both belong to 7r). These two cases are considered
separately. Let wi be the weight of the code of Pi in T, and Wp and Wq be the
weights of p and q in T.

Case a. Assume p 7r (let p Pi, then 0, since p is nonempty in T1). From
CODEr,(pi)=CODEr(p_I) we have wtr(p) Wi_l, and from Pi ---q in T,
CODEr(pi-1) should be admissible to q in T (see Fig. 3.3). This means Pi-1 q in
T. But our assumption that wtr,(p) Wi-l<Wtr(q)=Wq then contradicts the
regularity of T.

Case b. Assume q 7r (then q Pi with 0). The node p > q, admissible to
q Pi, has weight wp < Wq wi-1. In fact, p is also an ancestor of Pi-1 (if this were

OPTIMUM SEQUENCE TREES 213

/
p

=P

FIG. 3.3 FIG. 3.4

not the case, Lemma 3.1 would imply Wp wi-1). Thus p > Pi-1 > q =P (see Fig.
3.4). Since p--p in T1, we have P--P-I in T, and again our assumption that
wtr,(p) Wp <wtr,(q)= W-a contradicts the regularity of T.

(ii) In case of mas. The proof is analogous to (i). U
The next two lemmas will show that in a regular tree a minimum shift has no

backtrack.
LEMMA 3.3. Let T[r(A)] be a regular tree with an empty root r(A). Then an mas

ofr(A is a minimum shift terminating atr(), i.e., Ar[*, r] coincides with/r[*, r].
Proof. It suffices to prove that if a shift 7r has a backtrack, then there is a

backtrack-free shift whose value is not greater than 7r. Let 7r :po, Pl,"" ", Pn
r(A) be a shift. Assume that the pair pi and P+I is a backtrack and that there is no
backtrack in P+I, ",p, r(A) (i.e., p >-p+l <Pi+2 <" < r). CODE(p) is
admissible to pi+l, and since p/. >P/I, it is also admissible to P/2 (see Fig.
3.5). Thus, by deleting Pi/l from zr we can construct another shift r’:
P, Pi, Pi+2, Pn. Then valr(’a")--valr(Tr) (ai+2-- ’i)wi --((i+l-- i)wi +
(i+2- i+l)wi+) (ei+=- ’i+l)(wi Wi+l). Since T is regular we have wi >-- Wi+l,
and from the assumption,i+2- +1 < 0. Hence val(Tr’) val(Tr) -<_0. By repeating
this backtrack elimination process we have a backtrack-free shift whose value is
not greater than 7r. Note that the initial and the terminal nodes do not change by
these backtrack eliminations. Thus an mas of r(A) is a minimum shift terminating
at r(A). I"I

LEMMA 3.4. Let T[r(a)] be a regular tree with a nonempty root r(a). Then an
mds of r(a) is a minimum shift originating from r(a), i.e., Vr[r, *] coincides with
/zr[r, *].

Proof. The proof is analogous to that of Lemma 3.3. E!
From Lemma 3.3 and Lemma 3.4 we have the following theorem.
THEOREM 3.1. In a regular tree,]’or any p-sequence r there is a backtrack-

free p-sequence r’ such that val(Tr’)_-<val(Tr) and the tops, the initial and the
terminal nodes o[r and 7r’ are identical.

214 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

T[r (!)]

Pn =r(A)

p;

FIG. 3.5

Proof. First we note that the backtrack elimination process is applicable to a
cycle as well as a shift. Hence we apply the process of Lemma 3.3 to the first part of
7r and eliminate all backtracks. Analogously the process of Lemma 3.4 is applied
to the second part of 7r. The resulting p-sequence is 7r’. Note that the tops, the
initial and the terminal nodes are unchanged by the backtrack eliminations.

Immediately we have:
COROLLARY 3.1. In a regular tree a minimum shift has no backtrack (more

precisely, there is a backtrack-free minimum shift).
Let p be the top of/zip, q], then/zip, q] tz-" tz += A[p, Pi]" 7[P, q] from

Corollary 3.1, Lemma 3.3 and Lemma 3.4. Hence from. Lemma 3.2 we can say
that regularity is preserved under transformations by minimum shifts. (However
this assertion does not hold for minimum cycles.)

The next theorem asserts that val(Tr) ->_ 0 for any cycle 7r in a regular tree.
THEOREM 3.2. If val(Tr)< 0, then 7r is a shift in a regular tree T.
Proof. Assume that 7r :p0(a0), pl(al),""", p,(an) is a cycle. We prove that

val(Tr) -> 0 by using the induction on the length n of the cycle. If n 1, then r is a
transposition. Hence we have val(Tr) => 0 because T is regular. Now assume that all
cycles of length n 1 have nonnegative values. From Theorem 3.1 we may assume
7r backtrack-free. Since Po is the bottom of the cycle, it is easy to see that pn is
admissible to Pl. Hence 7r can be decomposed into zr=6. r’, where
7r’ pl(al), , p,(a,) is a cycle with the length n 1 in T and 6 po(a0), pl(a,) is a
transposition in 7r’T. From the induction hypothesis we have val(zr’) >- 0. Since T
is regular and p, >Po, we have w. >----Wao. Hence val(6)=>0. Thus we have
val(zr) ->_ 0.

In the remaining part of this section, let r(A) and p(a) denote any empty and
nonempty nodes respectively. We consider the decomposition of/z[,, r(A)] and

OPTIMUM SEQUENCE TREES 215

/x[p(a), ,] in terms of V and A in a regular tree T and give necessary and sufficient
conditions of optimum trees. The following lemmas on properties of shifts are
preparations for these purposes.

LEMMA 3.5. Let zr :po, Pl, ",Pi, ",Pn r(A be a shift which terminates
at r(, and pi be the top of rr in T. Thenp belongs to the exchangeable sequence of r,
namely r/[it, r].

Proof. If Pi r the lemma is true. Assuming pi r, we have in fact p > r, since
any p-sequence with the topp terminates in T[p]. Let] be the largest integer such
that _-</" < n and p > r. Since pj is admissible to Pj/I and P/I <- r, pi is admissible
to r. Then pi is an element of r/Jr 1, r] from the property of exchangeable
sequences. If pi=p we are done. Otherwise, consider the sequence
Po, Pl,"’, Pi,’", Pj. The conditions of this lemma hold for the case where r is
replaced by pj. Thus repeating this process we conclude that pi is an element of
r/[r*, r]. U

LEMMA 3.6. Let 7r be a shift which terminates at r(A) in T. Then 7r is
decomposed into the composition of two shifts 7r 7r2 7rl, where 7rl originatesfrom
r* in T and 7r2 terminates at r* in T1 7r T.

Proof. Let Pi be the top of 7r P0, ",P, r(A). Then pi Jr, r*] from Lemma
3.5. Let the exchangeable sequence originating from r* and terminating at p be
q,, r*, , qh+, qh Pi. We put 7rl qm, qh "-Pi, Pi+, P, and
7r2 "P0, Pi qh, qh+l, qm" Then obviously we have 7r 7r2 7/" (see Fig.
3.6). [3

Po
FIG. 3.6. Decomposition ofTr r2 "B"

LEMMA 3.7. Let r be an empty node of a regular tree T and r/[p, r] be the
exchangeable sequence of r originating from p. Then the exchangeable sequence
qr[p, r] is a mds Vr[p, rJ.

Proof. This lemma will be restated later as Lemma 5.2 and will be proved
there.

216 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

LEMMA 3.8. Let T be regular and 7"t" be an arbitrary descending shift. Put
T1 rl T. Then]:or any ascending shift 7r2 that is well-defined in T and T1, we
have:

valrl(’rr2) =< ValT(’tr2).

Proof. If zrl and 7/"2 have no interaction, then the codes of 7/"2 do not change in
T and T1. Hence we have valrl(Tr2)= valr(Tr2). Consider the case that 7rl and 7r2
interact. Let p 6 7rl 7r2. Let the codes at p in T and T1 be a and aa respectively.
Then we have w _-< w, since 7rl is descending and T is regular. This implies
valr (7r2) =< valr(Tr2), l-1

We extend the definition of equivalence of p-sequences. If val(Tr[p, q])=
val(Tr2[p, r]. 7rl[r, q]), then 7r is equivalent to 7r2" 7rl (in symbol r 7r2" 7rl).

The next theorem asserts that/x[,, r(A)] is decomposed into the equivalent
A. V in a regular tree.

THEOREM 3.3. Let T be regular and r(A) be any empty node of T. Then we
have:

/zr[*, r(A)] Ar[* r*(A)]- Vr[r*, r(A)],

where r* is the support of r in T and T1 Vr[r*, r(A)]T.
Proof. We show that valr(A V) _-< valr(qr) for any shift 7r terminating at r(A).

From Theorem 3.1 we may assume that 7r :P0, Pl, ",Pn r(A) is backtrack-free.
Let the exchangeable sequence of r(A) be 7 :q,, r*, qm-1," ", q0 r(A). Then
from Lemma 3.7 the exchangeable sequence rt[r*, r] coincides with V[r*, r]. Since
the top Pi of zr is included in r/from Lemma 3.5, we put pi qh. Let zr zr2 7rl as
in Lemma 3.6. (Note that Lemma 3.6 is also valid in case that zr is ascending.)
Since we constructed 7rl and 7r2 by using the sequence r/[r*, qh], these three
sequences V, 7rl and 7r2 (considered as the sets of addresses) coincide with each
other on the path It*, qh]. From the definition of V 7r[r*, r] we have:

(3.1) valr(V) _-< valr(Crl).

Let Ta VT and T2 "/7"1T and A hr[, r*].
We will prove that:

(3.2) valrl(A) _< valr2(r2).
We note that ’r/"2 is well-defined in Ta as well as A, because r* is empty and all the
other nodes of "/7"2 are not empty in T. However, the codes placed at the nodes of
qT2 in T1 may differ from those of q’g2 in T2, since 7 and "rg’2 may interact. Hence
val(’rr2) in T1 differs in general from val(-n’2) in T2 (see Fig. 3.7). However, from the
definition of A, we have:

(3.3) valrl(A) --< valr(r2).

We will prove that:

(3.4) valrl(Tre) -< valr2(Tre).
We note that 7r in T and Te on the path [qh, r*] are the same. Hence it suffices to
consider the subshift 7r" po, Pl, ",P-I, P in T and Te (we may assume thatp is

OPTIMUM SEQUENCE TREES 217

/I

[r,Pi

//

qo=r(l)
FIG. 3.7. V and 71" interact at Pi-1

Po

empty at this moment). Also note that ValT2(zr) ValT(’tr). Applying Lemma 3.8
for subtree T[pi] and Tl[Pi], we have

valr, (rr) _-< valr(rr) valr2(Tr).
Hence we have (3.4).

Thus from (3.4) and (3.3) we have (3.2). Then from (3.1) and (3.2)
we have ValT(A V) ValT(A) + ValT(V) _--< ValT(r2) + ValT(Zr0 ValT(r2 zrl)
ValT(Tr).

Now we define the potential of an empty node r(A) in a regular tree by

potential(r] val(A[,, r*]. V[r*, r(A)]).

Then we have the following:
THEOREM 3.4 (optimality theorem). A regular tree T is optimum iff

potential(r) 0 for all empty nodes r(h) of T.
Proof. From Theorem 3.2 and the decomposition lemma it is obvious that T

is optimum iff val(/x[,, r(h)])=0 for all r(h). From Theorem 3.3 we have
potential(r) val(/x[,, r(A)]).

This is a generalization of the optimality theorem stated in [9], where the
weights of the codes are uniform.

Concerning minimum shifts/zip, ,] originating from a nonempty node p in a
regular tree T, we have a decomposition analogous to the one obtained for

218 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

THEOREM 3.5. In a regular tree T,

/x[p, ,]- min A[p, qi]. V[qi, ,],
p.< qj-< R

where R is the root of T.
Proof. First we note /x[p, ,]= A[p, Pi]: V[pi, *], where pi is the top of /z

(p_< p_< R). Assume q be a node such that val(A[p,q].V[q,,])_-<
val(A[p, qj]. V[qj, ,]) for all p _< qi "< R. We prove/x[p, ,] A[p, q]. V[q, ,]. Put
Vo A[q, ,] and A1 A[p, q]. Then we have val(/z)>- val(A1 Vo) from the defini-
tion of q. Assume that Vo and A interact at m nodes. If m 1, then q p and we
are done. Assume m_>-2. Let the interaction nodes be rl, r2,’", r,,, where
rl q - r2 " rm. Then from the decomposition lemmaA Vo is the composi-
tion 7r177"2 q’/’m, where q’/’h (1 h =< m- 1) is a cycle with the top t"h and "/r is a
shift originating from p and terminating at the with the top rm (see Fig. 3.8).
Obviously yr,, can be written as 7r, Alp, r,,]. V[r,,, ,]. Hence val(vrm)=>val(/x)
from the definition of/x. From Theorem 3.2 we have val(vrh) > 0 for 1 =< h -< m 1.
Hence val(Aa Vo)>=val(vrm). Thus val()>val(A 7o)>=val(Trm)_>--val(/x).
Hence val(A Vo) val(vr,,) val(/x[p, ,]). E!

q =G q=r

FIG. 3.8. Decompositionof A1 Vo
4. Transtormafions nto lfimu rees. In this section we consider transfor-

mations of trees into optimum trees. The transformations are presented in terms
of minimum shifts x, mas Z, mds V, and compositions of these shifts. The detailed
descriptions of algorithms to find x, Z and ’ are given in the following section.

A consideration of a bottom-up optimization leads us to the definition of two
types of trees. A tree T[r] is preoptimum if the root r is empty and its two subtrees
T[SONo(r)] and T[SON(r)] are optimum. A tree T[r] is quasioptimum if the root
r is not empty and its two subtrees T[SONo(r)] and T[SON(r)] are optimum.
Note that a preoptimum tree is regular but a quasioptimum tree is not necessarily
regular. Further, note that a quasioptimum tree T[r] is regular iff the weight of the
code of the root is greater than or equal to the weights of its all admissible nodes.

OPTIMUM SEQUENCE TREES 219

THEOREM 4.1. A preoptimum tree T[r] is transformed into an optimum tree by
a minimum ascending shift Ar[,, r].

Proo]’. Since a preoptimum tree T[r] is regular, an mas A[,, r] coincides with a
minimum shift/x =/x[,, r]. Let T1 =/xT, and let To be an arbitrary tree. We show
that To[-> Zll. From the decomposition lemma, Tcan be transformed into To by a
composition of independent p-sequences, 7rl 7r2 7r,. Since the root r is empty
in T and it is not empty in To, there is a shift terminating at r(A) among these
p-sequences. Let this shift be rl. Then we have val(/x)=<val(Tr), since/ is a
minimum shift. The remaining p-sequences (including the identity permutation e
when To 7rlT) are ones in the two optimum subtrees of r; therefore they have
nonnegative values. We have thus"

Tol val(Trl) + val(zre) +’’’ + val(Tr.) +IT[
val() +17"1 rl r l.

Since To is arbitrary, this shows that T is optimum.
THEOREM 4.2. A quasioptimum tree T[r] is transformed into a preoptimum

tree by a minimum shift/xr[r, *].
Proof. Put/x [r, ,] and T =/xT. To show that T1 is preoptimum, we show

that T I, for any p-sequence 7r such that rT1 has an empty root. Let us
decompose 7r./z into independent p-sequences 7r,..., 7r,. Then there is a
p-sequence originating from r among these p-sequences, since r is not empty in T
and it is empty in T1. Let it be 7rl. Since the remaining p-sequences (including the
identity permutation e when rTl=TrlT1) are ones in optimum subtrees
T[SONo(r)] and T[SON(r)], we have val(Tri)-_> 0 for 2,..., m.

From the definition of a minimum shift, we have val()-< val(Tr0. Thus

val(l) + Y’. val(,rri) +ITI
i=2

-> val(/x) +lTI 7"1 17"1.

This shows that T1 is preoptimum.
Since a quasioptimum tree T[r] is not always regular, a minimum shift/x[r, ,]

does not coincide with an mds in general. Suppose the code of r is shifted to a
node p by/z[r, ,]. Then the subsequence originating from the node p of the shift
/x[r, ,] should coincide with a minimum shift/ [p, ,]. Since/z [p, ,] is a shift in the
optimum subtree, it can be chosen with no backtrack. Thus there is a minimum
shift/x[r, ,] with at most one backtrack at the node p, and it can be represented as
a shift r,/. [p, ,]. We leave the precise algorithms to find A[,, r] and/x[r, ,] to the
following section.

From Theorem 4.1 and Theorem 4.2 we can transform a quasioptimum tree
into an optimum tree by successively applying/x and A (see Fig. 4.1). Thus, given
an arbitrary tree, we can transform it into an optimum one by applying the above

220 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

procedure to the all subtrees from the leaves to the root. A bottom-up optimiza-
tion algorithm can be stated simply as follows.

Aorii-i 4.1 (bottom-up optimization algorithm). Given an arbitrary
tree, we can transform it into an optimum tree by applying the following
procedure:

1. [Loop on LEV.] Do step 2 for all LEV L, L- 1,..., 0 (L is the code
length);

2. [Loop on r.] Do step 3 and step 4 for all subtrees T[r] at the level LEV;
3. [Apply /z.] If r is nonempty, apply a minimum shift /z[r, ,] to the

quasioptimum subtree T[r];
4. [Apply A.] Apply a minimum ascending shift A[,, r] to the resulting

preoptimum tree T[r];
Note that we can skip the processing of empty nodes lower than leaves and

that the nodes can be processed in any convenient order, as long as every node is
processed after its descendants.

iX,, ,’,J\

A quasioptimum tree A preoptimum tree An optimum tree

FIG. 4.1. Optimization ofa quasioptimum tree

Example 4.1. We can construct an optimum tree by applying Algorithm 4.1
to a prefix tree. Note that step 3 can always be omitted in this case, since we always
have preoptimum trees in each stage. In Fig. 4.2, T1 is a prefix tree and T] and T4z

are optimum trees. Note that if there are more than one mas A, then each choice of
a mas A leads to another optimum tree.

Next we show that the optimum insertion problem can be solved as a
corollary of Theorem 4.2.

TI-IEOREM 4.3 (optimum insertion). Let Tbe an optimum tree and a be a new
code to be inserted into T. Let us consider a tree T’ whose root r’ has a code a and
whose only subtree (either left or right) is T (r’ is a dummy root and the code a is
admissible to a path of T). Then T’ is a quasioptimum tree; hence by a minimum

shift tzT,[r’, *] of the root r’(a), T (as a subtree of T’) is transformed into a required
optimum tree.

Proof. The proof is immediate from Theorem 4.2 (see Fig. 4.3). l’]

OPTIMUM SEQUENCE TREES 221

----- 2

FIG. 4.2. Optimum tree construction.from a prefix tree

The optimum deletion algorithm is a little different from the optimum
insertion algorithm; however they are similar in the sense that a minimum shift
plays an important role.

THEOREM 4.4 (optimum deletion). Let Tbe an optimum tree anda be the code
to be deletedfrom T. Delete the code a from a node p(a). Let this tree be T (i.e., the
node p(a) becomes p(A) in T). Perform a minimum shift/z =/[2,T1[* p(A)] in rl;
then the resulting tree tzT is the required optimum tree.

222 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

r’

I
II I \\\X

i
I ///T’[r’’*]

\

FIG. 4.3. Optimum insertion

Proof. Let We show IT I I T I for any p-sequence 7r. Let T3
7rT2 7r. T1. Applying the decomposition lemma, we have T3 rz" 7rlT1,
where 7rl is a shift terminating at p (we include the identity permutation e as 7rl),
and qT"2 is the composition of p-sequences not including p (cf. the discussion in the
proof of Theorem 4.2). Then we have val(/x)=< val(rl) from the definition of
Since T is optimum we have val(Tr2) > 0. Thus]T3I val(Trl)+ val(Tr2)+ ITll, while
ITzl-- val() +1Tl1; therefore we have IT31 >--ITzI. Since r is arbitrary, T2 is
optimum.

Now from Theorem 3.3 (note that T1 is regular) we have"

/.:r[*, P(A)]-- ATe_[*, p*(A)] VTI[P*, p(A)],

where p* is the support of p and T2 ’rl[P*, p(A)]T (see Fig. 4.4).
More generally, it results from our previous discussions that all our optimiza-

tion problems reduce to those of finding:
1. an mas Ar[p(a), r(a)] in a regular (or preoptimum) tree T[r(A)];
2. an mds Vr[r(a), p(A)] in a regular (or optimum) tree T[r(a)];
3. a minimum shift/xr[r(a), *] in a quasioptimum tree T[r(a)].

5. Algorithms to find minimum shi[ts. This section is composed of two parts.
In the first part we describe algorithms to find an mds VT[r(a), p(A)] and an
mas AT[p(a), r(A)] in a regular tree T. In the second part we consider an algorithm
of optimum insertion, that is, to find a minimum shift /xT[r(a), *] in a quasi-
optimum tree T[r(a)].

5.1. Algorithms to find VT[r, p] and AT[p, r]. The root r of the tree T[r] is
assumed to be nonempty when we consider 7[r, pl, while it is assumed empty

OPTIMUM SEQUENCE TREES 223

FIG. 4.4. Optimum deletion

when we consider [p, r]. We note that from the definition of the symbol we
have"

VT[r, *] min Vr[r,p(A)] and
p(A)T

AT[*, r] min Ar[q(a), r].
q(a)eT

We consider algorithms to find 7[r, v] and A[t, r] for an external node v and a leaf t
(the same algorithms are valid when we replace v and t by any p(A) and q(a)
respectively).

Before showing lemmas we need some preparations. We associate a function
with each shift 7r. The discussion is done separately for the descending and
ascending case.

Let rr :Po r, Pl, ", Pm= V(A) be a descending shift on a path [r, v]:qo
r, ql,..., qn v(A). Then there exists a unique Pi for each qi (i # 0) such that

Pi > qi >- Pi/l. The node pi is the cover of qi (pi covers qi) with respect to 7r. The
canonical value]:unction f= associated with 7r is defined by

f=(q)=wt(pi) for i= 1,..., n.

Note that f=(qo) is not defined. Since Pi covers .+a- - nodes between pi and Pi+a
(including pi/), we have the following equation:

(5.1) val(Tr) Y’. f.,,.(qi).
i=1

224 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

LEMMA 5.1. Let l[r, v] be an exchangeable sequence and r[r, v] be an
arbitrary descending shift on the path Jr, v]. Then the cover ofqi with respect to r is
greater than or equal to the cover of qi with respect to rl for any qg Jr, v].

Proof. From the property of the exchangeable sequence it is obvious that rt is
a refinement of 7r. From this the lemma results immediately.

LZMMA 5.2. Let Jr, v] be a path of a regular tree. Then the exchangeable
sequence rt[r, v] coincides with an mds V[r, v].

Proof. When r/= e (i.e., there exists no exchangeable sequence originating
from r and terminating at v), V coincides with e (i.e., there exists no shift
originating from r and terminating at v). Let r/Jr, v] be st r, St-l, , So v and
7r "p,, r, p,,-1,""", P0 v be an arbitrary descending shift originating from r
and terminating at v. Let fn andf= be the canonical value functions associated with
rt and 7r. We show that:

fn(qi)<=f(qi) for any q [r, v].

Suppose the covers of qi with respect to rt and 7r be si and Ph respectively;
then we have q < si <_ Ph from Lemma 5.1. Since Ph is admissible to s and T is
regular, we have w _-< w. Hence fn(qi)<-f,(qi), and from (5.1)we have:

val(n) fn(qi) <- Z f(qi)=val(Tr).
i=1 i=1

Since r is arbitrary, /is an mds V. [3
The exchangeable sequence of a node is easily computed by the following

algorithm.
ALGORI3:HM 5.1. The following algorithm enumerates the exchangeable

sequence r/Jr, v]:sl r, Sl-1," ", So V in reverse order (if 0 is returned,
r/Jr, v] is e).

1. [Initialize.] := 0; So := v; q := v;
2. [Advance.] q := FATHER(q);
3. [Admissible?] if q is nonempty and admissible to Sl

then := + 1 and st := q;
4. [End of path?] il q r then go to 2,

else {ii q st then := 0}; terminate; (l is the length of the exchangeable
sequence, rt :st, &-l, ,So).

Now we consider a minimum ascending shift A[t, r]. In case that rr is
ascending, pj covers q if pj <qi <- Pi+l, and analogously to (5.1) we have:

(5.2) val(r)--- fr(qi).
i=1

LEMMA 5.3. Let [t, r]:qo t, ql,"" ", q,, =r(A) be an ascending path o] a
tree. With each node qi, for 1 <= <= n, we associate a "super-weight" W by:

Wo is not defined).

OPTIMUM SEQUENCE TREES 225

Then val(A[t, r])=--’,i=1 W/.
Proof. Let zr :Po t, Pl, ",P, r(A) be-an arbitrary ascending shift and

be the canonical value function associated with zr. We prove f,(qg)<-W for
each qg.

Suppose pj is the cover of qg with respect to r. Then we have p. < qg < p/l
and f,(qg) w,j. On the other hand W is the maximum weight of the codes which
are placed at the nodes strictly lower than qg. So we have f,(qg)<- W. Thus from
(5.2) we have val(r)=-Y.g=lf(qi)-i=l Wi. Since r is arbitrary, this shows
that val(A[t, r]) _-->-F.g= W/. But this lower bound can be achieved with Algorithm
5.2 below. El

ALGORITHM 5.2. The next algorithm enumerates an mas A[t, r]:so=
t, s,. ., s r on a path [t, r]:

1. [Initialize.] MAX := wt; := 1; so := t; q :-- t;
2. [Advance.] q :- FATHER(q);
3. [Compare.] if wt(q) >MAX then

{MAX := wt(q); st := q; l := + 1};
4. [Done?] if q r then st "=q and terminate, else go to 2;

5.2. An optimum insertion algorithm. A quasioptimum tree T[r, (a)] is
transformed into a preoptimum tree by a minimum shift/x [r(a), ,] from Theorem
4.2. The code a is shifted to one of its admissible nodes by/x. For simplicity of
notations, we denote the admissible nodes of a by numbers n, n- 1,..., 1, 0
from the root r to the external node successively (n denotes the root r and 0
denotes the external admissible node of a). Suppose the code a is shifted to a node
by/x[r, ,]. Then/x[r, ,] can be represented as a shift r,/x[i, ,]. Since/x[i, ,] is a

shift in the optimum subtree T[n-1], /x[i, ,] can be represented as/x[i, ,]
minA[i,y].V[y,,] from Theorem 3.5, where i_< y _< n-1. Generally
A[i, y]. V[y, ,] involves dummy cycles. However, if we select j as the smallest
(lowest) node on the path [/,n-l] which gives min A[i, y]. V[y,,], then
A[i,/’]. V[/’, ,] involves no dummy cycle (cf. the proof of Theorem 3.5). Hence it
coincides with [i, ,].

In a quasioptimum tree T[r(a)] the node to which the code a is shifted by
/[r, ,] is determined as a node x(0 <_ x _< n- 1) which minimizes (’- r)W, +
val(/x [x, ,]).

The above discussions can be summarized by the following algorithm.
ALORIT,M 5.3. This algorithm finds a minimum shift/x[r, ,] in a quasiop-

timum tree T[r(a)]. The admissible path of a is denoted by [0, n]. The nodes x and
y denote a node on the path [0, n- 1] and the top of/x[x, ,] respectively.

1. [Determine V.] Determine V[y, ,] for y < r on the admissible path of a,
i.e., for y [0, n 1];

2. [Loop on x.] Initialize MIN := nw, and /z := n, 0; then do step 3 for
x[1, n-l];

3. [Loop on y.] Do step 4 for y s Ix, n 1];
4. [Update /z.] Determine A[x,y] in V[y,.]T; and if (,--r)W,+

val(A. 7)-< MIN then update MIN and/x accordingly;
Further, the following two remarks can be proved on the algorithm.

226 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

(i) "Backtrackable" node x e [1, n- 1] can be restricted to a monotone
sequence of nodes il>’i2>-’">’i, such that Wil>=Wi2>=...>-wik (>wa). (If
Ws > wi for] < i, then can not be backtrackable.)

(ii) The minimum shifts A[x, y] can be determined actually in T and not in
’T.

Example 5.1. Consider a quasioptimum tree T[r(a)] that has T4 of Example
4.1 as its only subtree (Fig. 5.1). The admissible nodes of the code a are numbered
as 0, 1, 2, 3, 4 along a broken line which indicates the admissible path of a (wa, the
weight of the code a, is simply denoted by w in this example). The node P8 has no
son. This is because we restricted the code length to L 3. (Cf. Example 4.1.)
Table 5.2 shows possible combinations of x and y (x 0 and 1 _-<x -< y -< 3) and the
values of shifts corresponding to them. The corresponding trees are shown in Fig.
5.2. Figure 5.3 indicates the optimum domains of the resulting trees. Note that Tc
coincides with Tb, and [Tb[-" [Tc[< Tal, [Tel < Tr[. Also note that each of the cases
d, f and g of Table 5.1 has an equivalent tree (cf. T3 and T32 of Fig. 4.2). When
w _-> 8, the tree T[r] becomes regular, and hence from Lemma 5.2 a minimum shift
/x[r, .] coincides with one of the exchangeable sequences of Table 5.1. (Table 5.1
shows all exchangeable sequences originating from r and terminating at an
external node). If 8 _-< w _-< 16, */2 becomes a minimum, while if 16 _-< w, then */4 or
’16 is a minimum. This observation is in accordance with Fig. 5.3.

]38

v v v v4 v5 % v,
FIG. 5.1 A quasioptimum tree

6. Implementations ol the algorithms. In this section an upper bound on the
number of operations needed to optimize a tree according to Algorithm 4.1
(bottom-up optimization) is evaluated very roughly. First we evaluate the number
of operations to find 7[r, ,] and A[,, r]. Then we consider/z[r, ,] of a quasi-
optimum tree. According to the bottom-up optimization algorithm the number of

OPTIMUM SEQUENCE TREES 227

FIG. 5.2. Transformed trees

operations to optimize a tree is the sum of operations to optimize all subtrees of
the tree. The number of operations to optimize a quasioptimum subtree T[r(a)] is
the sum of operations to find and perform/x[r, ,] of the quasioptimum subtree and
A[,, r] of the resulting preoptimum subtree.

6.1. Computations of V[r, ,] and z[,, r]. To find a minimum descending
shift V[r, v] on the path It, v], Algorithm 5.1 needs v r admissibility tests (or in
short, A-tests).

228 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

4O

3O

21
20

10

w+21

cosf increose

3w+2.
//

//

0
(weight)

FIG. 5.3. Optimum domains ofthe trans[ormed trees

Similarly, to find a minimum ascending shift A[t, r] on the path [t, r],
Algorithm 5.2 needs - weight comparisons (in short, C-tests).

Now consider the number of tests needed to find V[r, ,] in an quasioptimum
tree Tit]. We must minimize the value of V[r, v] over the set of external nodes v of
T. The corresponding number of A-tests is thus bounded by:

(6.1) E (4 C).
vr

This bound is not tight (observe that r/Jr, v] is e, when v and CODE(r) are not on
the same side of the root r).

OPTIMUM SEQUENCE TREES 229

TABLE 5.1
Exchangeable sequence "0i[r, /)i]

"02

"03

"04

"05

"06

"07

Sequence

r, P2, P5, /)2

r, P2, /)3

r, Pl, P6, /)4

r, Pl, /)5

r, Pl, P3, P7,/)6

r, pl, P3,/)7

Value

2w+5

2w+6

w+21

w+24

w+21

w+22

Case

a

b

d

e

g

TABLE 5.2

Computation ofa minimum shift

(ex er)"

4w

3w

3w

3w

-3

-3-2

3+2

8+7+6

Total

4w

3w+2

3w+2

3w+16

2w

2w -3

3+2

8+7+6

8+7+6

2w+5

2w+18

w+21

In the same way, to find A[,, r] in a preoptimum tree T[r], we must minimize
the value of A[t, r] over the set of leaves t of T. The corresponding number of
C-tests is thus bounded by"

(6.2) (6- C).
tT

Note that this evaluation is tight in the sense that this is necessary to determine
A[,, r]. In addition to these operations we need as many "value comparisons" as
the number of external nodes and leaves to determine the minimum V and A

respectively. These value comparisons, identified as weight comparisons, can be
neglected.

230 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

As for storage we must always keep in memory a minimum shift up to the v or
t that is processed at that time. The amount of storage needed for this shift is
bounded by the height, the length of the longest path of the leaves, of T[r]. In the
following discussions we focus our attention only on the numbers of A-tests and
C-tests, because they are characteristic to this optimization procedure. The
number of operations needed to perform a shift is always less than (or equal to) the
number of operations needed to find the shift (within a constant factor). There-
fore, we can neglect it, and other auxiliary operations such as tree traversal can be
neglected too.

6.2. Computations of/, [r, ,]. The computation of/x[r, ,] of a quasioptimum
tree in Algorithm 5.3 can be considered to consist of mainly the following two
parts. Let [0, n]:0, 1, , n r be the admissible path of the code placed at r.

1. Computation of V[y, ,] for all 1 _< y _< n- 1.
2. Computation of A[x, y] for all 1 _< x _< y _< n 1, and value comparisons

(C-tests) for updating/z.
The numbers of operations for these computations are considered separately.

(We excluded the trivial case of x 0 or y 0 from consideration.)
From (6.1) the number of operations for the computation of V over Tit] is

bounded by:

(6.3) E (go g,)
y=l veT[y]

Let us denote the height and the number of nodes of T[y] by Hy and Ny
respectively. Then (6.3) is bounded by:

n--1

(6.4) Y. (Ny + 1)(Hr + 1)-< (n- 1)(N, + 1)(H, + 1).
y=l

According to the two remarks on Algorithm 5.3, we can immediately
determine A[x, y] for any 1 "< x _< y _< n- 1, if we previously determine all the
backtrackable nodes. The backtrackable nodes are determined by scanning the
admissible path [0, n] with n C-tests. Thus the computation for all &Ix, y] is
bounded by n C-tests. Necessary C-tests for updating tx are bounded by

"- (n-x) n(n- 1)/2. Thus the total number of C-tests is bounded by:

(6.5) n(n+l)/2.

As for storage we need to memorize V[y, ,] for each y (1 _< y _< n-1).
However, linked list structure can save the memory, because V[y a, ,] is strictly a
subsequence of ’[y, ,] if y V[y, ,]. Hence the total storage for all 7[y, ,] is
bounded by N, (the storage for the links is neglected). The storage locations used
for the current best A[x, y] is bounded by n. Hence the total storage locations
needed to compute/x[r, ,] are bounded by:

(6.6) N, + n.

6.3. An upper bound of the computation of Algorithm 4.1. To transform a
quasioptimum subtree into an optimum subtree,/x[r(a), .] and A[., r(,)] should

OPTIMUM SEQUENCE TREES 231

be performed successively. From (6.2) the number of operations to find A[,, r(A)]
is bounded by:

(6.7) Y. ((,- (r) <----HnNn.
tT[r]

Thus from (6.4), (6.5) and (6.7) the number of operations needed to optimize a
given quasioptimum subtree Tit(a)] is bounded by:

(6.8) (n 1)(Nn + 1)(H,, + 1)a +(n(n + 1)/2 +HN)fl,

where c and/3 denote the number of primitive operations (say, in terms of
memory cycles) needed for an admissibility test (A-test) and a weight comparison
(C-test) respectively. As for storage we must add the storage locations for
A[,, r(A)] to (6.6). Hence we have an upper bound of:

(6.9) N,,+H,,+n.

Suppose a given tree T has N codes and its height is M. We perform the
optimization of T according to Algorithm 4.1. The shapes of subtrees change in
general by the optimization. Since the height of a subtree increases by at most one
by the sul3tree optimization, the height of a subtree does not exceed 2M at any
moment of the optimization. The numbers of leaves and external nodes are
bounded by N and N+ 1 respectively. Thus we have n -< 2M, Nn _-< N and H, <N
for all n. Hence by (6.8) the computation of a subtree optimization is bounded by
about 2MN2a + (2M2+ N2)fl. Thus summing this over N subtrees we have an
upper bound 2MNaa + (2M2N+ N3)fl to optimize a tree. Since a and/3 are both
O(1) in practical situations, and further, from log N_-< M_-< L and M is at most
O(N), this upper bound can be expressed as O(NaL). From (6.9) the storage is
bounded by O(N).

In case that T is a prefix tree with the height M, we have only to compute and
perform A[,, r] for each r T, and the number of C-tests is bounded by:

TrT[r] T

Since we have M_-< L, the upper bound becomes O(N2L). The storage is O(N). In
particular, when T is a full prefix tree with N= 2, the order becomes
O(N2 log N).

7. Conclusions. We have described properties of sequence trees. Necessary
and sufficient conditions of optimum sequence trees are given. The following
algorithms are shown: 1. construction of an optimum tree from a given code set, 2.
optimization of a given tree, 3. optimum insertion and 4. optimum deletion. The
number of operations needed to optimize a tree using the bottom-up optimization
algorithm is shown to be bounded by O(NaL), where N and L are the number of
keys and the length of coded keys.

Another optimization problem, very similar to optimum sequence trees, is
one about optimum search trees. Much research has been devoted to optimum
search trees (see [2], [4] and [5]); however considerations in these papers are

232 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

limited to the construction of optimum trees. The transformations of search trees
are considered in [6] only with the case of uniform weights. Investigations of
optimum search trees from the standpoint of optimization algorithms seem
unsatisfactory at the present time.

We have discussed binary trees; however it is obvious that every notion such
as admissibility, p-sequence and regularity can be extended to general (M-ary)
trees without essential changes. Thus the results of this paper are valid also for
M-ary trees.

As for unsuccessful searches [5], the "unsuccessful" notion of sequence trees
does not correspond to that of search trees; the weights associated with external
nodes do not mean the betweenness frequencies in the sense of search trees.
However our results can be extended to unsuccessful searches if we slightly
modify the formulation. In a sequence tree we may consider that unsuccessful
searches are guided by "unsuccessful" codes. The empty nodes at the bottom of a
prefix tree correspond to these codes. We call them unsuccessful codes (in short
u-codes, while the members of a given code set C are called s-codes). We assume
that every code (including u-code) has its weight. Since an internal node with a
u-code has no significance in searching, we consider trees where with every
external node a set of admissible u-codes is associated and every internal node has
an s-code (we call these trees extended packed trees). Thus the unsuccessful
searches are taken into consideration, the cost of a tree T can be defined by:

IT] Y wt(p)(lev(p)+l)+ F. wt(v)(lev(v)),
p:internal external

where the weight of an external node v is defined by the sum of all weights of
admissible u-codes of v. A shift operation 7r "Po, Pl, Pn should be restricted so
that either it originates from a leaf or it terminates at an external node and it
should be modified. The s-codes at Pi for 1,. , n- 1 are moved as before,
and furthermore the following two operations are performed as shown in Fig. 7.1:

1. join: The set of u-codes associated with Po in rT is the join of the two sets
of u-code associated with V and v2 in T.

2. fork: The set of u-codes associated with Pn in T is divided into two sets
accordingly in 7fT.

Now for the transformations of extended packed trees, it suffices to consider
the set of cycles and the shifts described above.

The effect of optimization for a code set can be measured by the "compres-
sion" index K defined by the ratio of the cost of an optimum tree to the average
cost of random trees. According to our preliminary simulation with L 10 and
N 200, the results are: with the uniform weights we have K-4--0.90, while with
the "80-20" distribution rule [5] we have -+-0.50.

Some related open problems are as follows:
1. Changing the definition of the cost to the weighted leaf path length defined

by

ITI 2 wt(t)(lev(t)+ 1),

OPTIMUM SEQUENCE TREES 233

join

fork

FIG. 7.1. Forkandjoin W= W1 + W2

where t is a leaf of a packed sequence tree T, which yields another optimization
problem;

2. Theoretical and experimental evaluations of optimization procedures and
effectiveness of the optimization;

3. Finding another optimization scheme, not the bottom-up one described
here, having less operations;

4. Construction of nearly optimum trees with fewer operations.

Acknowledgment. The authors are grateful to the referees for a
truly extraordinary amount of help which has led to improvements of the
manuscript. The authors thank for the valuable discussions Dr. Koji Torii and Mr.
Akito Sakurai. They also thank Drs. Hiroji Nishino, Kazuo Kurokawa, Osamu
Ishii and Ryota Suekane of the Electrotechnical Laboratory for providing an
opportunity to do this research.

REFERENCES

[1] E. G. COFFMAN, JR. AND J. EVE, File structure using hashing functio!s, Comm. ACM, 13
(1970), pp. 427-432, 436.

[2] T. C. Hu AND A. C. TUCKER, Optimal computer search trees and variable-length alphabetical
codes, SIAM J. Appl. Math., 21 (1971), pp. 514-532.

[3] D.E. KNUTH, TheArtofComputerProgramming, vol. 1, Addison-Wesley, Reading, MA, 1968.
[4], Optimum binary search trees, Acta Informat., (1971), pp. 14-25.
[5] The Art of Computer Programming, vol. 3, Addison-Wesley, Reading, MA, 1973.
[6] W. A. MARTIN AND D. N. NESS, Optimizing binary trees grown with a sorting algorithm, Comm.

ACM, 15 (1972), pp. 88-93.

234 M. MIYAKAWA, T. YUBA, Y. SUGITO AND M. HOSHI

[7] M. MIYAKAWA, T. YUBAAND M. HOSHI, Construction ofoptimum sequence trees with weighted
codes, Res. Rep. Inst. Electronics and Communication Engrs. of Japan, EC72o35 (1972).

[8] Y. SUGITO, T. YUBA AND K. TORII, Optimization ofsequence hash trees using prefix hash trees,
Proc. Joint Convention Rec. of Four Electrical and Electronics Institutes of Japan, No. 1063,
1971, Inst. Electronics and Communication Engrs. of Japan, Tokyo, 1971.

[9] T. YUBA AND M. MIYAKAWA, Optimum sequence hash trees, Trans. Inst. Electronics and
Communication Engrs. of Japan, 56-D (1973), pp. 9-16; Systems-Computers-Controls, 4
(1973), pp. 10-17.

10] T. YUBA, M. MIYAKAWAAND M. HOSHI, Optimization problems ofsequence trees, Trans. Inst.
Electronics and Communication Engrs. of Japan, 57-D (1974), pp. 238-239.

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

A BEST POSSIBLE BOUND FOR THE
WEIGHTED PATH LENGTH OF BINARY SEARCH TREES*

KURT MEHLHORN

Abstract. The weighted path length of optimum binary search trees is bounded above by
Y’./3i +2 a. +H where H is the entropy of the frequency distribution, /3i is the total weight of the
internal nodes, and aj is the total weight of the leaves. This bound is best possible. A linear time
algorithm for constructing nearly optimal trees is described.

Key words, binary search tree, complexity, average search time, entropy

One of the popular methods for retrieving information by its "name" is to
store the names in a binary tree. We are given n names B1, Be, , Bn and 2n + 1
frequencies 1," ", fin, aO," ", an with /3i +Y aj 1. Here ji is the frequency
of encountering name Bi, and aj is the frequency of encountering a name which
lies between B and B/I, a0 and an have obvious interpretations [4].

A binary search tree T for the names B1, B2, , Bn is a tree with n interior
nodes (nodes having two sons), which we denote by circles, and n + 1 leaves, which
we denote by squares. The interior nodes are labeled with the B in increasing
order from left to right and the leaves are labeled with the intervals (Bi, B//I) in
increasing order from left to right. Let b be the distance of interior node B from
the root and let aj be the distance of leaf (Bi, Bi/I) from the root. To retrieve a
name X, bi + 1 comparisons are needed if X B and ai comparisons are required
if Bi <X< Bj/a. Therefore we define the weighted path length of tree T as:

P= i bi .-I-1) + c,a,.
i=1]=0

It is equal to the expected number of comparisons needed to retrieve a name.
In [4] D. E. Knuth gives an algorithm for constructing an optimum binary

search tree, i.e., a tree with minimal weighted path length. His algorithm operates
in O(n2) units of time and O(n2) units of space. In [6] we discuss the following
"rule of thumb" for constructing nearly optimal binary search trees: choose the
root so as to equalize the total weight of the left and right subtree as much as
possible, then proceed recursively. The weighted path length of a tree constructed
according to this rule is bounded above by 2+1.44.H, where H=
Y fli log (1/fli)+ ce log (1/at) is the entropy of the frequency distribution. This
bound was-recently improved by P. J. Bayer [1] to 2+H. Here we discuss a
different rule of thumb suggested by [3] and prove the upper bound 1 + Y, cei+H
for the weighted path length. This bound is best possible.

The rule presented here as well as the rules described in [6] can be
implemented to work in linear time and space ([2]).

* Received by the editors September 24, 1975, and in revised form June 1, 1976.
t Universitfit des Saarlandes, 66 Saarbriicken, West Germany

235

236 I,:URT MEHLHORN

We describe and analyze an approximation algorithm. The algorithm con-
structs binary search trees in a top-down fashion. It uses bisection on the set

i-1 o
S S E Olp -l- 3p -- 3 --- and 0_-<i_<-n

p=O

i.e., the root () is determined such that Sk_ and Sk 51/2. It then proceeds
recursively on the subsets {si; <-_.k 1} and {si; _-> k}. In the definition of the si’s
we assumed/30 0 for ease of writing. The main program

begin
i--1

let S - Ep=O (OZp 21- 3p) -at- 3i "+" ceil2 for 0 _--< _--< n;
construct-tree (0, n, 0, 1)

end
uses the recursive procedure construct-tree:

procedure construct-tree (i, j, cut,/);
comment we assume that the actual parameters of any call of construct-tree satisfy
the following conditions.
(1) and j are integers with 0 <- <j <- n,
(2) is an integer with _-> 1,

1-1 2_p(3) cut= p-1Xp with x. {0, 1} for all p,
<S e <C,,t+ -l+f(4) cut= i----,j---

,
A call construct-tree (i, /’, --, --,) will construct a binary search tree for the nodes
(L_,""", (]) and the leaves [L""", -];
begin
if + 1 j (Case A)
then return the tree shown in Fig. 1.
else comment we determine the root so as to bisect the interval

(cut, cbtt+ 2-1+1)
begin
determine k such that
(5) <k <=
(6) k + 1 or Sk- <= cut / 2-l

(7) k j or Sk cut + 2-l

comment k exists because the actual parameters are supposed to satisfy
condition (4);
if k + 1 (Case B)
then return the tree shown in Fig. 2;
if k j (Case C)
then return the tree shown in Fig. 3;
if + 1 < k <j (Case D)
then return the tree shown in Fig. 4;
end

end procedure construct-tree;

WEIGHTED PATH LENGTH OF BINARY SEARCH TREES 237

FIG.

construct-tree (i + 1,], cut + 2-t, + 1)

FIG. 2

construct-tree (i,]- 1, cut, + 1)
]

FIG. 3

construct-tree (i, k 1, cut, + 1) construct-tree (k, j, cut + 2-t, + 1)

FIG. 4

LEMMA. The approximation algorithm constructs a binary search tree whose
weighted path length Papprox is bounded above by 1 + Y’, aj + H.

Proof. We state several simple facts.
FACT 1. If the actual parameters of a call construct-tree (i, j, cut, l) satisfy

conditions (1) to (4) and + 1 , then a k satisfying conditions (5) to (7) exists and
the actual parameters of the recursive calls of construct-tree initiated by this call
again satisfy conditions (1) to (4).

Proof. Assume that the parameters satisfy conditions (1) to (4) and that
+ 1 j. In particular, cut <- sj <- cut + 2-+ 1. Suppose, that there is no k, <. k <j,

with Sk_l <--cut + 2-1 andsk >--cut + 2-l. Then either for all k, <k <-],Sk <cut + 2-l

or for all k, < k <-], Sk > cut + 2-1. In the first case k] satisfies (6) and (7), in the

238 KURT MEHLHORN

second case k i+ 1 satisfies (6) and (7). This shows that k always exists. It
remains to show that the parameters of the recursive calls satisfy again (1) and (4).
This follows immediately from the fact that k satisfies (5) to (7) and that + 1 # j
and hence sk >- cut + 2- in Case 13 and sk-1 -<_ cut + 2- in Case C. Q.E.D.

FACT 2. The actual parameters of every call of construct-tree satisfy condi-
tions (1) to (4) (if the arguments of the top-level call do).

Proof. The proof is by induction, Fact 1 and the observation that the actual
parameters of the top-level call construct-tree (0, n, 0, 1) satisfy (1) to
(4). Q.E.D.

We say that node @ (leaf resp.) is constructed by the call construct-tree
(i,], cut, 1) if h (h or h j) and Case A is taken or if h + 1 (h i) and
Case B is taken or if h =] (h]) and Case C is taken or if h k and Case D is
taken. Let bi be the depth of node @ and let aj be the depth of leaf]] in the tree
returned by the call construct-tree (0, n, 0, 1).

FACT 3. If node (R) (leaf -] is constructed by the call construct-tree
(i, j, cut, 1), then bh + 1 (ah 1).

Proof. The proof is by induction on l.
FACT 4. If node ((leaf]) is, constructed by the call construct-tree

(i,], cut, l), then <-_ 2-+ (aa -< 2-+2).
Proof. The actual parameters of the call satisfy condition (4) by Fact 2. Thus

2-‘+’ ->sj-s, (a, + ci)/2 -+ i+1 - ofi+l +-""" "-j
>- flh (resp. a/s). Q.E.D.

FACT 5. The weighted path length Papprox of the tree constructed by the
approximation algorithm is bounded above by fli + 2 cei + H.

Proof.

Papprox , [i(bi-k- 1)+ Y. ciaj

--<E/3i(log (1//3i) + 1) + ’. cg(log (1/cej) + 2)

-<_Z/j+2 Y, j+H. Q.E.D.

THFOREM. Let ao, 1, 1, , ,, ce, be anyfrequency distribution, letPopt be
the weighted path length of the optimum binary search tree for this distribution, let
Papprox be the weighted path length of the tree constructed by the approximation
algorithm, and let H -Y. i log/3-Y aj log c9 be the entropy of the frequency
distribution. Then

Popt < Papprox < A- 2. Y c9 + H.

Furthermore, this upper bound is the best possible in the following sense" if
Cl fl + c2 ai + c3" His an upperboundforPopt, thencl >-_ 1, c2 >- 2, andc3 >- 1.

Pro@ The first part of the theorem follows from the preceding lemma. The
second part is proven by exhibiting suitable frequency distributions:

C 1" Take n 1, c0 c1 0 and fll 1.
c2 2" Take n 2, c0 o2 =/1 2 0, o 1.
c3 -> 1" Take n 2k 1,/31 0 for all and aj 2-k for all j.

WEIGHTED PATH LENGTH OF BINARY SEARCH TREES 239

It is easy to see that the complete binary tree is the optimal binary search tree
for this distribution. Thus

H= log (n + 1)= k E (1/2k) k Popt. Q.E.D.
leaves

REFERENCES

1] P.J. BAYER, lmproved bounds on the cost ofoptimal and balanced binary search trees, M.Sc. thesis,
Mass. Inst. of Tech., Cambridge, MA, 1975.

[2] M. L. FREDMAN, Two applications of a probabilistic search technique: SortingX+ Yand building
balanced search trees, 7th Symp. on Theory of Computing, Albuquerque, NM., 1975.

[3] E. N. GILBERT AND E. F. MOORE, Variable-length binary encodings, Bell System Tech. J., 38
(1959), pp. 933-968.

[4] D. E. KNUTH, Optimum binary search trees, Acta Informatica, (1971), pp. 14-25.
[5] The Art of Computer Programming, vol. 3, Addison-Wesley, Reading, MA., 1973.
[6] K. MEHLHORN, Nearly optimal binary search trees, Acta Informatica, 5 (1975), pp. 287-295.

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

QUICKSORT WITH EQUAL KEYS*

ROBERT SEDGEWICK?

Abstract. This paper considers the problem of implementing and analyzing a Quicksort program
when equal keys are likely to be present in the file to be sorted. Upper and lower bounds are derived on
the average number of comparisons needed by any Quicksort programwhen equal keys are present. It
is shown that, of the three strategies which have been suggested for dealing with equal keys, the
method of always stopping the scanning pointers on keys equal to the partitioning element performs
best.

Key words, analysis of algorithms, equal keys, Quicksort, sorting

Introduction. The Quicksort algorithm, which was introduced by C. A. R.
Hoare in 1960 [6], [7], has gained wide acceptance as the most efficient
general-purpose sorting method suitable for use on computers. The algorithm has
a rich history: many modifications have been suggested to improve its perfor-
mance, and exact formulas have been derived describing the time and space
requirements of the most important variants [7], [9], [14].

Although most files to be sorted contain at least some equal keys and sorting
programs must always deal with them properly, it is generally considered reasona-
ble to assume in the analysis that the keys are distinct. This assumption is
fundamental to the analysis of nearly all sorting programs, and it is very often
realistic. In any situation where the number of possible key values far exceeds the
number of keys to be sorted, the probability that equal keys are present will be
very small. However, if the number of possible key values is not large, or if there is
some other information about the file which indicates that equal keys are likely to
be present, then the performance of many sorting programs, including Quicksort,
has not been carefully studied.

The purpose of this paper, then, is to investigate the performance of
Quicksort when equal keys are present. The following section describes the
algorithm and its analysis for distinct keys. Next, lower and upper bounds are
derived for the average number of comparisons taken when equal keys are
present. Following that, we shall consider, from a practical standpoint, the
problem of implementing a version of Quicksort to handle equal keys. Finally we
shall compare the various methods and discover which is the most useful in
practical sorting applications.

1. Distinct keys. Suppose that an array of keys A[1],..., A[N] is to be
rearranged to make

A[1]<A[2]<... <A[N],

where the order relation < is any transitive relation whatever defined on all the
keys.

* Received by the editors September 2, 1975, and in revised form May 3, 1976.

" Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912. This
work was supported in part by the National Science Foundation under Grants GJ-28074 and
MCS75-23738, and in part by the Fannie and John Hertz Foundation.

240

QUICKSORT WITH EQUAL KEYS 241

Quicksort is a "divide and conquer" approach to this problem. For some key
with value v, the file is rearranged so that A [/’] v for some], 1 _-<] _-< N, all of the
keys to the left of A[/’] are <v and all of the keys to the right of A[]] are >v. This
process is called partitioning, and it turns out that it can be performed efficiently.
After partitioning, the key A[]] is in its final position in the sorted file and need
not be considered further. If the same procedure is applied recursively to the
subfiles A [1],. ., A [/" 1] andA[f + 1],. ., A[N], then the whole file becomes
sorted. The following program is an implementation of the method, and the
partitioning process is spelled out explicitly.

PROGRAM 1.
procedure quicksort (integer value l, r);

comment The array A is declared to be A 1 N+ 1]; with A[N+ 1] oo;
ff r > then

:= l;/" := r+l; v := A[l]
loop:

loop: := + 1; while A [i] < v repeat;
loop: := j-1; while A[j]>v repeat;

until j < i"
A[i] :=: A[/];

repeat;
AE1] :=: A[/’];
quieksort(/,/’- 1);
quicksort(i, r);

endif;
(This program uses an exchange operator :=’, and the control constructs
loop. repeat and if. then. endif, which are like those described by D. E.
Knuth in [I0].) The leftmost element is chosen as the partitioning element, and
then the rest of the array is partitioned on that value. This is done by scanning from
the left to find an element >v, scanning from the right to find an element <v,
exchanging them, and continuing the process until the scanning pointers cross.
The loop always terminates with/" + 1- i, and it is known at that point that
All + 1],... ,A[]] are <v and A[] + 1],..., A[r] are >v, so that the exchange
A[l] :=: A[/’] completes the job of partitioning A[l],..., Air]. The procedure
call "quicksort(1, N)" will therefore sort A [1],. , A[N]. Figure 1 shows the
operation of the program on the first 9 distinct digits of

3 1 4 5
2 1()5

123

92687
94687

4@9687
76 S(
6 () 8

456789
FIG. 1

A number of different partitioning methods have been suggested for the
implementation of Quicksort, and the particular method described above is

242 ROBERT SEDGEWICK

motivated fully in [14]. There are, however, some facets of the implementation
which should be noted here.

The loops which implement the pointer scans are the "inner loops" of the
program--most of the execution time is spent there. (This fact comes from the
analysis, which is discussed more fully below.) Some efficiency is achieved in the
inner loops by introducing two redundant comparisons to avoid the necessity for
checking if the pointers have crossed each time a pointer is changed. The last
comparison in each of the loops is redundant: the last := + 1 makes f and it is
known that A [/’] > v at that point (provided that AIN+ 1] is greater than all the
other keys--this is the meaning of the notation A[N+ 1] oo); the last/" :=/"- 1
makes/’=i-1 and it is known that A[i-1]<=v at that point. Program 1 uses
N+ 1 comparisons on the first partitioning stage when only N- 1 are absolutely
necessary, but its inner loop is much more efficient as a result.

Although the above program gives a very efficient implementation of parti-
tioning, there are a number of ways that the program as a whole can be made more
efficient. It turns out that efficiency can be gained by choosing the partitioning
element based on a small sample from the file; by removing the recursion and
always sorting the smaller of the two subfiles first; and especially by handling small
subfiles differently. All of these improvements are documented in [9] and [14],
and they apply uniformly to all of the programs that we will consider.

We can derive exact formulas fbr the total average running time of Ouicksort
by solving recurrence relations which describe the average number of times the
various statements in the program are executed. In this paper, we shall be
concerned chiefly with the average number of comparisons" the average number
of times the tests "A[i] < v" and "A [/’] > v" are performed during the execution
of Program 1 on a randomly ordered input file. If we denote this quantity by CN,
we find that it is described by the recurrence

1
C=N+I+ E (C,_+CI_,),

l<=k<__N

2 E Ck-iN+ 1+1-

N_>_2

with Co C1 0. The N+ 1 term represents the number of comparisons used on
the first partitioning stage, and the other term represents the average number of
comparisons used for the subfiles. By writing this recurrence, we have made the
important assumption that the partitioning process preserves randomness in the
subfiles: if the original file is a random permutation of its elements, then the left
and right subfiles will also have this property. It is easy to prove that the
partitioning method in Program 1 preserves randomness, but there are partition-
ing methods which do not (see 10], 14]).

To solve the recurrence, we first multiply by N and then eliminate the
summation by differencing (subtracting the same equation for N-I). After
rearranging terms, we get

NCN=(N+I)CN_I+2N, N>-3,

QUICKSORT WITH EQUAL KEYS 243

which, after we divide by N(N+ 1), telescopes to the solution

2
T-* E

3_-<_-< k + 1

or

CN 2(N+ 1)(Hu+x --), N=>2.

This shows that Quicksort achieves the theoretical minimum of O(NlogN)
comparisons on the average. In a similar fashion, the average number of times
each of the other statements in Program 1 is executed can be calculated exactly. If
the time taken to execute each statement is also known, then we can get an exact
formula for the total expected running time of Program 1 (see [9] and [14]).

In studying the performance of Quicksort with equal keys, we will deal chiefly
with the average number of comparisons, not with the total running time. Analysis
shows that the comparisons do dominate (though there is about one exchange for
every three comparisons) and the calculations become tedious when dealing with
the total running time. We will be comparing the relative performance of a
number of very similar variants of Quicksort, and we can be fairly certain that
conclusions that we draw based on the number of comparisons will carry through
to the total running time. It is nearly always the case that if one version of
Quicksort uses a lower number of comparisons than another, then the frequencies
of execution of all of the other instructions are also lower.

It is intuitive that Quicksort performs best when the partition happens to be
near the middle of the file at each stage, and worst when the partition falls near the
ends. (The exact analysis of the best and worst case for practical versions of the
program is interesting and complex, but not particularly relevant to the study of
Quicksort with equal keys.) For Program 1, it turns out that the worst case for the
number of comparisons (and for the whole algorithm) occurs when the file is
already in order, and partitioning does nothing but take one key from the left end
of the file at each stage. The total number of comparisons in this case is
2<_k<__N(k d- 1) 1/2(N+ 4)(N- 1). This O(N2) worst case is often viewed as Quick-
sort’s weakness, but there are many ways to avoid it in practical situations. It will
be a concern when we begin to consider equal keys. On the other hand, the best
case occurs when the file is split exactly in half at each stage, and the total number
of comparisons taken turns out to be less than N lg N (lg-log2). A complete
discussion and derivations of exact upper and lower bounds for Quicksort may be
found in [14].

In summary, the operation of Quicksort on files of distinct keys is very
completely understood. Unfortunately, few of the results carry over to the case
when equal keys are present. Before examining the question of actually imple-
menting a program to handle equal keys properly, let us look more carefully into
the analysis, so that we may get some idea of how well we might expect to do.

2. Basic assumptions. The first problem that we face in trying to analyze any
sorting method with equal keys is the formulation of an appropriate model
describing the input file. Suppose that the N keys to be sorted have n distinct
values. Since we only use the relative values of the keys in sorting, we may as well

244 ROBERT SEDGEWICK

assume that the values are 1, 2, , n. If we also know that there are xl ones, x2
twos, etc., then we might consider each of the N! permutations of the multiset
{xl. 1, x2.2,...,xn, n} (where x+...+xn =N) to be equally likely as input
files. If this additional information is not available, a second possibility would be to
assume that each of the nN ways of making an input file of lengthNfrom n distinct
values is equally likely. (Notice that many of the possible input files have less than
n distinct values in this model.) While one or the other of these models might be
appropriate for some particular sorting applications, neither is entirely satisfac-
tory as a general model. We shall work to some degree with both. When we speak
of sorting a random permutation from a multiset, we will be referring to the first
model; when we refer to a random n-aryfile, we will be working with the second.

Now, if we wish to use Quicksort to sort a file containing equal keys, we must
decide how to treat keys equal to the partitioning element during the partitioning
process. Ideally, we would like to get all of them into position in the file, with all
the keys with a smaller value to their left, and all the keys with a larger value to
their right. Unfortunately, no efficient method for doing so has yet been devised,
so we shall have some keys equal to the partitioning element in the left subtile and
some in the right. We shall use the term Quicksort program to describe any
program which sorts by recursively subdividing files of more than one element into
three subfiles" a (nonempty) middle subtile whose elements are all equal to some
value/’; a left subtile with no elements >f; and a right subtile with no elements <f.
The only further restrictions are that the value s must be chosen by examining one
element from the file, and that if the input file is randomly ordered, so must be the
subfiles. With these assumptions, we can write down a recurrence for the average
number of comparisons to sort a random permutation from the multiset
{x 1,. , x n} (with x +. +x N) for any Quicksort program:

1
C(Xl,’’’, Xn) N+ 1+ (C(x,’’’, xi-1, a)N! all permutations

of{xl 1,’",Xn n}

+c(, x+, x,)).

(The notation C(/3, Xi+l,’’’ ,x,) is defined to mean C(/3) when/" n.) This
formula assumes that N+ 1 comparisons are used in the first partitioning stage.
The keys equal to the partitioning element are distributed among the subfiles in
some way, as described by the parameters ce and/3, which are functions of the
partitioning method and the particular permutation being sorted. (By assuming
that at least one element is put in position, we are assuming that ce +/3 < xi.) We
will use various initial conditions in the derivations below to complete this
recurrence.

3. Lower bounds. From this formula we can begin to derive a lower bound
on the number of comparisons, for, as we have already noted, the best that we can
do with any partitioning method is to get all of the keys equal to the partitioning
element into position at each partitioning stage. If the partitioning element is
chosen randomly, then each of the xi(N-1)! permutations for which/" is the
partitioning element will be divided into a left subtile which is a random permuta-
tion of {x. 1, , xi_a. (/’- 1)} and a right subtile which is a random permutation

QUICKSORT WITH EQUAL KEYS 245

of {X]+I" (]-[" 1),...,x,,. n}. This means that a lower bound on the average
number of comparisons used is certainly described by the recurrence

1
C(X1,"’,Xn)--N-I+ E x(C(x, x_) + C(x+, x,,)),

for N and n ->_ 1, with C(0) C(1) 0. (As remarked above, only N- 1 compari-
sons are absolutely necessary for the first stage.) To solve this recurrence, we will
try to eliminate the summation by differencing, as we did above. If we multiply
both sides by N, and then subtract the same equation for {x2" 1, , x (n 1)},
we get

(I<]<nX])C(xI’ Xn)--(2<=]<_nX]) C(x2’ Xn)

=Xal--Xi q"2X1 x]’--x1C(x2, ,Xn)
2<]<=n

+ E x(C(x," ",xi_)-C(xa,’",x]_)) for n >1.

After rearranging terms and defining
C(x, , x,,), this equation becomes

G(x1,’." ,In)’-- C(XI,"" ",Xn)

E x])G(xI," ",Xn)--x-xl-l-2Xl

+ xG(xl,"’,xi_I) forn>_-l.
2]n

Now we difference again, except this time we subtract the same equation for
{x. 1, x. 2,. .,x_. (n-l)} to yield

2XlXn "Jv XnG(X1, Xn-1) for n >_- 2,

or

G(x1, Xn)= G(x., Xn-’) + 2XlXn
X .nt- .-[-. Xn

This equation telescopes to

G(x, x,) G(Xl) -[- E 2xlxi
2<_]<=n X " "[- X]

(This formula assumes that xlxi/(xl+’"+x])=O if x=xi=0, even if
x2,’’’, x_ are also 0. We shall adopt this convention throughout this paper.)

After substituting for G, we get another telescoping recurrence,

C(Xl, Xn) C(x2, Xn) "[- C(X1) -[- 2
XlX

-at-. "-!- X]

246 ROBERT SEDGEWICK

which leads to the result

C(x,...,x)= Y, C(x)+2 E x,x
l<=]<_n l<_k<j<=n Xk q"" -I-XI

This derivation was suggested by the analysis given by Burge [3] for a similar
problem which we will discuss below. The formula is surprisingly simple, and it can
tell us exactly how well we can expect to do in a variety of situations. For example,
if xj x for 1 _-<] _-< n, then we have

C(x, x N- n +2
X

l<=k <<=,, j k + 1

=N-n+2
N Y y 1
n l<]<__n l<k<_i k

+2N_ n-k+l
=N-n

n l<k<_n k

2(1 + 1/n)NH,,-3N-n.

If we take x 1 (and therefore n N), then we have analyzed Program 1 with
distinct keys, and this result differs from the answer in the previous section only
because we used the lower bound of N-1 comparisons for the first partitioning
stage.

We can proceed further, and use the general result for a random permutation
of a multiset to derive a lower bound for a random n-ary file. If CNn is defined to be
the average number of comparisons taken by a Quicksort program on random
n-ary files of length N, then we have

Cu, -w Y C(x, x,).
n x.+...+xrt=N Xl Xn

This is true because the probability that a given input is a permutation of a
particular multiset {Xl 1, , xn n } is

Therefore, our lower bound is given by

n--- C(x, + 2
x.+"’+xr=N Xl Xn 1=

XkXyY +-:::+<--k <j<=n Xk X]

The first term is easy to evaluate, since C(Xk) Xk 1 for Xk > 0 and C(0) 0. We

QUICKSORT WITH EQUAL KEYS 247

have

1
nN l"-b’" ""-X N

N) C(Xk)
X1, Xn

1
n Xl-i-...+x =N

N) E (Xk--l+x,O)
Xl, Xn lk<_n

N- n +--- <<n 1= Xl+’"+xn=N X1, X
=0

=N--n +(n--1)N/nN-1

=N-n+n(1-1/n)N.

The second term is more difficult, but it can also be simplified through the use of
the multinomial theorem. After interchanging the order of summation, we have

2 (N) xkx
nN E

i<-k</<--_n xl+...+xn=N XI, Xn Xk "
The first step is to split the sum and the multinomial coefficient in two parts:

l<=k<i<--n xa+...+Xk_l+i+xi+a+...+xn=N X1, Xk-1, i, Xi+l X

xk +...+xj=i Xk, Xi/
Xk,X

(Here we have also taken note of the.fact that all of the terms with Xk or xj 0
vanish.) Now,

(IXkXj (i l)(i--2)Xk, Xi/ Xk-- I, Xk+I, Xi-I, Xi--1

SO we can apply the multinomial theorem to the innermost sum, which leaves us
with

nu Z (i-1)
l<--_k<i<=n xa+’"+Xk_l+i+xi+l+...+xn=N X1, ", X,-1, i, Xi+l, ", X,

i2

(/-k + 1)i-2"

The inner sum now reduces to three terms, one for the case 0 and two more
resulting from splitting the first factor, all of which can be evaluated with the

248 ROBERT SEDGEWICK

multinomial theorem. We have

Xl+’"+Xk_l+i+Xi+l+’"+x =N
i(N
X1, Xk-1, i, Xj+I, x.)(j-k + 1)’-

N N-1

]-k+l
n

,x.)(Y-k+l)-

and

}-,. (N)(]_k + 1)i_2
Xl+...+Xk_l+i+xi+l+...+Xn=N Xl Xk-l i, x+l, , x.

and finally

1 y.
(]-k + 1)2 xl+"’+xk-l+x,.l+’"+x.=N (

N)Xl, Xk-l X]+I Xn

1
(j-k + l)2nN

1
(j- k + 1)2

(n -] + k 1)N.

Substituting all of these into our expression for the lower bound, we have
simplified it to

N n+n(1)N (N 1 1
+2 y,

-j k+---f-(] k+)lk<j<_n

1 (/’-k+l)N)+.j(_k+l)2 1-
n

As we saw when we evaluated C(x, , x), we know that

2 f(j-k+l)= Y. F. f(k)= (n-k+l)f(k),
l_k<j<--n l<jn l<k<--j l<k<--n

so we now have

(nl-)N-n+n 1- +2 (n-k+1)
N1 1 1 k

<__<, k /t- 1-

This sum appears difficult to evaluate explicitly, mainly because of the last term.
However, we may use this expression to prove:

THEOREM 1. Any Quicksort program must require, on the average, at least

N- n + 2 , XkXi
Nk <] <---n Xk "-l- "t- Xj

comparisons to sort a random permutation ofthe multiset {x 1, , x. n} (where

QUICKSORT WITH EQUAL KEYS 249

X -[-" -[- Xn "--N) and at least

2N(1 + 1/n)H,-3(N+n)
or, for large n, at least

2(N+ 1)HN-4N+ 2(N/n)(HN- 1)+ O(N3/n 2)
comparisons to sort a random n-ary file of length N.

Proof. The result for multisets is proved in the discussion above, except that
the theorem avoids some complications by using the fact that l_k<_n C(Xi)--
21k <--n (Xk "" 1 + 6xkO) >N- n.

To prove the results for n-ary files, we follow the discussion above and start
with the expression

N-n+n 1- +2 (n-k+1)
N1 1 1. ++ 1-

The first sum obviously evaluates to 2N(1+1/n)(H,-1)-2N(1-1/n), as
above; the second sum can be bounded by noticing that

n-k+1 1
E k2 =(n+l) Z -n-H,<n,l<kn lkn

since ZI, (1/kz)<zg (1/k2)=2/6; and the third sum is even smaller in
absolute value than the second, so it won’t weaken our bound much to ignore it. If
these expressions are all substituted in, and the n (1- 1/n)U term is also ignored,
we get the expression 2N(1 + 1/N)H,- 3(N+ n), as desired.

For large values of n, we can get a somewhat better bound, if we are content
with an asymptotic answer. For example, the binomial theorem tells us that

()u ()() (N)(_ 1)
N-n+n 1- =N-n+n Z Z -OiN l<iN

e notation O(N/n2) can be assigned a precise meaning, but here it will suffice
to say that the terms represented by this notation can be ignored for n >> N. Now,
to evaluate the sum, we begin in the same way, applying the binomial theorem to
get

-k+--+ 1- 2 k-

After rearranging terms slightly, our lower bound becomes

<i ni 2
+O

Now, we know from Euler’s summation formula that

2 k_=+n B i-2 ni--
1 i-a]- 1

250 ROBERT SEDGEWICK

where Bj are the Bernoulli numbers. Therefore,

2(n+l) Y, (7)ki-2(-1)i
l<--_k_n l<i<-N n

l<__j__<v-2ni+li+2__<i_<_N 1
(-1)i

"-2(1 "[") "</<N (/N)(-1)ii_l
=2(n+l) Y, Bi ((N))

l<--J <-N-2 jni+1(-1)
j+l N-j-

j + 1

+ 2(1+ n1-) <<N (7)(-1).i-1
__-2(1/ nl_)I</<N (/N)(-1) I(N 1__ (2N))/ O(nN_)i-1 n

(The inner sum evaluated on the second line of this derivation is tricky, but
involves only elementary identities from Knuth [8, 1.2.6].) Similarly, we find
that

l<k<_n l<i<=N -Putting these results together gives a rather simple expression for our lower
bound:

1 N (-1)+2 y,,
i/

+O2 1+ 1" i-1 l<iN

Finally, we can evaluate these sums by applying an identity given by Knuth [8,
1.2.7, Ex. 13].

--=x H.+ Z n (x-1)
<_in <=k <=n k k

If we take x 0 in this formula, we get an identity for evaluating our first sum; if
we integrate the equation from 0 to t, we get

2 =g.t+ Z n (t-l)k+l

l<:i<n i(i + 1) l<=k k k(k + 1) Z
n (-1

lk.<n k k(k-T,--1-)
which, evaluated at 1, gives an identity for evaluating our second sum. The
stated result follows immediately.

The lower bounds given in Theorem 1 are particularly weak for small values
of n. For example, when n 2, they grow linearly with N. As we will see, many
practical implementations of Quicksort do not do so well for binary files. In fact,
many implementations use O(N2) comparisons for binary files, and we can raise
our lower bound for such programs.

QUICKSORT WITH EQUAL KEYS 251

COROLLARY. If a Quicksort program requires, on the average, more than

) comparisonsfor unary or binaryfiles oflength N, then it will require at least

2N(n+)H. 4N 3 +(1) 2/

comparisons on the average, for n-ary files of length N.
Proof. The result for unary files follows directly by not evaluating C(Xk)

immediately in the derivation of Theorem 1" the bound is just

, (4CNn >-" ., ., C(Xk + 2 1+ H,, 4N- 2n.
n lk<=n XI+...+Xn=N Xl, Xn)

To bound this ferm, we shall use the general identity

nvl y, (N](Xk,’’’Xk+m_l),
Xl+...+xn=N Xl, Xn/ t

=-wn Xl+’"+Xk+l+i+Xk+m+’"+Xn=N Xl

Xk+’"+Xk+m--l=i Xk Xk+m-1

=n Xl+’"+Xk--l+i+Xk+m+"’+xn=N Xl

m m

If C(x)>(}, then we may take m= 1, t=2 to get the result

Xk-1, i, Xk +m, Xn

U-,)Xk-1, i-t, Xk+m, X

Clv. > 2N(1
which implies the stated bound.

For binary files, we follow exactly the derivation of Theorem i except that the
telescoping recurrences for C and G can each be stopped one step sooner to yield

C(xI, ", Xn)-- Z C(xk, Xk+l)-- C(Xk+l)
l<=k<_n-1 l<=k<_n-2

+2 XkXj

3_--<k +2_--<j =< Xk +" +X
When we average over all multisets on N elements, the calculations are similar to

those in the proof of Theorem 1. If C(xk+)> a, 2
then the proof for unary

files proves the corollary. Therefore we may assume that C(xk/)--5 a, 2
and

252 ROBERT SEDGEWlCK

xk "Jt-Xk+l) The identity above then tells us thatC(Xk, Xk/) > a
2

n--- 2 .,
1NkNn--1 Xl+’"+xn=N XI Xn

and

1 (N
l=<k_--<n-2 xl+..o+xn=N Xl Xn n/n\2]

(m 2, t-- 2)

(m 1, 2).

Evaluating the third term exactly as for Theorem 1, we find that

CN, > 2N(1 +)H, --17 5N(_+1-)3a(Nn+g n n 2/’

which implies the stated bound.
From the corollary, we conclude that if a Quicksort program is quadratic for

binary files, then it is quadratic for all n-ary files when n is small. This type of effect
arises often in the study of Quicksort, since all files are eventually partitioned to
yield degenerate ones. It will be even more prominent in the next section, when we
deal with upper bounds.

4. Upper bounds. The derivation of a general upper bound on the number of
comparisons needed by any Quicksort program proceeds in much the same
manner as for the lower bound. However, some extra care will be necessary for
two reasons. First, a bound is needed for the number of comparisons used to
partition Nelements. We will be content to useN+ 1, since we shall later see some
programs that use exactly that many. Other programs might use more, but if the
number of comparisons that they use grows linearly with N, we can still apply our
results by multiplying through by a constant. Another problem arises because, as
we have seen, some partitioning methods can perform badly with files that only
have a few distinct values. For the present, it will be convenient to restrict these
problems to a single term by defining

I(Xl, x,) Z C(Xk, xk+l, xk+z)-- Z C(xk+l, xk+2)
l_k_n--2 lk<=n-3

where C(xl,’’ ’, xn) is the maximum number of comparisons needed, on the
average, to sort a permutation of the multiset {Xl 1, , xn n }. We will look at
assumptions about our programs to help bound 1(xl,’", x,) after we have
proved

THEOREM 2. Any Quicksortprogram which partitions Nelements with N+ 1
comparisons will require, on the average, no more than

2 Y xkxi ’I(xl,’", x,)
4Nk+3_i<--n 1 / Xk+ -Jr-" + X]-I

comparisons to sort a random permutation ofthe multiset {x 1, , x,} and no more

QUICKSORT WITH EQUAL KEYS 253

2 1-1 H-3N+2N- 9 -7--5n n

or, for large values of n, no more than

2N(HN + 1)-2 + O(NZ/n)
comparisons to sort a random n-ary file of length N.

Proof. Arguing the same way as in the derivation for the lower bound, we
start by noticing that an upper bound is certainly described by the recurrence

1
C(Xl,...,x,)=N+l+ Y x(C(x,...,x-l)+C(x,...,x,)), n>l.

Proceeding exactly as before, we dittcrcncc twice" first subtract the same equation
for {X2 1," ", x, (n- 1)}; then define G(xa,. ", Xn) C(x1, ,, Xn)-
C(X2, , x,) and subtract the same equation for {x 1, , x,-1 (n 1)}. This
leaves

(
2xx, +x,G(x, , x,_a, x, 1), n > 3

(Notice that this equation does not hold for n 2 or 3 as was the case for the lower
bound.) In order to get this equation to telescope, we multiply both sides by

(x2+’’ .+x,- 1)!
Xn!(X2q-"

which gives

x,, x,,-1
(G(x, x,- 1) +2Xl)

Xn

Now every place that x, appears on the left side, x, 1 appears in the first term on
the right, so this equation telescopes to yield

(X2"--" "---Xn) a(Xl, ,xn)(x2-’" "--Xn)a(xl, ,Xn_l)
Xn Xn

+2X1(X2+’’’+xn)x 1
or

G(xa, ,Xn)=G(Xl, Xn-)+ 2XlXn
1 q"X2q-" "q-Xn_

n>3.

Substituting G(x, , x,) C(x, , xn)-C(x2, Xn) and telescoping
once more leads to the desired result for permutations of multisets.

254 ROBERT SEDGEWICK

To complete the proof, for random n-ary files of length N, we will first
evaluate

2 (N)
Xl+...+xn=N X1, Xn 4=<k+3/’_<n 1 +Xk+ "Jr-" "Jr’Xj_l

Continuing as before, we interchange the order of summation and then split the
inner sum and the multinomial coefficient to get

n---ff Z
4_--<k+3_--<-i_--<n xa+...+x+i+xi+...+xn=N Xl ", X,, i, Xi, ", X,,

+ 1 Xk+l+...+xi_a=i Xk+l, X.i-1)

The multinomial theorem applies to the inner sum, and the remaining multino-
mial coefficient simplifies, leaving

4_--<k+3-i_--_.n Xl+...+xk+i+xi+...-t-xn=N Xl, Xk 1, + 1, x 1, , x.
(i-k-)

After replacing by 1, including a term for 0, and applying the multinomial
theorem twice, we are left with

n 4Nk+3N-iNn j k 1 j k 1
1

n

or

n 2k-----n--2

If n is not large we will not weaken our bound much by ignoring the second term,
so the result

2N(1-1/n)H,,_x-4N+6N/n

follows immediately. If n is large, then we expand (1- k/n)U-a by the binomial
theorem to get

_2N_n-k-ly.. (N-l)(_)in 2<_k<=n-2 k l<=i<_N-1

which reduces, after evaluating the sum on k with Euler’s summation formula just
as above, to

-2N Y, (N-l) (-1)i- 2N Y. (N-l](-1)i+O(N/n).
I<=i<_N-I l<=i<=N--1 / + l

The second term turns out to be 2(N- 1), and the first is just 2NHN, so we have

2N(Hv+ 1)- 2 + O(NZ/n).
Finally, we must average I(xl,"., x,.,) over all multisets of length N. First,

since a Quicksort program usesN+ 1 comparisons and gets at least one element in

QUICKSORT WITH EQUAL KEYS 255

place on each partitioning stage, a trivial upper bound is

C(x,’",x,) <- (k+I)=1/2(N+4)(N-I)<(2N)+2N.
2kN

Therefore, we must certainly have

I(xl, Xn) <
l<=kn-2 2

and, applying the identity given in the proof to Corollary 1 of Theorem 1, we then
find that

1 (N) ()(n9_(2N) N)n--- Y’. I(X l, x,) < 1- +
Xl+’..+xn=N Xl Xn

and, in particular, for large n, the right-hand side is O(N2/n).
The theorem now follows immediately from the results in the preceding two

paragraphs. [-1

Notice that if n is O(1), then the bound becomes O(N2). Again, this is a result
of the recursive structure of Quicksort, and it is due to the fact that some
Quicksort programs are inefficient for files with a small number of key values. On
the other hand, not all Quicksort programs have this problem, and if the method
works well for binary files, we can eliminate the quadratic term.

COROLLARY. If a Quicksort program can sort a random binary file of N
elements with less than 2NHN comparisons, on the average, then it will require no
more than

1) N_H
N

39N
2 1-- Hn_l-4N+6 +--

n 2 n’

comparisons to sort a random n-ary file ofNelements.
Proof. The expression given is a crude approximation intended only to show

that the bound is not quadratic, so our estimates will be somewhat rough. First, we
can remove the term describing ternary files by noticing that, from our most
general recurrence, we certainly must have

(Xl-’X2 nt-x3)C(Xl, x2, x3) < 2(x1+x2+x3+1)2
-[-xIC(XI’X2’X3)

-]-x2C(x 1, X2) "[- x2C(x2, x3) -[- x3C(x 1, x2, x3).

From this it follows that

3 (X1+X2+x3+l)C(x’xz’x3)<xz+ 1 2
-C(xl’x2)-C(x2’x3)’

256 ROBERT SEDGEWICK

and, therefore,

I(Xl,’’’,x,)<3 1(Xk+Xk+lq-Xk+2d-1) V+
<_-. X/1 + 1 2 X, X/.

l<_k<=n_

By hypothesis, we certainly have C(Xk, Xk/1) < 2(Xk q- Xk+1)HN. The calculations
involved in averaging this over all multisets of N elements are similar to those we
have seen many times before. It turns out that the first term is less than (N/n),
and the second is equal to 6(N/n)Hn, so the desired result follows directly.

The upper and lower bounds that we have derived for the number of
comparisons give some indication of how well we can expect to do when imple-
menting a Quicksort for files with equal keys. If n is very, very large, then the
bounds differ by only 6N-2Hv- 2, so we have verified the traditional argument
that equal keys are unlikely to occur in this case and their effect Can be ignored. If
n O(N), then the upper and lower bounds differ only slightly, and we should not
expect one method for dealing with equal keys to differ substantially from
another. And if n is small, then the bounds tell us that we should take care to
ensure that our method operates efficiently for binary files.

5. Implementations. Although it is tempting to contemplate sophisticated
algorithms for dealing with equal keys during the partitioning process, we shall be
content to study three methods which require virtually no overhead for their
implementation. We shall see that one of these performs very well, and it is
unlikely that it would be worthwhile to incur any extra overhead in Quicksort to
deal with equal keys.

The first method that we shall consider is of course Program 1 as it stands,
which sorts properly and efficiently when equal keys are present. If we replace
"<" by "_-<" and ">" by "_->" in the discussion following the program, we find that
it applies as well when equal keys are present, except for one subtle point. It is
possible for the condition f to occur outside the inner loops, so that the pointer
scans ultimately terminate with j + 2, and the two keys A [/’] and A [/" + 1] are
put in place by partitioning. (Although we do an extraneous exchange
A[i]:=: A[/’] when i, it is much less efficient to exit the loop when because
not only is the chance to get two elements in place missed, but also when the left
subtile is later partitioned, the partitioning element chosen will be the largest in
that subtile.) It is important to notice such anomalies if the analysis is to be correct.
In any case, although Program 1 clearly works, it is reasonable to ask if there is a
more efficient method of distributing the keys equal to the partitioning element
into the subfiles.

Another possibility is to change the < and > signs in the inner loops of
Program 1 to -< and ->. If a key smaller than all the others is chosen as the
partitioning element, the f pointer will scan past the left end of the file, so we need
to protect against this case by setting A[0] :=-. Even worse, it might be
possible for the pointers to access elements far outside the array bounds
A[1],..., Air] during intermediate partitioning stages. This situation could be
avoided by putting tests in the inner loops to check the pointers, but it is more
efficient to put -o and o in All- 1] and Air + 1] before partitioning and restore

QUICKSORT WITH EQUAL KEYS 257

them afterwards. This leaves us with
PROGRAM 2.

procedure quicksort (integer value l, r);
comment The array A is declared to be A [0:N+ 1] with A [0] -oo and

A[N+ 1] =oo;
if r>l then

All- 1] :=: A[0]; Air + 1] :=:d[N+ 1]
:= 1;] := r+l; v := A[I];

loop:
loop" := + 1; while A [i] _-< v repeat;
loop" j := j-1; while A[j] >-_ v repeat;

until j < i"
A[i]:=:A[]];

repeat;
if]> then A[1]:=:A[]];] :=]- 1; endif;
A[I-1]:=:A[O]; A[r+ I]:=:A[N+ I];
quicksort (l,]);
quicksort (i, r);

endif;
Notice that after partitioning we have A[I],... ,A[j-1]<-A[j]=A[]+I]

A[i-1]<-A[i], ,A[r], with l <-_i,] <-N+ l, so that a number of keys
can be put into position on one partitioning stage.

Finally, we might consider allowing equality in only one of the inner loops of
Progam 1, and leave the other inequality strict. The two possibilities are basically
symmetric, and we will consider

PROGRAM 3.
procednre quicksort (integer value l, r):

comment The array A is declared to be A[i :N+ 1] with A[N+ 1]=;
i r>l then

A[r+I]:=:A[N+I];
:= l;] := r+l; v := A[/];

loop:
loop: := + 1; while A [i] _-< v repeat;
loop:] := j-1; while A[j]>v repeat;

until] < i"
A[i]:=:A[]];

repeat;
A[I]:=:A[]];
A[r+I]:=:A[N+I];
quieksort (1, i 1);
quieksort (/" + 1, r);

endif;
This program always puts exactly one partitioning element into position.

In summary, Program 1 stops the pointers on keys equal to the partitioning
element, Program 2 scans over equal keys, and Program 3 puts them into the left
subtile. Clearly there is a version symmetric to Program 3 which puts them into the
right subtile. Versions of all of these approaches have appeared at one time or

258 ROBERT SEDGEWICK

another in the literature. Hoare’s original program scanned over equal keys [6],
[7], and several authors then adopted that approach [2], [5], [11], [13]. (However,
the later authors "improved" Hoare’s program to test if the pointers cross each
time they are changed. The reader will soon appreciate how unfortunate this
strategy is when, for example, all the keys are equal.) R. C. Singleton was the first
to suggest stopping the pointerg on keys equal to the partitioning element [15],
and the idea was accepted by others [4], [9], though no analytic justification was
given. The idea of putting all the keys equal to the partitioning element in one
subtile or the other appears in some versions of Quicksort [1], [3], though no one
has given any particular reason for doing so.

It is not at all clear a priori which of the programs should be recommended,
for there are situations in which each performs better than the others. Figure 2
illustrates this by showing the operation of the programs on three different files,
along with the number of comparisons used. (The differences between the
progams are most apparent in the second example, which shows all three
"sorting" seven equal keys.) Program 1 expends a few extra exchanges to get
balanced partitions, Program 2 can get more than one key into place on one
partitioning stage, and Program 3, due to its asymmetrical nature, can produce
unbalanced partitions. In the following sections, we shall attempt to quantify these
remarks by looking at the analysis of the programs. We shall see exactly how many
comparisons they use, on the average, for unary and binary files, and then we shall

Program Program 2 Program 3

4 3 5 2 2 4 3 5
1(2435 121 (’4 3 5

@21
@435 1

2 2 4 3 5
2 1(2")4 3 5

@2
@s

19 comparisons 20 comparisons 16 comparisons

1(1
11

16 comparisons

(’1 1

15 comparisons

_(1)

111

33 comparisons

2 5 3 4 2 2

21 124 3 5

3@s
15 comparisons

2 5 3 4 2 2
1(2")3 4 2 2 5

2 24 5

24 comparisons

2 5 3 4 2 2 1
2 2(2")4 3 5

1

@s
19 comparisons

FIG. 2

QUICKSORT WITH EQUAL KEYS 259

prove that Program 1 must be preferred because it tends to produce partitions
closer to the center.

There are a few more issues relating to the practical implementation of
Quicksort on equal keys which we shall treat before moving on to the analysis. The
first is a property called stability which is often of concern in practical sorting
programs. A sorting program is stable if it. preserves the relative order among
equal keys. Unfortunately, our programs are not stable, because no matter how
we treat keys equal to the partitioning element, the relative order of other keys
might be disturbed. The easiest way to provide stability, if there is extra space
available, is to append each key’s index to itself before sorting. For example, if we
are sorting small integers, this can be done by the statement

loop for 1 <-i <=N:A[i] := A[i],N+ i- 1 repeat;

This transformation makes all the keys distinct and preserves their relative order.
We have A[i]<A[j] before the transformation only if A[i]<A[j] after the
transformation; and if </" and A[i]=A[j] before, then A[i]<A[j] after. We
can now achieve a stable method by sorting the file and then transforming back to
our original keys"

loop for 1 <-i <=N:A[i] := A[i]/Nrepeat;

Of course, since this method is costly in terms of both time and space (each key
must be a little bigger), it should not be used unless stability is important. If the
extra space is not available, then Rivest has shown that a stable Quicksort
involving O(N(logN)2) comparisons can be devised [12]. This method is of
limited practical utility, but it is an important theoretical result.

The programs we have defined gain efficiency by using sentinel keys, -oo and
oo, to stop the scanning pointers from going outside the array bounds. For
Program 3 it is necessary for oo to be strictly greater than all of the other keys, and
for Program 2 it is also necessary for -oo to be strictly less than the others. It may
be difficult to define such keys in some practical situations. For example, if the
keys to be sorted can take on any value which can be represented in one word in a
computer, then by definition we cannot represent a key larger than all possible
values in one word. This is not a problem for Program 1, since it only requires that
oo be greater than or equal to all the other keys.

6. Unary files. Our derivation of the upper and lower bound suggests that
we should know how our programs perform in the degenerate case when only a
few distinct key values are present, so let us examine first what happens when all
the keys are equal.

Program 1 comes as close as possible to dividing the file exactly in half at each
stage. The number of comparisons used is described by the recurrence

CN=Nq- l q-2C(N_)/2, N>I,

with C 0. If N is of the form 2- 1, then this reduces to

k>l.

260 ROBERT SEDGEWICK

Dividing both sides by 2k, this immediately telescopes to the solution

CN (N+ 1) lg ((N+ 1)/2), when N= 2k 1, k > 1.

The solution for general N is somewhat complicated because it depends on the
binary representation of N, but it is easily shown by induction that CN<=
(N+ 1) lg ((N+ 1)/2) for all N, so that Program 1 performs acceptably on unary
files.

Program 2 is much easier to analyze, for it "sorts" all unary files in only one
partitioning stage. Each pointer scans all the way across the file, the left and right
subfiles are both empty, and a total of only 2N+ 1 comparisons are used.

On the other hand, unary files represent the worst case for Program 3. Each
partitioning stage only removes one element from the right end of the file to be
sorted, so ., (]+I)=1/2(N-1)(N+4)

2]N

comparisons are used.
It is interesting that these three programs, which seem to be so similar,

perform so differently when the keys are all equal. One uses O(N log N) compari-
sons, the second is linear, and the third is quadratic!

7. Binr les. Now let us consider the less degenerate case when binary
files are to be sorted. The analysis is more complex, but it does give us some more
insight into the relative performance of the programs.

The easiest of the three to analyze is Program 2. We wish to find C, the
average number of comparisons to sort a binary file of length N, given that all 2
such files are equally likely. Suppose that the two values are 0 and 1, and define
C andC to be the averages for files that start with 0 and 1, respectively, so that

,(o)CN N +C)) First, we will find a recurrence for C by noticing that the
situation after the first partitioning stage is as follows ("x" denotes keys which
may be 0 or 1)"

k N--k- 0 0 0...0 1 x x x...x .
Partitioning required N+ k + 1 comparisons, and all that is left to be sorted is a

file of size N-k, random, except for its first key, which is 1. This leads us to the
recurrence

+ , (N+ k + 1 + C(1N)k).
l<=kN-1

By a similar argument, we can show that

2N+ 1C)=
-=i-+ E (N+ k + C(N)_k),

l<=k<_N--1

QUICKSORT WITH EQUAL KEYS 261

and therefore CN satisfies

2N+ 1
Cu -T-+ 2 (N+k+1/2+CN_,), N>0.

lkN--1

Multiplying by 2 and replacing k by N-k in the sum, we get

2NCN 4N+ 2 + Z 2k (2N- k + 1/2 + Ck).
1.<__k <=N-1

Subtracting the same equation for N- 1, we get the recurrence

N 7
C=C-1++ forN-_>2,

with the initial condition C1 3, which telescopes to the solution

1/4(N2 + 8N+ 3).

We might have expected that this average number of comparisons would be
proportional toN if we had noticed that two successive partitioning stages simply
exchange the leftmost 1 with the rightmost 0.

Program 3 may be analyzed in a similar fashion, but the calculations are
somewhat more complex. Alternatively, we can analyze Program 3 in much the
same way as we developed our upper and lower bounds. (Unfortunately, the other
programs don’t lend themselves as easily to this kind of analysis.) The number of
comparisons required by Program 3 to sort to random permutation of the multiset
{xl 1, , xn n } is described by the recurrence

1
xj(C(Xl,...,xj-1)+C(Xj+l,...,xn))C(Xl, ,Xn)=N+ l +

l<=j<=n

where N=l=i=,,x, and the notational conventions are the same as above.
Proceeding in exactly the same manner as for the derivation of the upper bound,
we find that

C(Xl,"’,x,,)= 1=<<= (x
+2)2 -n+2 x,x

lk<in I -[- Xk Av -[- Xj--1

This formula is due to Burge [3], although he develops a slightly different version.
For binary files, we get

+ -2+2
2 2

x(N-x)
l+x

The average is

0--<x =<N 0"<x =<N 2 x

--2+2N--1 0NxNN X 1 "[-" X

262 ROBERT SEDGEWICK

After application of the identities

N-2 1

and

N x(N-X)=N N-1

x l+x x x+l

this reduces to the solution

so Program 3 is also quadratic for binary files.
Fortunately, we can show that Program 1 does not perform so badly on binary

files, even though an exact formula for the average appears difficult to derive.
What we can do is derive an upper bound on the number of comparisons taken by
Program 1 on any binary file. This will of course also be a bound on the average.
The proof is based on a different method of counting comparisons than we have
been using. We know that each partitioning stage contributes one comparison to
the total for each element involved plus one extra comparison when the pointers
cross. But we can also count comparisons by counting how many partitioning
stages each element is involved in, then adding N for the pointer crossing
overhead (there can be no more than N partitioning stages). Notice that each
partition in Program 1 results in one subtile with all keys equal and another
"unsorted" subtile. The subfiles with all keys equal are clearly processed in a
logarithmic number of stages, since they are always split in the middle. Now
consider the unsorted subtile. After each partitioning stage, at least half of the
keys equal to the partitioning element must be removed. Therefore the unsorted
part of the file cannot last through more than 2 lg N partitions, and every element
in the whole file is involved in at most 2 lg N partitioning stages. Therefore the
total number of comparisons must be less than 2N lg N+N (and this is not a
particularly tight bound). This is substantially better than the quadratic perfor-
mance of Programs 2 and 3.

These results for binary files, coupled with the upper and lower bounds
developed above, represent strong evidence that Program 1 is the method of
choice when n is small. The corollary to Theorem 1 says that Programs 2 and 3 will
be quadratic; and the corollary to Theorem 2 says that Program 1 will still require
only O(N log N) comparisons, on the average, for small n. Of course, it must be
noted that if it is known that n will always be small, a special-purpose sorting
program written to take that fact into account might be more appropriate than the
general-purpose programs that we have been studying. For example, the best way
to sort a binary file is to effectively "partition" the file on the value 1/2: scan from the
left to find a 1, scan from the right to find a 0, exchange them, and continue until
the pointers cross. The whole file can be sorted withN+ 1 comparisons. Similarly,
if a file is known to be ternary (consisting of O’s, l’s and 2’s), it can be sorted with
2(N+ 1) comparisons by first partitioning on the value 1, then treating the binary

QUICKSORT WITH EQUAL KEYS 263

subfiles as above. In the same manner, a file with 2’ + 1 distinct values can always
be sorted with (t+ 1)(N+ 1) comparisons, if the values are all known. Another
example, which is most useful when keys to be sorted fall into a small range, is the
idea of distribution counting (see [9, 5.2]), where the file is sorted in two passes:
one to count the number of occurrences of each key, and a second to move the
keys into place according to the counts. Such special-purpose programs may be
made to outperform Program 1 under some conditions for small n but we have
shown that Program 1 does perform acceptably, and it can be expected to perform
better than other general-purpose sorting programs when many equal keys are
present.

8. The general ease. In the general case, the exact analysis of Programs 1
and 2 appears to become intractable, so we shall adopt a more indirect approach
to compare the programs. The idea is to notice that Quicksort performs best when
the partitions at each stage tend to be near the center. Consequently, we would
like to discover which of our algorithms produces partitions closest to the center,
on the ai,erage.

When Singleton first proposed stopping the pointers on keys equal to the
partitioning element [15], he claimed that it produces a "better split" than
Hoare’s original method of scanning over equal keys. However, he gave only
empirical justification, and it is not at all obvious that this is so. For example, given
the input file

2 2 2 2 1 1 1 2 2 3 3 3 3 3 3,

the first stage of Program 2 will produce the partition

while Program 1 results in the less balanced partition

3 3 3,

1 2 2 1 1 (2 2 2 3 3 3 3 3 3.

On the other hand, Program 2 performs worse for the input file

2 3 3 3 3 3 3 2 2 1 1 1 2 2 2,

since it produces the partition

111(2) 3 3 3 2 2 3 3 3 2 2 2,

while Program 1 partitions the file perfectly:

2222111(2) 2 3 3 3 3 3 3.

Although examples like these would seem to make comparing the algorithms
difficult, it turns out that no matter how well Program 2 performs on an input file,
there is another file for which Program 1 does at least as well.

THEOREM 3. When Program 2 operates on a fileA 1],. , A[N], itproduces
a partition no closer to the center than Program i operating on the file A 1], A [N],
A[N-1],..., A[2].

Proof. Specifically, let/" and define the position of the partition after
Program 2 is used on A[1],...,A[N], so that after partitioning we have

264 ROBERT SEDGEVICK

A[1], A[2], ., A[j]<-A[] + 1] A[j + 2] A[i- 1]-<A[i], ., A[N];
and let]’+ 6 define the position of the partition after Program 1 is used on
A[1],A[N],A[N-1],...,A[2], so that after partitioning we have
A[1], A[2],..., A[]’- 1]_-<A[]’] =A[] +6]_-<A[]’ +6 + 1],..., A[N], where
6 is either 0 or 1 depending on whether the condition] occurs outside the inner
loops of Program 1. In both programs, the file is partitioned on the value of A [1].
Call that value v and let s be the number of keys in the file which are <v. Our goal
will be to show that the inequality

[/’+ a-(N- 1)/21--<Is + k -(N+ 1)/21,
holds for] s < k < s.

First we notice that since Program 2 does not move keys which are v, we can
have] s + k only if exactly k of the keys A[2], , A[s + k] were originally =v.
But we also know that A[j + 1] was originally <v, and that A[j + 2],. , A[i 1]
were originally =v, since they were not moved by partitioning. In short, we can
deduce that partitioning must have had the following effect:

before" v k keys v v

after:

In the original file, exactly k 1 of the keys A [2], , A [s + k] were originally
v for all k in the range s < k < s. Similarly, since Program 1 always moves

keys which are =v, then]’= s + k’ for some fixed k’ only if there were exactly
k’-1+6 keys =v in the last N-]’+I positions of the reverse file"
A[N-s-k’ /2],..., A[2]. The effect of partitioning when 6- 1 is

and the diagram for 6 -0 is similar.
To complete the proof it is necessary to consider three cases depending on the

relative values of k and k’/6. If k=k’/6, then the inequality
obviously holds. If k>k’+& then the

discussion above says that A[2], , A[s + k] has more keys v thanA[N-s
k’+2],...,A[2]. This can only be true if s+k>N-s-k’+2, or /"+_->
N-s-k+1. Now, if]’+6-(N+1)/2 is ->0, then k’+6<k implies that 0_-<

]’+6-(N+l)/2<=s+k-(N+l)/2; and if (N+1)/2-]’-6 is _->0, then]’+6_->
N-s-k + 1 implies that 0N(N+ 1)/2-]’-t <-s+k-(N+ 1)/2. In either case,
taking absolute values gives the desired result, I]’+6-(N+I)/2I <-

QUICKSORT WITH EQUAL KEYS 265

]s+k-(N+ 1)/21. If k <k’+6, then A[N-s-k’+2],... ,A[2] has more keys
v than A[2], , A[s + k]. But also we know that A[N-s k’ + 2]< v, so we

must have N- s k’ + 1 > s + k, or/" + 8 =<N-s k + 1. An argument symmetric
to the above shows that ly’+6-(N+l)/2l<--Is+k-(N+l)/21, and we have
shown that this inequality holds for all k in the range j-s < k < i- s.

The theorem follows immediately from this inequality. If the first partition is
to the left of center (i-1<(N+1)/2), then the second is at least as close
(I(N+ 1)/2-]’-6[<I(N+ 1)/2-i1); and the symmetric argument holds for the
right. If the first partition straddles the center, or/" + 1 -< (N+ 1)/2 -< i- 1, then
Is+k-(N+l)/2l<-1/2 for some k, and therefore [y’--(N+l)/2l<-_1/2, or the
second partition must also be at the center. El

A direct consequence of Theorem 3 is that if the files A[1],..., A[N] and
A[1],A[N],... ,A[2] always appear with equal probability as input files (for
example, if a random permutation of a multiset or a random n-ary file is being
sorted), then Program 2 will produce a partition no closer to the center, on the
average, than Program 1.

We cannot make quite the same statement when comparing Program 3 with
Program 1. For example, when sorting a random permutation of the multiset
{5 1, 1 2, 1 3, 1 4, 1 5}, the programs will produce the same first partition
when 2, 3, 4 or 5 is the partitioning element, but Program 3 will always partition in
the center when 1 is the partitioning element, while Program I will not. Of course,
any advantage gained in this case will be lost because Program 3 will be left with a
large unary file for which it requires O(Nz) comparisons. In addition, we can
prove the following analogue to Theorem 3.

THEOREM 4. Consider two files A [1],. ., AIN] and A ’[1], ., A’[N]
satisfying 1 <-A[i], A’[i]<-n and A’[i] n + l-A[/] for 1 <=i <-N. The average
position of the partition when Program 3 operates on these files is no closer to the
center than the averageposition ofthe partition when Program 1 operates on them.

Proof. Suppose that in A [1],. , A[N] there are s keys <A [1], t keys
A[1], and u keys >A[1], so s+t+u=N. Then we also know that in
A’[i],... ,A’[N] there are u keys<A’[1], keys =A’[1], and s keys>A’[1].
Since Program 3 puts keys equal to the partitioning element in the left subtile, it
partitions A 1],. , A[N] at s + t and it partitions A ’[1],. , A ’IN] at u + t. On
the other hand, Program 1 puts A[s+jd into place when partitioning
A[1],..., A[N] and A’[u +j2] into place when partitioning A’[1],..., A’[N],
where jl and f2 are fixed between 1 and t.

We wish to show that

s+t- + u+t--
U+l’

-t- U-t"f2--
N+I

2

If s + t < (N+ 1)/2 and u + t < (N+ 1)/2, then, since s + + u N, we must have
t< 1 which is impossible. If s+t and u +t are both ->(N+ 1)/2, then we can
remove the absolute value signs to get 2t _->/’1 +]2, which clearly holds. If s + t _->
(N+ 1)/2 and u +t <(N+ 1)/2, then the proof is more complex (and the case
s + < (N+ 1)/2 and u + _-> (N+ 1)/2 is clearly symmetric). If we also have
s +]1 < (N+ 1)/2, then (since u + t < (N+ 1)/2 implies that u +j2 < (N+ 1)/2) we

266 ROBERT SEDGEWICK

can remove absolute value signs in the inequality to get

N+I N+I
s+t-+-u-t>__-

2 2
N+I N+I
2 2

or

S--u>t--]l--]2.

But this inequality holds because u + < (N+ 1)/2 and u + + s N implies that
s + 1 > (N+ 1)/2, so we have u + t < (N+ 1)/2 < s + 1, or s u _-> t. Finally, we
must consider the case where s+t>=(N+l)/2, u+t<(N+l)/2, and
(N+ 1)/2. Removing absolute values, our inequality reduces to

s-u >--s-u +]-],

which holds unless j1>]’2. Following the logic in the proof of Theorem 3, if we
were to have jl>j2, this would imply that the number of keys equal to A[1] in
A[s +jl],""" ,A[N] must exceed the number of keys equal to A’[1] in A’[u +
j2],""", A’[N]. Since our transformation between A and A’ preserves equality
among keys, this can only be true if s +j < u +f2. But we know that s > u, since we
have s + t >-(N+ l)/2> u + t, so this implies that j <j2, a contradiction.

As above, we know from this theorem that if the files All],.. , A [iV] and
A’[1],..., A’[N] appear with equal probability as input files (for example, if a
random n-ary file or a random symmetrically distributed multiset is being sorted)
then Program 3 will produce a partition no closer to the center, on the average,
than Program 1.

These theorems, of course, do not represent complete evidence that the total
average running time of Program 1 will always be lower than the total average
running time of Programs 2 and 3. We have already seen anomalous cases where
Program 1 may be slightly slower. Also, we should note that although Program 1
may use extra exchanges to get the partition close to the center, this is more than
compensated for by the effects of having the partition more balanced. When the
partition is closer to the center, all aspects of total running time are improved, and
Theorems 3 and 4 are strong general results.

9. Conclusion. The evidence in favor of stopping the scanning pointers on
keys equal to the partitioning element in Quicksort is overwhelming. Theorems 1
and 2 and our analyses of the operation of the programs on unary and binary files
show that this method will always require O(NlogN) comparisons on the
average, when other methods can be quadratic. Theorems 3 and 4 indicate that it
will produce more balanced partitions, on the average, than other methods for
most reasonable input distributions. Furthermore, it is easier to implement.

Before it can be recommended for use in a practical situation, three major
improvements (fully described in [9] and 14]) must be applied to Program 1. First,
the recursion should be removed, and the smaller subtile sorted first. This removes
some overhead, and ensures that only limited extra space will be necessary to
implement the recursive stack. It applies to all our programs, and has little effect
on our results. Second, the partitioning element should be chosen by taking the
median of the first, middle, and last element of the file. This not only tends to

QUICKSORT WITH EQUAL KEYS 267

balance the partitions and so reduce the running time, but also it makes the worst
case less likely to occur in a real file, an important practical consideration. This is
another advantage of Program 1 over Programs 2 and 3 because even with equal
keys present, it is unlikely that a file for which Program 1 will perform really badly
will arise in practice, while the others run badly for any file with a small number of
distinct values. Third, small subfiles should be ignored during partitioning and a
single insertion sort applied to the entire file afterwards. This eliminates a
considerable amount of overhead, since Quicksort is inefficient on files of about
ten elements or less. Its effect on our analyses is to reduce the significance of the
differences between the programs, since the anomalies created by small files are
removed.

The utility of a general-purpose sorting program may be measured by the
range of input files over which it performs efficiently. Quicksort has been shown to
be more efficient than most other sorting algorithms for files with distinct keys, but
few sorting algorithms have been studied in the case when equal keys are present.
The results of this paper demonstrate that the range of files over which a properly
implemented Quicksort can run efficiently may be extended to include files with
equal keys.

REFERENCES

1] A. AHO, J. HOPCROFT AND J.. ULLMAN, The Design and Analysis of Computing Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] J. BOOTHROYD, Sort of a section of the elements of an array by determining the rank of each
element (Algorithm 25), Computer J., 10 (1967), pp. 308-310. (See notes by R. Scowen,
Computer J., 12 (1969), pp. 408-409, and by A. Woodall, Computer J., 13 (1970), pp.
295-296.)

[3] J. DONNER, Tree acceptors and some of their applications, J. Comput. System Sci., 4 (1970),
J. Assoc. Comput. Mach., 23(1976), pp. 451-454.

[4] E. DIJKSTRA, EWD316: A short introduction to the art ofprogramming, Technical University
Eindhoven, The Netherlands, 1971.

[5] T. HIBBARD, Some combinatorial properties of certain trees with applications to searching and
sorting, J. Assoc. Comput. Mach., 9 (1962), pp. 13-18.

[6] C. A. R. HOARE, Partition (Algorithm 63), Ouicksort (Algorithm 64), andFind (Algorithm 65),
Comm. ACM, 4 (1961), pp. 321-322. (See also certification by J. Hillmore, Comm. ACM, 5
(1962), p. 439, and by B. Randell and L. Russell, Comm. ACM, 6 (1963), p. 446.)

[7] ., Ouicksort, Computer J., 5 (1962), pp. 10-15.
[8] D. KNUTH, Fundamental Algorithms, The Art of Computer Programming 1, Addison-Wesley,

Reading, MA, 1968.
[9] .,Sorting and Searching, The Art of Computer Programming 3, Addison-Wesley, Reading,

MA, 1972.
10] .,Structuredprogramming with go to statements, Comput. Surveys, 6 (1974), pp. 261-301.
[11] R. RICH, Internal Sorting Methods Illustrated with PL/I Programs, Prentice-Hall, Englewood

Cliffs, NJ, 1972.
12] R. RIVEST, A fast stable minimum-storage sorting algorithm, Institut de Recherche d’Informa-

tique et d’Automatique Rapport 43, 1973.
[13] R. ScowN, Ouickersort (Algorithm 271), Comm. ACM, 8 (1965), pp. 669-670. (See also

certification by C. Blair, Comm. ACM, 9 (1966), p. 354.)
[14] R. SEDGEWICK, Ouicksort, Ph.D. thesis, Stanford Univ., Stanford, CA, 1975. (Also Stanford

Computer Science Rep. STAN-CS-75-492.)
15] R. SINGLETON, An efficient algorithm for sorting with minimal storage (Algorithm 347), Comm.

ACM, 12 (1969), pp. 185-187. (See also remarks by R. Griffin and K. Redish, Comm. ACM,
13 (1970), p. 54, and by R. Peto, Comm. ACM, 13 (1970), p. 624.)

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

SOME REMARKS ON p-WAY MERGING*

JANET FABRI

Abstract. Ap-way merge of m items is usually implemented with sentinel keys of oo appended to
the end of each input list, resulting in rn(p 1) total comparisons. In this note, we analyze the number
of comparisons performed when sentinel keys are not used. It is shown that the improvement in this
case is very small.

Key words, merging, multi-way merging, p-way merging, sorting methods, algorithmic analysis,
multinomial coefficients, random variables

1. Introduction. A p-way merge of rn items is usually implemented with
sentinel keys of oo appended to the end of each input list, resulting in m(p- 1)
comparisons. In this note, we present an algorithm which uses an indirection
mechanism to address lists that have not yet been exhausted. The kth list is
eliminated from the comparison set as soon as it is exhausted, thus gradually
reducing the number of comparisons to be performed on each pass of the merge.
The number of comparisons performed by this algorithm will be analyzed, under
the assumption that the implementation overhead of the indirection mechanism is
negligible.

2. The algorithm. Suppose that we are given p files of records:

F1" R1(1), Ra(2),""", Rl(ml)

Fk" Rk (1), Rk (2), , Rk (rag),

Fp" Rp(1), Rp(2), ., Rp(mp),

where mk is the number of records in the kth file. To each record R (/’) associate a
key Ki(f), and assume that the p files have been sorted on these keys"

K,(])<--K,(y+I), l<--.i<mi, l<=i<-p.

We shall merge these p files into an output file Z=(Zl, z2,"", z,,), where
m rna + m2 +" + rnp, using a list T (tl, t2, , t) to keep track of the indices
of those files F that have not yet been exhausted in the merging process. L is the
current length of T, 1 _-< L _-< p.

ALGORITHM.
AI" K<--1

T(1, 2,... ,p)
J/#l, ior i= 1,...,p
Lp

* Received by the editors March 29, 1976, and in revised form July, 1976.
]" Courant Institute of Mathematical Sciences, New York University, New York, New York

10012.
This analysis may be regarded as a generalization of Exercise 5.2.4-2 in [2, p. 168].

268

p-WAY MERGING 269

A2: s 1
V Kr(Jr)
i-2

A3: Compare Kr, (Jr,) with V:
< v

then s i; V Kr, (Jr,)
A4: ii+l

I NL then goto A3
AS:

kk+l

I[Jr N mr, then goto A2
A6:

LL-1
I L > 1 then goto A2

A7" Z (Zl, Zk_l, RTI(JT1),’’" RTI(mT1))
.END

3. Analysis. We will assume that the keys {Ki (])} are distinct and 1 -< Ki (]) _-<
m, since only their relative order is relevant. We shall also assume that all ways of
dividing a collection of rn records into p files of sizes m1," ", mp are equally
likely. The number of such distinct subdivisions is given by the multinomial
coefficient

C(m "ml, ", rap) m!/(ml!m2! mp!).
We shall assume that each of the C(m’ml," , rap) arrays

{K (j)" 1 _--< j _-< m, 1 _<-- _--< p}
is equally likely.

We shall say that the files are exhausted in the order r (Trl, , %), where
zr is a permutation of (1,..., p), if

K,(m.,)<K.,+l(m.,+l) for 1 _<-i <p
Let

_K {K(])" 1 _-<] _-<m,, 1 _-< -<p}

be the random variable, taking on values in the set of C(m’ml,..., rap)
partitions of the set {1, 2, , m} into p subsets of sizes ml, , rap. Let Pr be the
uniform probability measure over this set of partitions. Each value of _K deter-
mines a permutation 7r, establishing the order in which the p files are exhausted in
the merging process. Now, define the (p- 1) random variables L by Li K,n (m,n)
for 1 <- < p. The value of Li is the length of the output file Z when the last record
R,n (re,n) of file F,n has been appended to Z, thereby exhausting F,n. Observe that
on the kth pass, when the record to output next is being determined, the number of
comparisons required is (p-i), where L_I <k <-Li. Thus, the total number of
comparisons made in step A3, of the algorithm is L1 +" + Lp-1.

Let
0(Ul, ", Up-l" re=l,. ", re=p) Pr{L1 ul,. ., Lp-x Up-1 and

the files are exhausted in the order r}.

270 JANET FABRI

In what follows we will take rr to be the identity permutation. Observe that

O(ua, up_a" ma, mp)

H C(ui- 1- ml mi-l’mi- 1)/C(m "ml,..., m,).
l<-i<p

The variables {Ui} satisfy the conditions

Mi ui < ui+

where M m +" + mi.
We will make use of the following identities:

(1) Y. C(k- l:n- 1) C(N- l:n),
n-<k<N

(2) kC(k- l:n 1)= (nN/(n + 1))C(N- l:n).

From (1) and (2) it follows that

(3)

(4)

Z O(Ul,’’’, up-l"ml,’’’, mp)

for l=<i<p- 1,

(m2/(ml + m2))O(u2, up_ "M2, m3,"’, rap),

UlO(Ul, Up-- "m,’’., mp)
ml<=U<u2--1

(u2mlm2/M2(ml + 1))4’(u2,""", Up-1 "M2, m3,"’, rap).

From equation (3), we obtain, inductively

Z Y" @(Ul,’’’,Up-l’ml,’’’,mp)
M<=u,<--_u+-I Mx<=m<--_u2-1

l<i<j+l
(milMi)](Uj+l,’", up_l" M/.+I, mj+2,""", rap),

(6) Y’. Z I/t(Ul,’’" Up-l’ml, rap)-- H (mi/Mi).
Mp-l<--Up-l <=m--1 MlUlU2-1

Next, from equations (4) and (5) we obtain

(7) 2 U]I(Ul,’’’, Up-l"ml,’’’, rap)
MiNu]Nu]+x-1 MlNUaNu2-1

(MiMe. + 1)[H
1-<-i=<j+1

mi/Mi]Uj+lllt(Uj+l, Up_l"M/.+l, mj+2, mp),

(8) 2 UjI(U],"" ", Up_l"ml" m]+l,’’’ rap)
Mp- Nup- Nrn-1

--my H mil(Mi-1 + 1).

p-WAY MERGING 271

Equations (7) and (8) yield:

Mp_a<--Up_l <=m--1

(9)

2 (U1-1-""" q-Up--1)lC(Ul,""" Up--l: ml,’’’ rap)
Mx<-u<_u2-1

<--__i <--p <--j <=p--1

Setting M=, m,1+... + m=,, we obtain the following expression for the
expected number of comparisons, E:

l<-ip l<-i<--p l<-j<=p-1 j<--k= -1

In the case where all {mi} are equal, we can evaluate E. Let mi m/p,
1 _-< <- p. Then (10) reduces to:

p-1 p-1 mk
(11) E=m. Z I-[

]=1 k=imk +p
It can be shown easily by induction on p that, for any x"= 71i mk m(p l) forp__>l"(12)

mk +----= m + x

Hence we obtain:

(13) E =mz(p-1)
m+p

Comparing this with the sentinel key implementation, we see that the latter
performs an expected number of mp(p- 1)/(m +p) "unnecessary" comparisons
out of the total m(p- 1) comparisons, thus "wasting" p/(m +p) of its total effort.
This fraction is close to zero for p small. For larger values of p, the selection tree
method of [2, 5.4.1] gives better performance (m log p comparisons).

Thus it appears that in the case of equal file sizes (the case of most likely
practical interest), the p-way merge without sentinel keys provides no clear-cut
performance improvement over other methods.

Acknowledgment. I would like to end this note by expressing my apprecia-
tion to Professor Alan Konheim for helping me formulate this problem.

REFERENCES

[1] D.E. KNUTH, The Art ofComputerProgramming, Volume 1, Fundamental Algorithms, Addison-
Wesley, Reading, MA, 1968.

[2], The Art of Computer Programming, Volume 3, Sorting and Searching, Addison-Wesley,
Reading, MA, 1970.

SlAM J. COMPUT.
Vol. 6, No. 2, June 1977

CONSTRAINTS ON STRUCTURAL DESCRIPTIONS:
LOCAL TRANSFORMATIONS*

ARAVIND K. JOSHIf AND LEON S. LEVY

Abstract. It is very often more convenient and more meaningful to specify a set of structural
descriptions analytically rather than generatively, i.e., by specifying a set of constraints each structured
description in the set has to satisfy. Peters and Ritchie [7] have shown that if context-sensitive rules are
used only for "analysis" then the string language of the set of trees is still context-free. In this paper, we
have generalized this result by considering context-free rules constrained by Boolean combinations of
proper analysis predicates and domination predicates. These rules, called "local transformations" not
only make precise an informal and briefly discussed notion of Chomsky [2], but also, generalize it in an
appropriate manner. It is shown that the Peters-Ritchie result can be generalized to local transforma-
tions. Linguistic relevance of this result has been also briefly discussed. Results in this paper are
relevant to the following situation: Patterns of a class, say A, may be difficult to characterize
generatively; but, it may be possible to specify a suitable (nontrivial) augmentation, say B, of the class
A, such that B can be easily characterized generatively, and then A is characterized by stating some
restrictions on the class B. This suggests possible applications to programming languages and pattern
description languages.

Key words, constraints on structural descriptions, immediate constituent analysis, local sets and
recognizable sets, local transformations, proper analysis and domination predicates, rules for genera-
tion and for analysis, structural descriptions, transformational grammars, tree automata

1. Introduction. When structural descriptions are in the form of labeled
trees (e.g., phrase structure trees) it is very often more convenient, and in fact,
more meaningful to specify a set of structural descriptions analytically rather than
generatively, i.e., by specifying a set of constraints each tree in the set must satisfy.
Such descriptions are useful for specification of transformational grammars.
Peters and Ritchie [7] have shown that if context-sensitive rules are used for
"analysis" only i.e., for specifying constraints on a set of trees, then these rules, in
effect, have no more power than context-free rules (more precisely, the string
language of the set of trees is a context-free language). In this paper, we have
generalized this result by considering context-free rules constrained by Boolean
combinations of proper analysis predicates and domination predicates. We call
these "local transformations." The main result is that local transformations when
used for "analysis" do not have any more power than context-free rules (Theorem
3.1).

First, we will briefly discuss the result of Peters and Ritchie in 2. Local
transformations will be defined in 3 and the main restflt concerning local
transformations will be stated without proof. In 4, we will give a proof of
Theorem 3.1, our main result, which follows from Theorem 4.8. We have

* Received by the editors April 22, 1975, and in final revised form September 21, 1976.
]" Department of Computer and Information Science, The Moore School of Electrical Engineer-

ing, University of Pennsylvania, Philadelphia, Pennsylvania 19174. Partially supported by the
National Science Foundation under Grants SOC 72-05465A01 and MCS 76-19466. Part of the work
was carried out while the author was at The Institute for Advanced Study, Princeton, New Jersey,
under a Guggenheim Fellowship.

Department of Computer Science and Statistics, University of Delaware, Newark, Delaware
19711.

272

CONSTRAINTS ON STRUCTURAL DESCRIPTIONS 273

generalized some finite state string automata results in an obvious manner to tree
automata; these results together imply some further generalizations of the
Peters-Ritchie result. We will also talk about recognizable sets in terms of
features of nodes. We have deliberately taken this leisurely approach because we
believe that the discussion in 4 gives some additional insights into the structure
of recognizable sets.

Before proceeding with our formal results, we will briefly state their linguistic
relevance.

1. Context-sensitive rules are used by linguists in many ways, particularly in
strict subcategorization and in lexical insertion (e.g., Vo Vsingular/NPsingular--
i.e., V (verb) is rewritten as Wsingular in the left-context of a singular noun-phrase
(NP)). These rules are indeed used "analytically" and hence, the relevance of the
Peters-Ritchie result.

2. Chomsky [2, p. 215] has discussed, very briefly and informally, a notion of
a local transformation in the context of rules which affect only a substring
dominated by a single category. For example, the restrictions on the choice of
elements in an Adverbial Phrase consisting of Preposition Determiner Noun*,
and certain nominalizing transformations could be stated as local transformations.
In fact, Chomsky [2, p. 215] speculates that an extension of the theory of context
free grammars may be possible by restricting rewriting by local transformations.

3. Our notion of "local transformations" not only captures and makes
precise Chomsky’s notion mentioned above, but also generalizes it in an appro-
priate manner. Our main result concerning local transformations is that if used
only for "analysis" then these rules also have no more power than context-free
rules. Thus, by incorporating some local transformations in the base component of
a transformational generative grammar, we do not increase the weak generative
power of the base component.

Adopting the linguistic term "immediate constituent analysis" for parsing,
we might call the analysis obtained by using local transformations, a "local
transformational immediate constituent analysis".

The applications of such a specification of constraints in areas other than
linguistics are worth exploring. Results in this paper are relevant to the following
situation" Patterns of a class, say A, may be difficult to characterize generatively;
but, it may be possible to specify a suitable (nontrivial) augmentation, say B, of the
class A, such that B can be easily characterized generatively, and then A is
characterized by stating some restrictions on the class B. This suggests applica-
tions to programming languages and pattern description languages.

Extension of our results to specification of constraints on structural descrip-
tions which are not trees (e.g., graphs) is also a possibility.

2. Context-sensitive rules for analysis. Context-sensitive grammars, in gen-
eral, are more powerful (with respect to weak generative capacity) than context-
free grammars. A fascinating result of Peters and Ritchie [7] is that if a context-
sensitive grammar G is used for "analysis" then the language "analyzed" by G is
context-free. This result has significance in transformational linguistics because

* denotes concatenation.

274 ARAVIND K. JOSHI AND LEON S. LEVY

the context-sensitive rules in the base component of a phrase structure transfor-
mational grammar are used essentially in this manner.

First, we will describe what we mean by a context-sensitive grammar, G, used
for "analysis". Given a tree t, we define a set of "proper analyses" of t. Roughly
speaking, a proper analysis of a tree is a "slice" across the tree with the condition
that if a node is included in the slice then all its siblings are included; if a sibling is
not included then all its siblings are included and so on. More precisely, the set of
proper analyses of t, P(t) is defined as follows:

(i) If t .a (i.e., a single node labeled a) then P(t)= {a}
(ii) If

A

then P(t)= {A} U P(to) P(t,) P(tn-1) where to, tl, tn--1 are trees and.
denotes set product. Let t be a tree as shown below:

t---

S

c
/ "Nd E

c e

The set of proper analyses of t, P(t), is

P(t) {S, AB, AE, Ae, CdB, CdE, Cde, cdB, cdE, cde}.

Let G be a context sensitive grammar, i.e., its rules are of the form

A--> o1 0
where A e V-: (V is the alphabet and 5 is the set of terminal symbols), o e V*
(set of nonnull strings on V), and , e V* (set of all strings on V). If and are
both null then the rule is a context-free rule. A tree t said to be "analyzable" with
respect to G is for each node of t, some rule of G "holds". It is obvious how to
check whether a context-free rule holds of a node or not. A context sensitive rule
A--> o9[holds of a node labeled A, if the string corresponding to the
immediate descendants of that node is o9, and there is a proper analysis of t of the
form plg)Ap2 which "passes through" the node (p, 02 e V*). Let ’(G) be the
set of all trees analyzable by G, and let L(-(G)) be the string language correspond-
ing to the terminal strings of trees in ’(G). Then the result of Peters and Ritchie
mentioned above can be stated as follows.

THFOREM 2.1. Let G be a context-sensitive grammar. The language analyzed
by G, i.e., L(-(G)), is context-free.

3. Local transformations. Since we will now be interested in using context-
sensitive rule for analysis only, let us call the contextual condition in a rule

CONSTRAINTS ON STRUCTURAL DESCRIPTIONS 275

A -w[, a "proper analysis predicate." Let G be a finite set of rules of the
form

where PA is a Boolean combination of proper analysis predicates. The subscript A
indicates that the proper analyses have to pass through a node labeled A. The
following is an example of such a rule"

us, the above rule holds of a node labeled A in a tree t if the string
corresponding to the immediate descendants of A is w, and a proper analysis of
the form pblAxp2 passes through A, and either a proper analysis of the form
P32A2P4 passes through A or no proper analysis of the form Ps3A3P6
passes through A. Clearly, such rules allow us to state quite complex contextual
conditions. Let z(G) be the set of trees "analyzable" by G, where G is a finite set
of rules of the type mentioned above. Let L(z(G)) be the string language of G.
en we show that L(z(G)) is still context-free. is result holds even when the
right and left contexts are not necessarily immediately to the right or left
respectively. The right (or left) context may even be "scattered" on the right (or
left).

A context sensitive rule allows us to specify context on the "right" and "left".
Often, we need to specify context on the "top" (or perhaps even at the "bottom").
Given a node labeled A in a tree t, we will say that 6(A, B) holds of the node
labeled A if a node labeled B immediately dominates the node labeled A, i.e., B is
the immediate ancestor of A. We will call 6 a "domination predicate". The most
general form of a domination predicate we will allow is

8 holds of a node labeled A if there is a path from the root of the tree to some
terminal node, which passes through this node (labeled A), and is of the form

pAp:, p, p: .
We might call such a path a "vertical proper analysis" passing through A. The top
and bottom contexts (i.e., and) may even be "scattered". It is clear that this
generalization allows us to state conditions involving immediate or nonimmediate
domination as well as a sequence of dominations. Now let G be a finite set of rules
of the form

A W[DA,
where DA is a Boolean combination of domination predicates (generalized)
mentioned above. Let r(G) be the set of trees analyzable by G. We also show that
L(r(G)), the language corresponding to the terminal strings of trees in t, is
context-free.

We are now ready to define a "local transformation". A local transformation
is a rule of the form

276 ARAVIND K. JOSHI AND LEON S. LEVY

where CA is a Boolean combination of proper analysis predicates and domination
predicates. Conditions on transformations are usually stated in terms of such
predicates and their Boolean combinations. Hence, we call these rules "transfor-
mations". Since the string o is dominated by a single category, we use the modifier
"local". Our main result can now be stated as follows.

THEOREM 3.1. Let G be a finite set of local transformations and r(.G), the set

of trees analyzable by G. Then the string language L(r(G)) is context-free.
Example 3.1. Let V-{S, T, a, b, c, e} and E {a, b, c, e}. Let G be a finite

set of local transformations:

1. Se,
2. SaT,
3. T-+ aS,
4. S-+ bTc/(a_)/a(S, T),
s. T-, bScl(a_)Aa(T, S).

In rules 1, 2, and 3 the context is null, i.e., these are context-free rules. In rule
4, S in (S, T) refers to the label of the node at which the condition is to be
checked and the condition is that this occurrence of S is dominated (immediately)
by a node labeled T. In rule 5, 8 (T, S) refers to a node labeled T and this node is to
be dominated (immediately) by a node labeled S.

The language generated by this example can be derived by the context-free
grammar:

G’: S-+ e, S aT1, Sl-+ aT1,
S - aT, T-+aS1, TI -+ aS1.
T-+ aS, T1 -+ bSc,
S -+ bTc,

In G’ there are additional variables $1 and T which enable the context checking
of the local transformations, G, in the generation process.

It is easy to see that under the homomorphism which removes the subscripts
on the variable T and S, each tree generable in G’ is analyzable in G. Also each
tree analyzable in G has a homomorphic pre-image in G’.

However, the tree

a S

is not analyzable in G, since the root node is used in rule S- bTc, but does not
satisfy the analysis condition (a__)/6(S, T).

Example 3.2 (Due to Kang Yueh). Let V={E, +,*,[,],a} and =
{ +, *, [,], a}. Let G be a finite set of local transformations:

1. E-E +E/--n(+
2. E E*E/-(*
3. E-[E]
4. E-a

.)A-(, ,)A-(*)

CONSTRAINTS ON STRUCTURAL DESCRIPTIONS 277

G gives unambiguous structural descriptions, in accordance with the precedence
relationships, for the arithmetic expressions.

4. Proof of Theorem 3.1. We will take a somewhat leisurely approach for
the reasons indicated in 1. Let us start with a finite state string automaton. Let
be the input alphabet, 0 the finite set of states, and M the transition function,
M:Z x Q- Q.

There are some properties of strings which a finite automaton can check, and
we shall call these regular features. A feature is checked by a finite automaton if
there is a two block partition of the state set of the automaton, 7r {Try, r}, such
that for all strings possessing f, the automaton after processing, is in a state in
and for all strings not possessingf the state of the automaton after processing, is in

We write f(x) to denote the fact that string x has feature f, and F= {xlf(x)}. F
is the (regular) set of strings possessing feature f. If fl and f2 are regular features
then F1 f-I F2 is the set of strings possessing both fl and f2, and F1 U F2 is the set of
strings having fl or f2.

THEOREM 4.1 (Kleene). Let fl and f2 be any regular features; then
F1, F1, F f3 F2, and F1 F2 are regular.

COROLLARY 4.1. Let gl B({fl}) be any Boolean combination of a finite set
of regular features; then G1 is a regular set, and gl is a regular feature.

By a Boolean combination of sets we mean the set of sets formed from the
finite set by complementation, union, and intersection. By a Boolean combination
of features, we mean the features el(x)/e2(x), el(x)/e2(x), and -e(x) where e,
e a, e2 are in the given finite set of features or are Boolean combinations of
features.

COROLLARY 4.2. Let g2 (fa f2). Then if fa and f2 are regular, G2 is a
regular set, and g2 is a regular feature.

We may describe G2 as the set of strings which if they possess the feature fa
must also possess f2.

We note that while the features are defined for strings, an automaton doing
the computation of features of a particular string processes the string from left to
right and is actually computing the features at each step of the processing. This
motivates the following definition:

DEFINITION 4.1. If X F, we write f(x), making explicit the fact that features
are predicates. Let Prefix (x) {yl(::lz) (yz x)}; Prefix (x) is the set of prefixes of
the string x. If f is a regular feature, the following are defined for strings"

(i) g(x)CC,((/y Prefix (x))f(y)), i.e. every initial substring possesses f.
(ii) h(x)((:::l y Prefix (x))f(y)), i.e. some initial substring possesses f.
(iii) j(x)CC,((:::l!y Prefix (x))f(y)), i.e. exactly one initial substring possesses

The reader may find it helpful to keep the following feature in mind while reading the discussion
on strings:

f(x) x has a substring 01011

278 ARAVIND K. JOSHI AND LEON S. LEVY

We then have the following:
THEOREM 4.2. Let f be a regular feature; then g, h,] as defined above, are

regular features.
COROLLARY 4.3. Any first order predicate expressed in terms of regular

features of strings or their prefixes is a regular feature.
A formulation of these results which is more directly applicable to trees is as

follows:
DEFINITION 4.2. A string domain S c 1" is a finite set of elements such that if

x l is in S, then x is in S. Further, we map S onto {0, 1,...,N-1} by the
homomorphism h (h) 0, h (x, y) h (x) + h (y). A string is a mapping from S to 5;.

We imagine the symbols of the string being numbered from N- 1 to 0 going
from left to right.2 Hence, we can talk about the automaton being in position n of
string x, and x has feature f at n, i.e., f(x, n):the state of the automaton is in 7rf,
when the automaton is in position n of string x. (0 denotes the position of the head
when processing is complete, so that f(x, 0) :>f(x); andN length(x) denotes the
initial position of the head.)

Accordingly, we rewrite the features g, h, and], as follows:

g(x)C((Vn _-<length (x))f(X, n)),
h(x)Cz((n -<_length (x))f(x, n)),
](x)C:((!n <_-length (x))f(x, n)).

We consider next the case of an automaton checking multiple features on a
string, in particular those features which once identified in a prefix are features of
the entire string. We call these persistent features. (An example of a persistent
regular feature is the occurrence of some fixed substring. An example of a
nonpersistent regular feature is the evenness of the number of occurrences of
some fixed letter.) We want to determine the relative positions at which two
persistent features, fl and f2, occur. (In the tree case this will correspond to
computing domination predicates.)

Informally, we can visualize two automata A and A2, A checkingfl, and A2
checking f2. We first let A process the input string going from left to right and
record on each square adjacent to the original symbol in the square the state A
was in on that square. This sequence of states of A is called a state string. A2 can
then be readily modified to process the combined original data and state string
data to determine whether fa occurs earlier than fz.

DEFINITION 4.3. Afinite relabeling transformation, p, induced by an automa-
ton A is a mapping from strings to strings defined by

p(o’) M(o’, q0) for o" e E,

p(xtr) p(x)M(xcr, qo) for x E E*, o’Er.

This numbering is chosen because of our string automata processes from left-to-right; it will
later be generalized to tree automata going from the bottom of a tree, depth N, to the root, depth 0.

CONSTRAINTS ON STRUCTURAL DESCRIPTIONS 279

In a finite relabeling transformation, each string is mapped into the sequence of
states which occurs in its processing. IfF is the set of string having feature f, the

p(F) (y(x F)(y p(x))).

p(F) is thus the image of F under the finite relabeling transformation, p, induced
by A. p(F) is a set of state strings.

Again, anticipating the tree automata case and considering strings as map-
pings from string domains to finite alphabets, let q(x, n) denote the state of the
automaton at position n of string x. Then q (x, N) q0 and M(qo, x) q (x, 0); and
the finite relabeling transformation generates the string p(x).

Consider next the case of two automataA and A2 scanning the string x from
left to right, where the input sequence to A2 is the state sequence of A, as in the
usual cascade construction. Then the output sequence from A2 is just the
composition of finite relabeling transformations. Since the cascade construction of
A and A2 is just another finite state machine, this shows that finite relabeling
transformations are closed under composition. Finite relabeling transformations
are just a convenient way of sequentially decomposing the cascade connection of
finite state machines.

We now apply the finite relabeling transformations to get an alternative
development of Corollary 4.3.

DEIINITION 4.4. Let p(x) and ta(x) be state strings induced byA and A,
respectively, and let p(x, n) be the nth element of p(x). Then (pl(X), p2(x))
denotes the string whose nth element is (p(x, n), p2(x, n)).

THEOrEM 4.3. Let f and f2 be regular features, and g and g2 defined as
follows:

gl(x, n)c(fl(X, n) = (m < n)f2(x, n m),
ga(x, n)Cr>(f(x, n) = (::ira < n)f2(x, n m)).

Then g and g. are regularfeatures and gl(x, n) pl(X, n) and g2(x, n) p2(x, n),
where pl and p2 are two finite relabeling transformations.

Proof. The finite relabeling transformations p and P2 record the (truth)
values of the features gl and g2 respectively. Each g is a regular feature since it is
computed by a finite relabeling transformation p. The computation of p may be
decomposed as follows. First, compute fl and f2 by finite relabeling trans-
formations taking x to (fl(x),f2(x)). The computation checks that
(/n)f(x,n)((m>n)f2(x,n-m)) which is a check that the ordered pair
(T, F) never occurs in the intermediate result.

We now give tree automata versions of these results and then establish an
extension of the Peters-Ritchie result.

A (bottom-up) tree automaton is an automaton operating on (rooted,
labeled, directed and left-to-right ordered) trees. Assuming that the states of the
automaton at all descendants of a node are known, the next state at the node is
determined by the transition function. At the beginning, initial states are assumed
as descendants of the frontier nodes of the tree. Such a tree automata are referred
to as bottom-up, since the states rnay be visualized as moving up the tree from
the frontier to the root. Thus we have

280 ARAVIND K. JOSHI AND LEON S. LEVY

DEFINITION 4.5. A (bottom-up) tree automaton, A, is a system A
(T, (2, M, O0, F). is a finite alphabet, T is the set of finite rooted, directed,
left-to-right ordered trees labeled with elements of E, O is a finite state set, q0 O
is the initial state, F_ (2 is the set of final states, and M: E x Q" O determines
the state of a node, v, in terms of the states of its direct descendants. M: T- (2 is
then defined as follows" If v is a leaf, labeled r, then M(v) M(r, q0); otherwise,
if v has direct descendants Xl"" x, then M(v) M(r, M(Xl), ", M(x,)).

A recognizable feature of a set of nodes is a condition which can be verified at
those nodes by a finite state (bottom-up) tree automaton. A recognizable feature
of a set of trees is a feature recognized at the root nodes of the trees in the set.

Thus there is a two block partition of the state set of the automaton,
zr {r, zr}, such that for all trees possessing f, the state of the automaton after
processing is a state in zq, and for all trees not possessing [, the state of the
automaton after processing is in

If f is a recognizable feature, then F is the set of trees possessing feature f, and
F is the set of trees not possessing feature f. A set of trees possessing a
recognizable feature is said to be a recognizable set.

Remark. The word "feature" could have been replaced in our definition by
the word "predicate". However, feature is preferred because of its descriptive
connotation. Both of these are closely related to the word "state".

The following result is well-known [3], [6], [11], [12].
THEOREM 4.4. Let f and f2 be any recognizable features; then El, F F2,

F1 F2, and F1 are recognizable.
COROLLARY 4.4. Letgl B({f/}) be any Boolean combination ofafinite set of

recognizablefeatures, then G1 is a recognizable setand gl is a recognizablefeature.
COROLLARY 4.5. Iff andf2 are recognizablefeatures and g2 (fl rE), then

G2 is a recognizable set and gz is a recognizable feature.
It is also well-known that [3], [6], [11], [12]
THEOREM 4.5. IfFis a recognizable setoftrees then yield (F) is a context-free

language.
DEFINITION 4.6. Let Subtree (x)= {y[y is a subtree of x}. (If

X X

then x is a subtree of x, each xi is a subtree of x, and each subtree of each xi is a
subtree of x.) A more formal definition follows the definition of tree domain
below (Definition 4.8).

If f is a recognizable feature, the following are defined for trees"
(i) g(x)C:((fy Subtree (x))f(y)), i.e. every subtree possesses f.

(ii) h(x)C((Zly Subtree (x))f(y)), i.e. some subtree possesses f.
(iii) (x)C:>((Z!!y Subtree (x))/(y)), i.e. exactly one subtree possesses f.

As a generalization of Theorem 4.2 we now have
THEOREM 4.6. Letfbe a recognizablefeature, then g, h,] as defined above, are

recognizable features.
We will now consider, in somewhat more detail, the case of an automaton

which is checking multiple (persistent) features on trees. This will be the case, for
example, when verifying that a tree is in F1 F2. Again, the development parallels
the string case.

CONSTRAINTS ON STRUCTURAL DESCRIPTIONS 281

DEFINITION 4.7. A finite relabeling transformation is a mapping which
assigns to each node of the tree the state of the automaton, A, processing it [3] as
follows:

p(o’) M(tr, q0) for o" E,

p(tr) M(tr,/(x 1),’" ", (x))
p(x) p(x.) p

Example:
M(a, qo)= qa, M(b, qo)= qb, M(S, qa, qa)= qa,

M(S, qb, qa) qb, M(S, qb, qa) qba, M(S, qba, qa) qba,

M(S, qb, qba) qb; otherwise M(. qa and

F {qa, qb, qba}.

Then

/\ /\
a b b a

S S

/ \ /\
b b b -a

q qba

/ \ / \
qa qb qb qa

/\ /\
qb "qb qb qa

It is known that [3]
THEOREM 4.7. IfF is recognizable then p(F) is recognizable.
Let J* be the free monoid generated by J, the set of all natural numbers. Let

the binary operation be denoted by- and the identity by 0. For p, q in J*, p _-< q if
and only if there is an r in J* such that q p r and p < q if and only if p -_< q and
pq.

DEFINITION 4.8 (see [5]). A tree domain D is a finite subset of J* such that
1. if q D andp q, thenp D; and
2. if p] D,] 6 J, then p r 6 D for r 6 J, r is equal to or less than/’.
Elements of D are called tree addresses. A labeled tree is a function from a

tree domain to a finite set of labels. We can now define a subtree formally as
follows. If the tree x is a function x: D - E, then the subtree at p, denoted Xp, has
tree domain Dp {q [p" q D} and Xp: Dp ., with Xp (q) x (p q).

DEFINITION 4.9 (Left-to-right order),p q, p is to the left of q, for p, q D, if
p r./’1 sl, q r./’2" s2,/’i J, si, r J*, 1, 2, and/’1 is less than 2.

We now extend the tree notation of features, as we did in the string case, so
that f(x, v) is the feature computed in the tree x at tree address v.

282 ARAVIND K. JOSHI AND LEON S. LEVY

LEMMA 4.1. If [1, f2, and f3 are recognizable features, and

g(x, p)C(f(x, p) (::lq)f(x, p q)),

gE(x, p)Cr(fl(X, p) -(::iq)f2(x, p" q),

g3(x, p)Cr(fl(x, p) = (:lq)(::lr)f2(p q)/f3(P r)q r))),

then gl, g2, and g3 are recognizable features.
Proof. The argument is essentially that given in the proof of Theorem 4.3,

using finite relabeling to record intermediate steps of the computation. Thus
(]’l(X, p),]’2(x, p)) can be computed, and existential quantification applied as in
Theorem 4.6 noting that (]q)[2(x,q) is an alternative notation for (y
Subtree (x))]’(y). The feature g3 is obtained similarly noting that an automaton
can easily check the left-to-right order at a given node.

THEOREM 4.8. Any first order predicate, with bounded quantification as in
Definition 4.1 andLemma 4.1, expressed in terms ofrecognizable.features on trees,
their subtrees, or left-to-right ordering is a recognizable feature.

Remarks. 1. Any condition on the proper analyses of a set of trees which
can be verified by a tree automaton yields a recognizable feature. Any combina-
tion of such features as given by Theorem 4.8 will still be recognizable. From this
and the next remark, Theorem 3.1 follows.

2. Recognizable sets are related to local sets [9], [10], [11]. Given a recogniz-
able set one can develop a context-free grammar so that the recognizable set is
(the homomorphic image of) the set of derivation trees of the context-free
grammar.

In the following we consider some other generalizations of the Peters-Ritchie
result.

LEMMA 4.2. Let R be a regular set; then the feature f(t)= (P(t)_ R) is
recognizable, where P(t) is the set ofproper analyses o]’ t.

Proof. (This method of proof is due to Rounds [9]). Each regular set, R, is the
union of complete congruences of a finite congruence relation. We evaluate the
tree.(bottom-up) keeping track of the congruence classes of proper analyses. Since
there are only finitely many congruence classes, the set of congruence classes
having nonnull intersection with the proper analyses of a subtree can be rep-
resented in the state of the tree automaton when it reaches the root of the subtree.

If

x

is a node of the tree and its direct descendants, and if we know the set of
congruence classes with which each x has nonnull intersection, then we can
determine the set of congruence classes with which the proper analysis at x has
nonnull intersection. Now the proper analysis of t, P(t), is a subset of R, if and only
if the set of congruence classes with which the root has nonnull intersection is a
subset of the congruence classes defining R.

CONSTRAINTS ON STRUCTURAL DESCRIPTIONS 283

Remark. Lemma 4.2 does not imply that we can check if P(t) R because
the above proof also shows that we can tell if L R where L is a context-free
language and R is an arbitrary regular set; however, whether or not L R is
known to be undecideable.

From Theorem 4.8, Lemma 4.2 and Theorem 4.5, we have
THEOREM 4.9. The yield ofthe set oftrees analyzed by productions oftheform

A B/a A (read as "A becomes in the context a A ") is context-free, where
A is a nonterminal, is a string ofterminals and nonterminals, and a, A are regular
expressions over terminals and nonterminals.

Remarks. 1. Theorem 4.9 generalizes the Peters-Ritchie result which is just
Theorem 2.7 specialized to the case where a, A are strings of terminals and
nonterminals.

2. By Theorem 4.8, a finite or regular set of proper analyses may be
excluded. This is so because of the closure of recognizable features under
complementation and intersection.

Another type of feature on trees which we often like to check is the relative
positions of occurrences of given recognizable subtrees. Theorem 4.9 can be
generalized to this case and the proof methods carry over directly. The following
proposition is an example of such a generalization. First, we need a new definition.

DEFINITION 4.10. Let/3 be a set of recognizable trees. By a rule A B we
understand the (possibly infinite) set of rules {A xlx /3}. Similarly, a rule
A- flla__ A is understood to represent the set of rules {A xlaA Ix },
where a and A are expressions denoting recognizable sets.

THEOREM 4.10. The yield of trees analyzed by productions of the form
A fl/a A is context-free, where A, a, , and A are as in Definition 5.1. The set

of trees analyzed by these productions is recognizable.
Remark. An immediate interpretation of Theorem 4.10 is that AL6oL-like

languages requiring declarations are still context-free if a bound is placed on the
size of the names, since the automaton can check for the presence of the
declaration.

5. Conclusions. We can summarize the main argument as follows: Finite
string (tree) automata compute features of strings (trees). Using standard tech-
niques of automata theory, computations of several finite string (tree) automata
can be combined so that any features described in a first order language are
themselves computable by finite string (tree) automata. In particular, the proper
analysis predicates of the Peters-Ritchie result are computable by finite tree
automata, and Boolean combinations of these proper analysis predicates also are
finite-tree-automata computable, including the subtree computation (Theorem
4.6) required for domination predicates. Some further generalizations are
suggested by Theorems 4.9 and 4.10.

Acknowledgment. We are deeply indebted to the two referees of this paper
whose very detailed comments have helped us to improve greatly both the
accuracy and the style of presentation. We also want to thank Barry Soroka and
Kang Yueh for their valuable comments. Barry Soroka has also implemented, in
MTS-LISP, a system for local transformational analysis (M.S. Thesis, University
of Pennsylvania, 1976).

284 ARAVIND K. JOSHI AND LEON S. LEVY

REFERENCES

1] B. BAKER, Tree transductions andfamilies o]’ tree languages, Proc. Fifth ACM Symp. on Theory
of Computing, Association for Computing Machinery, New York, 1973, pp. 200-206.

[2] N. CHOMSKY, Aspects ofthe Theory ofSyntax, The M.I.T. Press, Cambridge, MA, 1965, p. 215.
[3] J. DONNER, Tree acceptors and some of their applications, J. Comput. System Sci., 4 (1970),

pp. 406-451.
[4] J. ENGELFRIET, Bottom up and topdown tree transformations: a comparison, Tech. Rep.,

Technische Hogeschool Twente, Holland, 1971.
[5] S. GORN, Explicit definitions and linguistic dominoes, Proc. Systems and Computer Science

Conference, Univ. of Western Ontario, London, Ont., 1965, pp. 77-115.
[6] L. S. LEVY, Automata on trees: A tutorial survey, Egyptian Computer J., 1976, to appear.
[7] P. S. PETERS AND R. W. RITCHIE, Contextsensitive.immediate constituentanalysis--contextfree

languages revisited, Proc. ACM Symp. Theory of Computing, Association for Computing
Machinery, New York, 1969, pp. 1-10.

[8] M. O. RABIN AND D. SCOTT, Finite automata and their decision problems, reprinted in
Sequential Machines: Selected Papers, E. F. Moore, ed., Addison-Wesley, Reading, MA,
pp. 63-91.

[9] W. C. ROUNDS, Tree oriented proofs of some theorems on context-free and indexed languages,
Proc. ACM Symp. on Theory of Computing, Association for Computing Machinery, New
York, 1970, pp. 210-216.

[10] J. W. THATCHER, Characterizing derivation trees ofcontext-free grammars through a generaliza-
tion offinite automata theory, J. Comput. System Sci., (1967), pp. 317-322.

11] J. W. THATCHER AND J. B. WRIGHT, Generalized finite automata theory with applications to a
problem of second order logic, Math. Systems Theory, 2 (1968), pp. 57-81.

12] J. W. THATCHER, Tree automata: an informal survey, Currents in the Theory of Computing, A.
A. Aho, ed., Prentice-Hall, Englewood Cliffs, NJ, 1973, pp. 143-172.

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

A COMPLETENESS CRITERION FOR SPECTRA*

T. HIKITA’ AND A. NOZAKI$

Abstract. A spectrum is an algebraic representation of a set of "switching elements" each of which
carries out an operation in a definite time lag. The notion of functional completeness (--- -completeness)
in the family of spectra was introduced by V. B. Kudryavcev and A. Nozaki. In this paper we

investigate the maximal incomplete spectra and thus give a new effective criterion for a spectrum to be
functionally complete.

Key words, switching element, spectrum, functional completeness, maximal incomplete set

1. Introduction. In this paper we are concerned with "completeness prob-
lem" on sets of indexed operators.

The classical completeness problem in logic and switching theory deals with
sets of (many-valued) logical functions defined on the set {0, 1,- , k- 1}. A set
of logical functions is said to be functionally complete (or simply, complete) if it can
generate by the operation of composition the set of all logical functions. Several
criteria have been given for the completeness of sets of logical functions, among
which are those given by E. L. Post [5] for the binary case, and J. Slupecki [8] and
J. W. Butler [1] for general case. S. V. Yablonskii [10] and I. Rosenberg [6], I-7]
have refined these results by determining maximal incomplete sets for ternary and
general case respectively.

V. B. Kudryavcev [2], [3] generalized the above completeness problem by
considering a "function with time delay," that is, a pair (f, d) of a logical function f
and a nonnegative integer d (which we call indexed operator). An indexed
operator may be considered to be a model of a switching element which carries out
an operation in a definite time delay. A set of these pairs is said to be functionally
complete (----complete in Nozaki’s terminology) if for any logical function f there
exists a nonnegative integer d such that a pair (f, d) can be obtained by composing
the elements of the set "combinationally" (for the precise definition, see 2.2). V.
B. Kudryavcev gave a solution for the binary case by giving all the maximal
incomplete sets of these pairs explicitly. A. Nozaki [4] redefined this problem in
mathematically clear form and has given a criterion for general values of k.

The purpose of this paper is to give a new effective criterion for ----com-
pleteness by combining the result of A. V. Kuznecov (see [11]) and the characteri-
zation of the maximal incomplete spectra. Our result corresponds to the one of J.
W. Butler for the classical case of logical functions, and it deepens the results of
both V. B. Kudryavcev and A. Nozaki.

2. Preliminaries. In this section we prepare several notations, definitions
and basic results on functional completeness of logical functions and indexed
operators.

* Received by the editors May 30, 1975, and in revised form May 10, 1976.

" Department of Information Science, Faculty of Science, University of Tokyo, Tokyo 113 Japan.
$ Department of Computer Science, Faculty of Engineering, Yamanashi University, Kofu,

Yamanashi 400 Japan.
285

286 T. HIKITA AND A. NOZAK!

2.1. Logical functions and completeness. Let M(X, Y) denote the set of all
mappings from a set X to a set Y.

DFNTON. For the set X {0, 1, , k- 1}, where k is greater than one,
let

(i) ,, (k)= M(X, X), where n is a positive integer,
(ii) fl(k)= [’-JT=l an(k).

We call an element of l(k) a (k-valued) logical]:unction.
The set l(k) forms a semigroup by the operation of composition of

functions.
DEFINITION. Let f be in l)p(k), and G ={gl,’", gp} be a set of logical

functions where gi 1, (k). A logical function h in s(k) is said to be construct-
able from f and G if and only if h can be written as follows"

h(Xl, xs) f(gil(Xt(1,1), xt(1,qi,)),

gip (X t(p,1), X t(p,qi))),

S *wherethext(i,) arevariableschosenfromxl, xn, andeachgil, gip G.
DEFINIXION. Let F and G be subsets of f(k). We denote byF (R) G the set of

all the logical functions constructable from elements in F and subsets of G.
DEFINIXION. For any subset F of II(k), let

(i) F(1) F (R) {I}, where ! denotes the identity function in fl(k),
(ii) F(d)-- F(d-l) () F(1) for d _-> 2,

(FU {i})(a)(iii) F U d=

F is said to be the closure of F. F is said to be closed if and only if F F. F is said to
be complete (in (k)) if and only if F= (k). F is said to be maximal incomplete
(or simply maximal) if and only if F is not complete and G fl(k) for any G
properly containing F.

We remark that if a set F is maximal then it is closed. The set (AND E

).(2), INVERT fl(2)) is a classical example (among others) of complete sets in
the binary case. For the general values of k, D. L. Webb [9] showed that the set
{webb e (k)) is complete, where

webb (x, y)= min {x, y}O 1,

where denotes the addition modulo k. This function will be used later.
Now we introduce some important notation and results useful to complete-

ness problem.
DEFINITION. For any subsets $1 and $2 of ll(k), define a set of logical

functions

F(Sl, S2) {f l(k);({f}(R)Sx) f3 (k)
_

$2}.

This set for the special case $1 $2 was first defined by J. W. Butler [1]. We
state its easy properties without proof.

LEMMA 2.1. (i) If $1 $2 then F(S1, S)
_
F(S2, S);

(ii) If S
_
$2 then F(S, $1)

_
F(S, $2);

(iii) F(S1, $2) 71F(S3, $4)

F(S1 f’l $3, S. f’) $4).

We also give a condition for a set F(S, S) to be equal to the set O(k):

A COMPLETENESS CRITERION FOR SPECTRA 287

LEMMA 2.2. Let S be a nonempty subset of f(k). Then F(S, S) is closed.
Moreover, F(S, S) is complete if and only if there is a direct sum decomposition
x-y X,, of the base setX {0, 1,. k 1} such that the following equality
holds:

S ={h s l(k); [h (X,,,)I 1 for all m 1,..., s},

where YI denotes the cardinality of a set Y.
Pro_L0_9_f. Closedness of the set F(S, S) can be shown immediately, so that we

have F(S, S) F(S, S). The sufficiency part of the second assertion is easy, so we
will show the necessity part. Assume that F(S, S) 12(k and let S {h 1," ",ht}.
For any two elements x, y of the base set X define a binary relation R as follows:
xRy if and only if hi(x)= hi(y) for all 1,. ., t. It is easily seen that this is an
equivalence relation. LetX 7,= X,, be a direct sum decomposition of the base
set X associated with this equivalence relation. Let

S’= {h ,l(k); [h(Xm)l 1 for all m 1,..., s}.

It is obvious that S
_

S’, so we show the converse. For any function h in S’ define a
logical function f in ft(k) by

f(xl, ,xt)={ h(x)0

if xi hi (x) for some x
and any 1, , t;
otherwise.

We can check the well-definedness of f. Since F(S, S)= f(k) by assumption,
h(x)=f(hl(X),"’, ht(x)) is in S. Therefore S’_ S. Thus S= S’ and the proof is
completed.

Now we introduce some special classes of logical functions.
DEFINITION. A logical function f in f, (k) is said to be linear if and only if f

can be written in the following form:

f(Xl, Xn)= ao@alXl@" @anXn,

where multiplications and additions are taken modulo k, and a0, al,..., an are
constants in {0, 1,. ., k- 1}. We denote by L(k) the set of all the linear logical
functions.

Obviously the set L(k) is closed.
DEFINITION. Let f be a logical function in n (k).
(i) f is said to be simple if and only if

f(x, ,x,)=f’(x)

for some f’ 121(k) and some i.
(ii) f is said to be semi-simple if and only if f is simple or nonsurjective.
We denote by S(k) the set of all the semi-simple functions. The set S(k) is

also closed.
DEFINITION. We denote by N(k) a set of logical functions defined as follows:

=L(2) if k=2;
N(k)

S(k) ifk3.

288 T. HIKITA AND A. NOZAKI

Note that N(k)f)fl(k)= O(k). We state two easy lemmas without proof:
LEMMA 2.3. Let]: fn(k) and g f,,(k), anddefine h in 2,n(k) as[ollows"

h(x,..., x,n)=f(g(x,..., x,,),

Xm,)).

If]’, gN(k) then hN(k).
LEMMA 2.4. If a logical function f is surjective then we can find h a, ", h,

(k such that

f(ha(x), h,(x))= I(x).

We note that if fe N(k) thenf is surjective; hence Lemma 2.4 is applicable.
Now we cite the main results due to J. Slupecki [8] and J. W. Butler [1] on

completeness for sets of logical functions.
THEOREM 2.5. A set of logical functions is complete if and only if it is not

contained in any maximal set.
THEOREM 2.6. LetMbe a maximal set of logicalfunctions in 12(k). Then one

of the following holds:
(i) There is a proper subsemigroup S of fl(k) including the identity function I

such that

and

M F(S, S)

S=Mf?O(k).

(ii) M=N(k).
Consequently, there are only a finite number of maximal sets of logicalfunctions]’or
each value of k.

Remark. One of the main goals in the completeness problem has been to
determine all the maximal sets explicitly. In the binary case E. L. Post [5]
determined five maximal sets in all, and for the ternary case S. V. Yablonskii [10]
determined eighteen maximal sets in all. Finally, I. Rosenberg [6], [7] determined
all the types of maximal sets for general values of k.

2.2. Indexed operators, spectra and ---completeness.
DEFINITION. A pair (f, d) of a logical function f in O(k) and a nonnegative

integer d is said to be an indexed operator over l)(k).
DEFINITION. Let be a set of indexed operators. We denote by the

minimum set of indexed operators defined recursively as follows:
(i) (I, 0) q;
(ii) If (f, d) q3 and (gl, d’),. ., (g,, d’) then (h, d + d’) for any h in

,g,}.
is called the ----closure of
DEFINITION. A set q3 of indexed operators over l’(k) is said to be -closed if

and only if q3 q. q3 is said to be -complete if and only if for any f in l)(k) there
exists a nonnegative integer d such that (f, d). q3 is said to be ----maximal if
and only of q3 is not ----complete and is ----complete for any qt properly
including

A COMPLETENESS CRITERION FOR SPECTRA 289

We note as an example that, although the set {NAND 112(2)} is complete,
the set {(NAND, 1)} is not -complete. We remark that if is -maximal then it
is -closed.

Now we introduce the notion of spectra, which is conceptually equivalent to
sets of indexed operators.

DEFINITION. A spectrum is a semi-infinite sequence

(Fo, F,,-.., F,

of subsets of t(k). For two spectra = (Fd)a>=o and 3= (Gd)d>=o we say that
includes f (and denote o%

q3) if Fd

_
Gd for all d -> 0.

Let be a set of indexed operators, and define subsets of 12(k) by

Fd {f 6 (k); (f, d) 6 aP}

for each d_->0. Then = (F0, F1,’" is a spectrum. Conversely, from any
spectrum we can define a set of indexed operators . That is, mathematically
these two notions are equivalent. Since the notion of spectra is easier to treat, we
will mainly use it in the rest of the paper.

DEFINITION. Let ,_=(Fd)d>__O be a spectrum. Then the --.-closure =(Fd)d>=O of is defined by
(i) Fo Fo,

d-1 ((R)_d_i for all d => 1(ii) Fd (Fo (R) (Fd (R)/5o))U,=1
DEFINITION. Let (Fd)do be a spectrum. is said to be ----closed if and

only if . - is said to be ----complete if and only if U d=o/Sd l(k). is said
to be ----maximal if and only if is not ----complete and is ----complete for
any properly including .

These definitions for spectra can be checked to be equivalent to those for sets
of indexed operators.

Now we state an easy proposition on ----completeness for spectra without
proof.

PROPOSITION 2.7. Let (Fd)d-O be a spectrum. If there is some d >-0 such
that Fd is complete and contains the identity function I, then is .--complete.

DEFINITION. For any distinct elements a,..., a (i_->2) of the base set
X {0, 1,. , k- 1}, define a set of logical functions by

K(a,, ai)--of (k); f(a, a) f(ai, ai)}.

The following theorem is due to A. Nozaki [4]. We prove it here, since the
proof is not published yet. Actually the conditions in the theorem are sufficient for
----completeness of a spectra as announced in [4], but we will need only the
necessity part.

THEOREM 2.8. Let = (Fd)d>__O be a spectrum, and assume that Fo is not
complete. If is -complete, then satisfies the following two conditions:

(i) For any maximal set M of logical functions there exists a nonnegative
integer q such that, for any positive integer p,

FmM;

290 T. HIKITA AND A. NOZAKI

(ii) There exists a positive integer d such thatfor any two distinct elements a, b
of the base set X {0, 1,. , k 1},

FdC K(a, b).

Proof. (i) We consider the following two possible cases.
Case 1. There exists a constant-valued function c in l(k) such that c g M.

Since o% is ----comp.lete, there is a nonnegative integer q. such that c Fq. Then
obviously c cp Fm for any p > 0. Therefore we have Fm- M.Case 2. All the constant-valued functions in f(k) belong to M. We define a
function g in),4(k) as follows"

g(x, y, u, v)=webb(x’ Y) if u#v,

x ifu =v.

Now, since o% is ---complete, we have g Fq for some q _-> 0. And we have

I(x) g(x, x, x, x) 6 q.
Therefore, for any p > 0, we have g Fpq. By the way, we can show that g M for
any M. For, if g 6 M, since the constant-valued functions 0 and I are inM andM is
closed, we have

webb(x, y)= g(x, y, O, 1)e M.

But this is a contradiction since the set {webb} is co.mplete. Thus we havem M.
(ii) Since is -complete, we have webb Fa for some d. If d 0 then F0 is

necessarily complete, so that d must be positive. Now, we have webb’ e Fa where
webb’(x) webb(x, x) x 1.

Therefore a K(a, b) for any two distinct elements a and b. Thus the proof is
completed.

3. Completeness criterion ior spectra. An analogy of Theorem 2.5 holds for
the case of ----completeness.

THEOREM 3.1. A spectrum is -complete ifand only if it & not included in
any .---maximal spectrum.

A more generalized form of this theorem is due to A. V. Kuznecov (see [11]),
and is presented in V. B. Kudryavcev [2], [3].

Now we define special types of spectra.
DEFINITION. Let -= (Ta)a__>0 be a spectrum. We call - of

(i) first type if there exist p(>=l) subsets of f(k) denoted by
So, S, , Sp_ which satisfy the conditions 1-3 listed below, such that

p-1

Ta f’l F(S,
=0

for all d => O, where j + d denotes the residue of j + d modulo p;
1. So is a proper subsemigroup of ll(k) containing the identity function I;
2. I:Sj for j- 1,... ,p-l;
3. Sj (R) S,, SU- for any j, m;

A COMPLETENESS CRITERION FOR SPECTRA 291

(ii) second type if

Ta =N(k)
for all d O;

(iii) third type if there exist two subsets of fl(k) denoted by So and S, which
satisfy the conditions 1-3 listed below, such that

To F(So, So)

and

Ta F(So, S)

for all d -> 1;
1. S0 is a proper subsemigroup of 11(k) containing I;
2. S=O1(k)nK(a11, a12,)NK(a21, a22,")N... for more than one

distinct element a11, a12," of the base set X {0, 1,. , k- 1};
3. S(R)SoS.
These three types are mutually disjoint. Nowwe have the following lemma:
LEMMA 3.2. A spectrum which is of one of these three types is ---closed and

-incomplete.
Proof. We use the notations in the definition above. The ----dosedness is

easy to show, so we only prove the ----incompleteness. Assume that - is a
spectrum of first type. Since So is a proper subsemigroup of 121(k) containing/,
F(So, So) is incomplete by Lemma 2.2. Hence there is some maximal set M such
that F(So, So) c_ M. Therefore

p-1

Tp n F(S, S
=0

for all q => 0. Hence - is ----incomplete by Theorem 2.8.
If - is of second type then - is obviously ----incomplete.
If if- is of third type, then for all d ->_ 1

Td F(So, S)
cz K(a11, a12,)n K(a21, a22,)n’-

K(a11, a12);

therefore - is ----incomplete by Theorem 2.8. Thus the proof is completed.
With these preparations we can now state our key proposition.
PROPOSITION 3.3. Let be a spectrum. Assume that is .-.-closed and

.---incomplete. Then there exists some spectrum -which is ofone of the three types,
such that-.

Since the proof is lengthy and complicated, it is deferred to the next section.
By Proposition 3.3 we can prove our main result"

THEOREM 3.4. Any -maximal spectrum (Ma)a>_o is of one of the three
types. Moreover,

292 T. HIKITA AND A. NOZAKI

(i) //J//is offirst type, then for f O, 1,..., p- 1,

S M. fq I2(k),

where S and p are as in the definition offirst type;
(ii) ifl is of third type, then

So Mof-) f(k)

and

S= Ml fq fl(k)

where So and S are as in the definition of the third type.
Proof. By assumption // is -maximal; hence is ---closed and

--incomplete, so that Proposition 3.3 can be applied and there exists a spectrum
of one of the three types such that -. is ---maximal and is

-incomplete so it necessarily follows that if; therefore is of one of the
three types.

Now we show (i). Assume that is of first type. Put S =M. (’lIl(k) for
/" 0, 1, , p 1. We can check that $’s also satisfy the properties 1-3 required

(Ma)d=o be a spectrum wherefor Sis in the definition of first type. Let //’

p--1

M’a fq F(S;, S-d)
./=0

for all d ->_ O. We can easily show that /’. At’ is ----incomplete since A/’ is of
first type. Since :g is -maximal it necessarily follows that ’. Therefore we
can take S; instead of Sj and we have shown the assertion. Assertion (ii) can be
shown in the same way. Thus the proof is completed.

4. Proof of Proposition 3.3. In this section we will settle Proposition 3.3. Let
(Fa)a>=o be a spectrum and assume that is -closed and -incomplete. Put

Ua Fa f3 l(k) for all d >= 0. For any positive integer p let Z(p) denote a set of
subsets of f(k) defined by

Z(p)={Upq;q 1, 2,...}.

Then we have the following
LEMMA 4.1. There exists some positive integer p’ such that

Z(p’)=Z(p’r)

holds]:or any r >= 1.
Proof. Suppose that the assertion does not hold. Take any p;-> 1; then we

have Z(p;)_2,(p’or) for any r-> 1. If Z(p’o)=E(p’or) for any r=> 1 then the
assertion holds; hence there exists some ro -> 1 such that Z(p;)Z(p;ro). Put
p’ =p’oro and repeat the same argument for p instead of p; then we have
Z(p) Z(p) NZ(p rl). Therefore, continuing the above arguments, we have the
following sequence of inclusions of infinite length:

z(p)

A COMPLETENESS CRITERION FOR SPECTRA 293

But it is a contradiction since every E(p is a finite set. Thus the proof of Lemma
4.1 is completed.

Hereafter this p’ of Lemma 4.1 will be considered to be fixed.
Next, for each j 0, 1, , p’- 1, consider the following sequence of subsets

Of Ill(k):

and let V,. ., V be all the distinct subsets of -l(k) that appear an infinite
number of times as a component in this sequence. Put V n cj

i= Vj for each].
Then we have the following

LEMMA 4.2. If h Ud for some d >- 1, then we can find some u >- 1 such that
h Vo, where h denotes the composite h h (u times) of the function h.

Proof. Since the set 121(k) is a finite semigroup under the operation of
composition, for h l(k) we can find some v, w-> 1 such that hv/w= h. Put
u =p’vw. Then we can check that (hU)2= h u. Also we have h" Up,(do,) by
"--closedness of . Therefore we see that h Up’(dow)q for any q --> 1, namely we
have h V for any VE(p’(dvw)). Since E(p’(dvw))=E(p’) by Lemma 4.1, we
have h s V for any Vs E(p’). Therefore by definition of V0 we can conclude that
h" s V0. Thus the proof of Lemma 4.2 is completed.

Now put
pr--

j=O

for all d _-> 0, where)" + d denotes the residue of j + d modulo p’, and let q3

(Ga)d>=o be a spectrum. Then we have the following
LEMMA 4.3. is "--closed and cg includes .
Proof. It is easily verified that cg is ---closed, so we show the second

assertion. Take any d -> 0 and any j 0, 1,. , p’- 1. Since o% is ----closed, for
each 1,. ., ci there is some ei such that

namely

By Lemma 2.1 (i) we have

ei vj)
_

vj_- v);
therefore

This inclusion holds for each 1,.-., c, so that

cjn vj).
i=1

294 T. HIKITA AND A. NOZAKI

Then by Lemma 2.1 (iii) we have

therefore

cj

i=1

F,, v,.).
This inclusion holds for each] 0, 1, , p’- 1, so that

pu
F_ n F(V/_--a;, V-)

=0

pt--

n F(V., V/--+-w)
j=0

Thus Fd
_
Gd holds for all d >-0; hence the proof of Lemma 4.3 is completed.

Now we will show that there exists a spectrum of one of three types which
contains . There are five possible cases to consider according to the property of
the set Vo.

Case 1. F(Vo, Vo)_M for some maximal set M other than N(k).
Case 2. F(Vo, Vo)

_
N(k).

Case 3. F(Vo, Vo) f(k and Vo
Case 4. Vo
Case 5. Vo
Let us begin with
Case 1. F(Vo, Vo)c_M for some maximal set M other than N(k). Put

S G N I)(k) for j 0, 1,. ., p’- 1. Then we have

pt--1

So 71 F(V,
j=0

Mn fl(k);

hence S0 is a proper subset of Ol(k) by.Theorem 2.6. Moreover, since is
----closed, So is a subsemigroup of fl(k) including the identity function I and
S (R) S,, S/-T for any], m.

Now, put

min{j; l_--<j_--<p’- 1, I6 si}
p=

Lp’

if this set is not empty;

if this set is empty.

Then PIP’ holds. For, ifI Si for anyj then p p’. If I Sio for some jo -> 1, then we
can find some q-> 1 such that both j-qlp’ and j---<=jo hold. Then we have
I Iq Sj-ffq: By this argument it necessarily follows that pip’. Moreover we can see
that if j m (mod p) then Si Sin, since q3 is ----closed and I Sp.

We put

p-1

Td n F(Si, Sfz-d)
j=O

A COMPLETENESS CRITERION FOR SPECTRA 295

for all d >_- 0, where] + d denotes the residue of j + d modulo p, and let 3- (Ta)d>_o
be a spectrum. We already have that - is of first type. Also, we can directly show
that -_ . Therefore 3-__ holds by Lemma 4.3.

Case 2. F(Vo, Vo)_ N(k). By Lemma 4.3, for all q _-> 0 we have

Fp,q
_

Gp,q
p’--I
n F(V,V)

_N(k).

Then by Lemma 2.3 and ----closedness of it necessarily follows that Fd c_ N(k)
for all d _-> 0. Therefore obviously is contained in a spectrum of the second type.

Case 3. F(Vo, Vo) t(k) and V0 fl(k), th. Since F(Vo, Vo)= (k) and
V0 4, by Lemma 2.2 there is a direct sum decomposition X = X, of the
base set X {0, 1,. , k- 1} such that the following holds"

(*) v0- {h a(k); Ih(X,)l- 1 for al m 1,.. -, }.
Put

II {(a, b)e X2; a b and both a and b are contained in the same subset X,}.
Since V0 1(k) there is some X, such that IX,I--> 2; hence II 4. With these
preparations we can show the following basic lemma for this case.

LEMMA 4.4. There exist two distinct elements a, b of the base set X=
{0, 1,..., k-l} such that

F _(a, b)

for all d >- 1.
Proof. Suppose that the assertion does not hold. Hence for any (ai, bi)e II

there is some hi Ud, where di --> 1 such that hi(ai) hi(bi). Under these situations
we can show the following:

(, ,) There is some h’ Ud, where d’-> 1 such that both h’(a’)= a’ and
h’(b’) b’ hold for some (a’, b’) II.

We show (**) for the following two possible cases.
Case A. For any (ai, bi) II, (hi(ai), hi(bi)) e II. In this case, since II is a finite

set, we can find some (a’, b’) e II and some h’ which is a composite of several hi’s
such that h’(a’)= a’ and h’(b’)= b’.

Case B. There is some (ai, bi) e II such that (hi (ai), hi(bi)) II. In this case, by
(,) there must be some h"e V0 such that h"(hi(ai))= ai and h"(hi(bi))= bi. Put
h’ h" hi, a’= ai and b’ bi.

Now, by Lemma 4.2 we have h’U V0 for some u _-> 1. But, by (**) we have
’h ’) b’h’(a’) a, (b and a b hence h (a’) h (b’) which contradicts to

(,). Thus the proof of Lemma 4.4 is completed.
Next, let

K= K(a, a2, .)C?K(a2, a22, .)C?.

be the minimal set that contains U= Fd and that can be expressed as the form

296 T. HIKITA AND A. NOZAKI

above, where a11, a12," are more than one distinct element of the base set
X {0, 1, , k 1}. By Lemma 4.4 suchK exists, and clearly suchK is unique.

First we consider the case that the set Uo is a proper subset of l(k). Put
So U0 and S K f’l Ol(k). Since is ----closed, So is a subsemigroup of 121(k)
including L Also we have S (R) So

_
S by -closedness of and definition of K.

Put

and

To F(So, So)

Td F(So, S)

for all d _-> 1. Then 3- (Td)a>__o is a spectrum and it is already obvious that 3- is of
the third type. It is easily verified that 3- contains .

Now we consider the case that U0 121(k). In this case we can show that
Fa N(k) for all d => 0. For, if there is some d such thatf Fu wherefN(k), then
by Lemma 2.4 and ---closedness of we have I F; hence Fa

_
fl(k)t.J {f}.

Then Fa is complete by Theorem 2.6; therefore is ---complete by Proposition
2.7, which contradicts our first assumption. So it is clear that is contained in a
spectrum of the second type.

Case 4. Vo=121(k). By definition of Vo there exists some q* such that
Fp,q l’l(k for all q ->_q*. Then we can show that Fd N(k) for all d >-0. For, if
not, by Lemma 2.4 there is some large d such that fd -- 121 (k) t.J {f} wherefN(k).
Then is -complete by the same argument as before, which contradicts our first
assumption. So it is clear that there is a spectrum of second type which contains .

Case 5. Vo b. By Lemma 4.2 and ----closedness of , F b for all d -> 1.
Since is not ----complete, there is a maximal set M which includes Fo. Then
there is a spectrum of the first or second type which includes .

Thus the whole proof of Proposition 3.3 is completed.

REFERENCES

[1] J. W. BUTLER, On complete and independent sets of operations in finite algebras, Pacific J. Math.,
10 (1960), pp. 1169-1179.

[2] V. B. KUDRYAVCEV, Completeness theorem]:or a class ofautomata withoutfeedback couplings,
Problemy Kibernet., 8 (1959), pp. 91-115. (In Russian.)

[3] ., Completeness theorem for a class of automata without feedback couplings, Dokl. Akad.
Nauk SSSR, 132 (1960), pp. 272-274 Soviet Math. Dokl., (1960), pp. 537-539.

[4] A. NOZAKI, Ralisation des fonctions definies dans un ensemble fini t l’aide des organes
dlmentaires d’entre-sortie, Proc. Japan Acad., 46 (1970), pp. 478-482.

[5] E. L. POST, The Two-valued Iterative Systems ofMathematicaILogic, Princeton Annals of Math.
Studies, 5, Princeton University Press, Princeton, N.J., 1941.

[6] I. ROSENBERG, La structure desfonctions de plusieurs variables sur un ensemblefini, C. R. Acad,
Sci. Paris S6r. A-B, 260 (1965), pp. 3817-3819.

[7] ., ber die funktionale Vollstiindigkeit in den mehrwertigen Logiken, Czechoslovakia
Academy, Prague, 1970.

[8] J. SLUPECKI, Completeness criterion in many-valued logical system, Comptes Rendus des
s6ances de la Soci6t6 des Sciences et des Lettres de Varsovie, C1. III, 32 (1939), pp. 102-109.
(In Polish.)

[9] D. L. WEBB, Definition of Post’s generalized negative and maximum in terms of one binary
operation, Amer. J. Math., 58 (1936), pp. 193-194.

A COMPLETENESS CRITERION FOR SPECTRA 297

[10] S. V. YABLONSKII, Functional structures in k-valued logic, Trudy Mat. Inst. Steklov., 51 (1958),
pp. 5-142. (In Russian.)

[11] S. A. YANOVSKAYA, Mathematical logic and foundations of mathematics, Mathematics in
USSR for Forty Years 1917-1957, vol. 1, M., Fizmatgiz, Moscow, 1959, pp. 13-120. (In
Russian.)

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

SUPERCONCENTRATORS*

NICHOLAS PIPPENGERt

Abstract. An n-superconcentrator is an acyclic directed graph with n inputs and n outputs for
which, for every -<_ n, every set of inputs, and every set of outputs, there exists an r-flow (a set of
vertex-disjoint directed paths) from the given inputs to the given outputs. We show that there exist
n-superconcentrators with 39n + O(log n) (in fact, at most 40n) edges, depth O(log n), and maximum
degree (in-degree plus out-degree) 16.

Key words, superconcentrator, concentrator, directed graph

Superconcentrators were defined by Valiant [1] who showed that there exist
n-superconcentrators with at most 238n edges. Superconcentrators have proved
useful in counterexemplifying conjectures 1] and in demonstrating the optimality
of algorithms [2].

Valiant’s proof was based on a complicated recursive construction which
used a related type of graph, called a "concentrator," as a basic element.
Concentrators were defined by Pinsker [3], who showed that there exist (n, re)-
concentrators (which we shall not define here), with at most 29n edges. Pinsker’s
proof was based on another rather complicated recursive construction which used
a nonconstructive existence theorem concerning bipartite graphs as a basic
element. This theorem, though not the recursive construction for concentrators,
was also obtained independently by the author [4].

The purpose of this note is to give a sharpened version of the nonconstructive
existence theorem and a simple recursive construction, using this theorem as a
basic element, for superconcentrators. This yields four benefits. First, the proof
that n-superconcentrators with O(n) edges exist is greatly simplified; our con-
struction is simpler than Pinsker’s, let lone its composition with Valiant’s.
Second, our n-superconcentrators have depth O(log n); Valiant’s have depth
O((log n)2). Third, our superconcentrators have maximum degree (in-degree plus
out-degree) 16; Pinsker’s concentrators (and thus Valiant’s superconcentrators)
do not have maximum degree O(1). Finally, our n-superconcentrators have
39n + O(log n) (in fact, at most 40n) edges.

LEMMA. For every m, there exists a bipartite graph with 6m inputs and 4m
outputs in which every input has out-degree at most 6, every output has in-degree at
most 9, and, forevery k <-_ 3m and every set ofk inputs, there exists a k-flow (a setofr
vertex-disjoint directed paths) from the given inputs to some set of k outputs.

Proof. Let 7r be a permutation on {0, 1, , 36m 1}. From 7r we obtain
a bipartite graph G(Tr) by taking {0, 1,. , 6rn 1} as inputs, {0, 1,. , 4m 1}
as outputs, and, for every x in, an edge from (x mod 6m) to (Tr(x) mod 4m). In
G(r), every input has out-degree at most 6 (since there are only 6 elements of
in each residue class mod 6m) and each output has in-degree at most 9 (since there
are only 9 elements of in each residue class mod 4m).

* Received by the editors April 14, 1976.
-Mathematical Sciences Department, IBM Thomas J. Watson Research Center, Yorktown

Heights, New York 10598.

298

SUPERCONCENTRATORS 299

We shall say that a graph G(Tr) is "good" if there do not exist a k _-< 3m, a set
A of k inputs, and a set B of k outputs such that every edge directed out of A is
directed into B; we shall say that it is "bad" otherwise. If G(Tr) is good, the
marriage theorem (see Hall [5]) ensures that for every k _-< 3m and every set of k
inputs, there exists a k-flow from the given inputs to some set of k outputs, so that
G(Tr) satisfies the requirements of the lemma. We shall show that there exists such
a graph by obtaining an upper bound, less than unity for all m, on the fraction of all
permutations 7r for which G(Tr) is bad.

Any set A of k inputs corresponds to a set of 6k elements of, and any set
of B of k outputs corresponds to a set of 9k elements of :g. Every edge of G(Tr)
directed out ofA will be directed into B only if 7r sends every element of into .
Of the (36m)! permutations of :g, there are [9k]6k (36m-6k)! that satisfy this
condition, where [n]r n(n-1)...(n-r+ 1). For a given value of k, there are

k
possible choices for A and

k
possible choices for B.

Thus an upper bound on the fraction of all permutations - for which G(r) is
bad is

I,,., (6)(4m)[9k]6k(36m
l<=k3m k (36m)!

6k)

36m
6k /

We shall show that I,, is less than unity.
1. We first observe that

(36m >(6)(4m)(26m6k ! k \ 4k/’

for the number of ways of choosing 6k out of 36m objects is not less than the
number of ways of choosing k out of the first 6m, k out of the next 4m, and 4k out
of the last 26m. Thus I,,, is at most

1__<k=<3,,, (26m"
\4k]

2. To find the largest term in J.,, we set

Lk--(26m’
\4k]

300 NICHOLAS PIPPENGER

and observe that the ratio of successive terms can be written as

Lk+l
Lk

(9k +9)" "(9k +7)(9k +6)" "(9k + 1)(4k +4)(4k + 3)" .(4k + 1)
(6k +6)" "(6k + 1) (3k +3)" "(3k + 1)(26m-4k)...(26m-4k- 3)"

Each vertically aligned factor or pair of factors is an increasing function of k. Thus
Lk/l/Lk is increasing, Lk-ILk/I/L is greater than unity, and the largest term of
Jm must be either the first (L0 or the last (Z3m).

3. If the largest term is the first, then J, is at most

3mL 3m
26m 13(26m 1)(26m- 2)(26m 3)’
4 /

which is less than unity for all m -> 1.
4. If the largest term is the last, then J, is at most

18ml
3mL,,, 3m.

12m!

(27m)! (12m)! (14m)!
=3m

(18m)! (9m)! (26m)!"

(see Robbins [6]), together with

which implies

These inequalities give

1e=< (x_<l)
1-x

nl<(12n)(2.rrn)l/2 e_,,n,
12n- 1/

3mL3,,, <-_3m\324m- 1 144m- 1 168m- 1

(27 12 14) 1/22_7__z_7 1212 1414"i 9- \1818

which is less than unity for all m _-> 3. (The bound for m 3 is easily evaluated with
a table of logarithms and a calculator. Futhermore, the bound is a decreasing
function of m, since if m is increased by 1, the first factor increases by a factor of at
most 4/3, the next three factors decrease, and the last factor decreases by a factor
exceeding 2.)

5. In the remaining cases, m 1 and m 2, I,, can be evaluated with a table
of binomial coefficients (for example, Miller [7]), and is less than unity. [q

We shall use Stirling’s formula in the form

(27rn) 1/2 e-"n" <=n! <=ea/aZn(2.trn)1/2 e-"n

SUPERCONCENTRATORS 301

COROLLARY. For every m, there exists a bipartite graph with 4m inputs and 6m
outputs in which every input has out-degree at most 9, every output has in-degree at
most 6, and, for every k <- 3 rn and every set ofk outputs, there exists a k-flow to the
given outputs from some set of k inputs.

Proof. Exchange the roles of inputs and outputs and reverse the directions of
edges and flows in the lemma. [-l

Let s(n) denote the minimum possible number of edges in an n-super-
concentrator. Let

where [. denotes "the smallest integer not less than".
THEOREM. For any n, s(n)<-- 13n + s(O(n)).
Proof. Let

Let G and G’ be bipartite graphs satisfying the lemma and corollary, respectively,
and let S’ be a 4m-superconcentrator with s(4m) edges. The graph S is obtained
by deleting 6m n inputs (and the edges directed out of them) from G, identifying
the outputs of G with the inputs of S’, identifying the outputs of S’ with the inputs
of G’, deleting 6m-n outputs (and the edges directed into them) from G’, and
adding a setE of n edges from the surviving inputs of G to the surviving outputs of
G’. This is illustrated in the figure below.

The graph S clearly has 13n + s(O(n)) edges. All that remains is to verify that
S is an n-superconcentrator.

For some r -< n, let X be a set of r inputs and let Y be a set of r outputs. LetX
be partitioned into two parts: X0, the vertices of X that correspond through E to

inputs outputs

$’

unused inputs unused outputs
deleted deleted

indicates ed(jes
indicates identification
of vertices of subnet-
works (not edges)

302 NICHOLAS PIPPENGER

vertices in Y, and X1, the vertices of X that correspond through E to vertices not
in Y. Similarly, let Y be partitioned into Y0 (corresponding to vertices in X) and
Ya (corresponding to vertices not in X). There is an/-flow from Xo through E to
Y0, where is the common cardinality of X0 and Y0. The set X1 corresponds
through E to a set of vertices disjoint from and equinumerous with Y1. Thus X1
and Y1 have a common cardinality k <= n/2 <= 3m. By the lemma, there is a k-flow
fromX to some set X’ of k outputs of G, and by the corollary, there is a k-flow
from some set Y’ of k inputs of G’ to Y. Finally, by inductive hypothesis, there is
a k-flow from X’ through S’ to Y’. These four flows together constitute an r-flow
fromXtoY. U

From this theorem it is clear that s(n) <= 39n + O(log n), and that this can be
accomplished by graphs with depth O(log n) and maximum degree 16. Since it is
often helpful to have an explicit bound, we shall show that s(n)=<40n.

For small values of n we shall use a "rearrangeable connection network" or
"permutation network." Such a network contains an n-flow following any pre-
scribed mapping from its inputs to its outputs, and is, a fortiori, an n-
superconcentrator. Awell-known recursive construction for these networks gives

s(n) <= 3n(2 [log3 n] 1)

(see Bene [8, Thm. 3.1]; in the outer stages use 3-by-3 switches, with at most one
smaller switch when n is not a multiple of 3; in the inner stages use this
construction recursively). This gives s(n)<= 39n for n <=N= 37-- 2187.

For large values of n we shall apply the theorem recursively. Define

O(n)=n,
O+(n)=O(O(n)).

Then applying the theorem t + 1 times gives

s(n) <= 13(0(n)+ O(n) + + 0’(n)) + s(O’+l(n)).

Let us choose such that

O’(n)>N>=O’+a(n).

Then by the result of the preceding paragraph

s(n)<= 13(O(n)+Oa(n)+ +O’(n))+s(Ot+l(n))"

We note that

0(n) l
_-<4(+)
2 10
3 3’

SUPERCONCENTRATORS 303

and O(n) is even. Furthermore, if n is even,

0(n)=

n 2

2 8

and again O(n) is even. Thus, by induction on t,

n+8.

Applying this to the result of the preceding paragraph gives

s(n) <- 39n + 104(t + 3).

Next we note that if n _->N= 37= 2187,

(1)
4384n.=6561

Thus, by induction on t, if O(n), 01(n), ot-l(n)>-N,

Or(n) < (4384\6561/n.
From the condition defining t it follows that

log .187t<--log 6561.
4384

Now

and therefore

log 4-5-=6561> log 3,

Furthermore, if n >-N,

t -_< 3 log3 n 21.

3 log3 n 3 log3 N 7
N 729’

304 NICHOLAS PIPPENGER

and therefore

or

728
104(t + 3) =< 7--n 1872.

Combining this with the result of the preceding paragraph gives

s(n)<=4On.

REFERENCES

1] L. G. VALIANT, On nonlinear lower bounds in computational complexity, Proc. 7th Annual ACM
Symposium on Theory of Computing, Albuquerque, NM, May 1975, pp. 45-53.

[2] W. J. PAUL, R. E. TARJAN AND J. R. CELONI, Space bounds for a game on graphs, Proc. 8th
Annual ACM Symposium on Theory of Computing, Hershey, PA, May 1976, pp. 149-160.

[3] M. S. PINSKER, On the complexity of a concentrator, Proc. 7th International Teletraftic Confer-
ence, Stockholm, June 1973, pp. 318/1-318/4.

[4] N. J. PIPPENGER, The complexity theory ofswitching networks, Ph.D. Thesis, Dept. of Electrical
Engineering, Massachusetts Institute of Technology, Cambridge, MA, August 1973.

[5] P. HALL, On representatives of subsets, J. London Math. Soc., 10 (1935), pp. 26-30.
[6] H. ROBBINS, A remark on Stirling’s formula, Amer. Math. Monthly, 62 (1955), pp. 26-29.
[7] J. C. P. MILLER, ed., Royal Society Mathematical Tables, Volume 3: Table of Binomial

Coefficients, University Press, Cambridge, England, 1954.
[8] V. E. BENE, Mathematical Theory of Connecting Networks and Telephone Traffic, Academic

Press, New York, 1965.

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

ON ISOMORPHISMS AND DENSITY OF
NP AND OTHER COMPLETE SETS*

L. BERMAN AND J. HARTMANIS]"

Abstract. If all NP complete sets are isomorphic under deterministic polynomial time mappings
(p-isomorphic) then P NP and if all PTAPE complete sets are p-isomorphic then P PTAPE. We
show that all NP complete sets known (in the literature) are indeed p-isomorphic and so are the known
PTAPE complete sets. This shows that, in spite of the radically different origins and attempted
simplification of these sets, all the known NP complete sets are identical but for simple isomorphic
codings computable in deterministic polynomial time.

Furthermore, if all NP complete sets are p-isomorphic then they all must have similar densities
and, for example, no language over a single letter alphabet can be NP complete, nor can any sparse
language over an arbitrary alphabet be NP complete. We show that complete sets in EXPTIME and.
EXPTAPE cannot be sparse and therefore they cannot be over a single letter alphabet. Similarly, we
show that the hardest context-sensitive languages cannot be sparse. We also relate the existence of
sparse complete sets to the existence of simple combinatorial circuits for the corresponding truncated
recognition problem of these languages.

Key words, polynomial time computations, polynomial tape computations, NP complete prob-
lems, polynomial time isomorphisms, sparse sets

1. Introduction. During the past years the importance of the P NP?
problem has been fully realized and today it is one of the most important problems
in theoretical computer science [1], [2], [8], [10], [13]. The importance of the
P NP? problem derives from the fact that NP, the family of languages accepted
by nondeterministic Turing machines in polynomial time, contains complete
problems to which all other problems in NP can be easily reduced and from,the
fact that very many problems of practical interest in computing are in NP and
many of them are NP complete [1], [2], [5], [10], [13], [17]. Thus the search for
fast algorithms for a bewildering variety of problems can be reduced to search for
a fast algorithm for a single problem. As a matter of fact, during the last years
considerable effort has been expended in discovering newNP complete problems,
and it is quite impressive how many diverse problems from many different
problem areas have turned out to be NP complete [1], [2], [13], [17]. Further-
more, among the known NP complete problems some have been simplified and
found still to be NP complete [5].

In this paper we show that regardless of their origins and attempted simplifi-
cations, all the "known" NP complete sets are essentially the same set. More
specifically, we prove that all the known NP complete sets are isomorphic under
deterministic polynomial time mappings. Thus these NP complete sets, except for
a deterministic polynomial time recoding, are identical. The proof of this result
follows from two technical lemmas which give necessary and sufficient conditions
that a set is isomorphic under polynomial time mappings to a given NP complete
set, say the set of all satisfiable Boolean functions in conjunctive normal form. To

* Received by the editors September 9, 1975, and in revised form July 11, 1976.

" Department of Computer Science, Cornwell University, Ithaca, New York, 14853. This
research was supported in part by National Science Foundation under Grants GJ-33171X and DCR
75-09433.

305

306 L. BERMAN AND J. HARTMANIS

establish polynomial time isomorphisms (p-isomorphism) between NP complete
sets we just have to check that these sets satisfy the sufficient conditions of our
lemmas, which turn out to be easy to verify for all the NP complete sets found in
the literature. We exhibit the proof of the existence of p-isomorphism for the best
known NP complete problems and they can be easily supplied for the other NP
complete problems which have been described up to date in the literature. Since
so far no NP complete problems have been found which are not p-isomorphic and
since all attempts to construct such sets have failed, we are forced to conjecture
that all NP complete sets are isomorphic under deterministic polynomial time
mappings.

It should be observed that a proof of this conjecture implies that P NP. To
see this, we just have to note that P NP if and only if every nonempty finite set is
NP complete. Since finite sets cannot be isomorphic to infinite sets, the isomorph-
ism of all NP complete sets implies that P NP. As a matter of fact, P : NP if and
only if all NP complete sets are isomorphic under recursive mappings.

It still could happen that P NP but that there exist NP complete sets which
are not p-isomorphic. We conjecture that this is not the case.

By the same methods we also show that all the known PTAPE complete sets
are isomorphic under deterministic polynomial time mappings. Furthermore, if all
PTAPE complete sets are p-isomorphic then P PTAPE, since P- PTAPE if
and only if every nonempty finite set is PTAPE complete.

Next we look at the density of NP and PTAPE complete sets. We say that a
set A, A

__
*, is p-sparse iff the number of elements in A up to length n is

bounded by a polynomial in n. It is easily seen that the known NP and PTAPE
complete sets are not p-sparse and that they cannot be p-isomorphic to p-sparse
sets. We suspect that neither NP nor PTAPE complete sets can be p-sparse. Note
that a proof that p-sparse sets cannot be NP nor PTAPE complete would prove
that

PNP and PPTAPE.

On the other hand, we show that p-sparse sets cannot be complete in
EXPTIME and EXPTAPE (as first observed by A. R. Meyer). Our proof actually
shows that in EXPTIME there exist sets which are not p-sparse and whose
reduction to another set must be one-one almost everywhere; thus, no p-sparse
set can be EXPTIME complete. The corresponding result also holds for
EXPTAPE and more complex time and tape bounded families of languages. It
is still an open problem whether the EXPTIME and EXPTAPE complete sets
are all p-isomorphic, respectively.

It should be observed that the existence o p-sparse complete sets for NP (or
PTAPE) would imply that we could prepare a tape growing only polynomially in
the length of the input such that all NP (or PTAPE) problems could be solved in
deterministic polynomial time using this fixed tape for table-look up. Thus the
existence of sparse NP complete sets would permit, for all practical purposes, the
recognition of NP sets in deterministic polynomial time (using a precomputed,
polynomially long tape segment). This seems to be quite unlikely, and the above
mentioned results shows that this is not the case for EXPTIME and EXPTAPE:

ISOMORPHISMS AND DENSITY 307

there does not exist any sparse set to which complete problems in EXPTIME and
EXPTAPE can be reduced in polynomial time.

Furthermore, we show that there is a very close relation between the
existence of sparse oracle sets (not necessarily sets in NP) with which NP
problems can be recognized in deterministic polynomial time and the existence of
polynomially complex switching circuits which recognize the members up to
length n, n 1, 2,. ., of an NP complete set. As a matter of fact, as originally
shown by A. R. Meyer, there exist sparse oracle sets for NP complete problems if
and only if there exist polynomially complex circuits for the recognition of the
corresponding truncated NP complete problem.

Finally, we turn to context-sensitive languages. We say (following R. Book)
that a context-sensitive language L is hardest if every other context-sensitive
language can be reduced to L by a linear-time mapping. It is well known that
hardest context-sensitive languages (csl) exist [7] and that hardest context-free
languages also exist [6]. Clearly, the context-sensitive languages are contained in
P or NP iff a hardest csl is in P or NP, respectively. Similarly, the deterministic
context-sensitive languages are equal to the nondeterministic context-sensitive
languages iff a hardest csl is a deterministic csl. We prove that no p-sparse
language can be a hardest csl and show that all known hardest csl’s are p-
isomorphic. These results easily generalize to hardest languages of other families
of tape bounded languages.

2. Preliminaries. In this section, we make precise some of the objects which
we will treat. Our terminology is reasonably standard and so this section may be
skipped by those familiar with the terminology of complexity theory.

A transducer is a deterministic k + 2 tape Turing machine with one two-way
read-only input tape, k two-way read-write work tapes, and one one-way write
only output tape.

Our acceptor will be a k-tape Turing machine. The input will be written on
one of the tapes and all tapes are two-way read-write. Acceptance will be
indicated by entering a final state and halting. If the machine has just one tape we
call it a single tape Turing machine, otherwise, it is called a multi-tape Turing
machine. If the next move function associated with the Turing machine is
single-valued, we call it deterministic, otherwise, it is called nondeterministic. We
note that a deterministic TM may be considered to be nondeterministic in a trivial
fashion.

The amount of time used by a TM on input x is the number of steps in the
shortest accepting computation if x is accepted; the number of steps in the longest
computation if x is not accepted (if some computation does not halt it is
undefined).

The amount of tape used by a TM is the smallest amount of tape used by an
accepting computation if x is accepted, or the largest amount used by any
computation if x is not accepted (again, if some computation uses unbounded
tape, it is undefined).

A TM, M, runs in time (tape) t(n) for some function t(n) if for all n >-_0 for
every x of length n, M uses no more than t(n) time (tape) on input x.

308 L. BERMAN AND J. HARTMANIS

(N)DTIME[t(n)] {AIA is accepted by a (non)deterministic TM which runs in
time t(n)}.

(N)DTAPE[t(n)] {AI is accepted by a (non)deterministic TM which runs on
tape t(n)}.

P= U DTIME(ni),
i__>0

NP U NDTIME(n i),
io

PTAPE U DTAPE(ni) J NDTAPE(ni) NPTAPE,
I0

(N)DEXPTIME= U (N)DTIME(2in),
i__>0

DEXPTAPE O DTAPE(2in).
i>__0

A transducer, T, is said to be polynomial time bounded if there is some
polynomial p(n) so that T runs in time p(n).

A transducer, T, is said to be a linear time transducer if there is some constant,
c > 0, so that T runs in time cn.

A set A

5;* is said to be reducible to a set B

F* if there is some transducer

T such that T: *- F* and T(x)c B iff x cA. A is said to be reducible to B in
polynomial time (p-reducible) if the transducer T runs in polynomial time.
Similarly if T runs in linear time A is said to be linearly reducible to B.

A set, B, is C-hard for some class of sets C (e.g. NP or NTAPE(n)) if for
every A in C, A is p-reducible to B.

A set, B, is complete for C if it is C-hard and B is in C.
A set, B, is C-hardest if B is in C and every A in C is linearly reducible to B.

For example, hardest languages exist for the families of context-free languages,
context-sensitive languages, deterministic context-sensitive languages, etc. but
not for NP or PTAPE.

We say that a set A, A E*, is p-sparse iff there exists a polynomial p(n) such
that

I{wlw cA, Iwl<=nIl<-p(n),

where Iwl denotes the length of the sequence w and]SI denotes the cardinality of
the set S.

3. Polynomial time isomorphisms. One of the major concepts used in the
classification of recursive sets is that of polynomial time reducibility. From the
polynomial reducibilities of Cook [2] and Karp [10], it is straightforward to define
two corresponding equivalence relations on the recursively enumerable sets.
There is, however, a major limitation to the usefulness of these relations in the
study of complete sets: two sets A and B which are complete for a class C, with

ISOMORPHISMS AND DENSITY 309

respect to one of the reducibilities, are automatically equivalent, with respect to
the same reducibility.

In this section, we define a new equivalence relation, polynomial time
isomorphism, which is a proper refinement of the above two equivalences. We
consider a subgroup of the group of recursive permutations:

Go {fir is a one-to-one onto map and f is computable in p-time and f-1 is
also computable in p-time}.

We say that A and B are polynomial time isomorphic if they are related by an
element of Gp. We formalize this in the following definition.

DEFINITION. A and B, A
_
* and B

_
F*, are p-isomorphic iff there exists a

bijection f: 5;* - F* such that f is a p-reduction of A to B and f-1 is a p-reduction
of B to A.

We say that a p-reduction f is invertible iff f is a one-one mapping (not
necessarily onto) and f’s left inverse is also computable in polynomial time.
Finally, f is said to be length increasing if for all w we have If(w)] > Iwl.

We now prove a polynomial time bounded equivalent of the Cantor-
Bernstein-Myhill theorem.

THEOREM 1. Letp and q be length increasing invertible p-reductions ofA to B
and B to A, respectively. Then A and B are p-isomorphic.

Proof. From p and q we will construct a bijection 4 such that b and 4 -1 are
p-time computable and

wcA iff cb(w)B.

We note that

Z* R1 U R2 and F* S [_J S2

with

R {(qo p)xlk >-_ 0 andxq(F*)},

R2 {qo (po q)kxlk >_ 0 and xZp(E*)},

Sa {(po q)kxlk >= 0 and xZp(Z*)},

$2 {po (qo p)xlk 0 and x q (F*)}.

Let s(n) be a polynomial such that p, q, p-a and q-1 can all be computed by
-1deterministic TM’s within s(n) steps for inputs of length n. We assume that p

and q-1 both output a special symbol, ,, if they are undefined. This is permissible
since they are polynomial time bounded. Let b and b-1 be computed by the
following:

[p-l(z)rk-(z)=tq(z)

if z R1,
ifz R2,

if z $2,
ifz Sa.

First notice that b maps R onto S2 and R2 onto S and that these mappings are
one-one. Furthermore, b and b-1 are inverses.

310 L. BERMAN AND J. HARTMANIS

START

y -q-(y)

=p(z)

y -p-(y)

b q-l(z)

FIG. 1. Flowchartcomputing T(z qb (z

We will now describe a transducer, T, which computes b and is polynomial
time bounded. We describe T by means of the following flowchart (see Fig. 1).
As p and q are both strictly length increasing, p- and q- are length decreasing
and so T need cycle through the loop at most Izl/2 times. At most (Izl/ 1)
evaluations of p-1, q-1, or p are therefore required and so T runs in time at most
(n + 2) s(n) which is a polynomial.

We note that identical considerations show that b -1 is also p-time bounded.
COROLLARY 2. If p, q, p-, q- of Theorem 1 are computable in linear time

then d and b-1 are computable in n2-time.
Proof. The proof is similar to the previous proof.
In order to simplify the application of Theorem 1 we now establish two

technical results which can easily be applied to show that many complete sets are
p-isomorphic. We first define padding functions and show that if either set A or B
of Theorem 1 (or Corollary 2) have padding functions satisfying some simple
hypotheses, then we can remove the length increasing restrictions from the
hypothesis of these results.

DEFINITION. Let A
_
E*. Then ZA :,: E* is a paddingfunction for a set A

if it satisfies the following two properties"
1. ZA (X) in A iff x in A.
2. ZA is invertibie (i.e. one-one).

ISOMORPHISMS AND DENSITY 311

We say that a padding function, ZA, has time complexity t(n) if both ZA and
Z may be computed by deterministic TM’s in time t(n).

LEMMA 3. Let f be a one-one, p-time reduction ofA to B and let f-x also be
computable in p-time. Assume also that either A or B has a padding function Zx
(X A,B) which satisfies conditions:

(i) Zx has polynomial time complexity s(n).
(ii) (’y)[[Zx(y)[> ly[2 + 1].

Then there exists a reduction f’ofA to B which is one-one, p-time, length increasing
and has (f’)- computable in p-time.

LEMMA 4. If.f, f- have linear time complexity, Zx has linear time complexity
and condition (ii) ofLemma 3 is replaced by

(ii’) (/y)[[Zx(y)[> 21y[+ 1],
then f’ ofLemma 3 exists and has linear time complexity.

Proof of Lemma 3. Let X A and let f, f-x be computable in polynomial
time. Let q(n) be a polynomial time bound in which f and f- can be computed.
Then, by condition (ii) on the padding function we know there exists an integer r
such that for all x, [Z(x)[> q([x 1); therefore it follows that 1/o ZA(X)] > [X[, since if
[f OZA(X)I<--[X then (as f-x can output at most one digit per move)
[f-ofoZA(X)[<--q([x[), which is a contradiction. So define f’=fOZA, by the
reasoning given above, f’ is length increasing and clearly satisfies the other
requirements of Lemma 3.

ForX B and f, f- polynomial computable, we again know that there exists
an integer r such that for all x, [Z(x)[> q(Ix[) and also as above q(lf(x)l) >- Ix[. Let
f’= Zof; then [f’(x)l [Z(f(x))[> q(lf(x)[) >-Ix[as needed.

For the linear time bounds a more careful time analysis yields the desired
proof.

The primary difficulty in applying Theorem i is now seen to be verifying that
a given reduction can be inverted in polynomial time. The next lemma states two
technical, but easily verified, conditions which guarantee the existence of polyno-
mial time invertible reductions. The next result shows that the existence of an
invertible reduction depends solely on the richness of the structure of the target
set.

LEMMA 5. LetA be a setfor which two p-time computable functions SA (-, -)
and DA (--) exist with the following properties:

(i) (Vx, y)[SA (x, y) A iff x A],
(ii) (’qx, y)[Oa (SA (X, y)) y].

Then iff is any p-time reduction of some set C to A, the map f’(x) SA if(X), X) is
one-one and invertible in p-time and reduces C to A.

Proof. Assume f’(x)=f’(y). Then

X DA (if(x)) DA (SA (f(x), x)) DA Oa(y)) DA (SA (f(y), y)) y,

so f’ is one-one. If we define

q(x) if x SA (f(DA (X)), DA (X)) then DA (X) else *

we see that q(f’(x)) x so q (f’)- and a straightforward time analysis shows f’
and q are both p-time computable.

312 L. BERMAN AND J. HARTMANIS

To see that f’ reduces C to A note that (i) above implies f(x) A if and only if
f’(x)A.

LEMMA 6. IfSA, DA, andfofLemma 5 are all linear time computable then so is

f’.
Proof. The proof is straightforward.
We now combine these results in our next theorem which is easy to apply to

show that many complete sets are p-isomorphic.
THEOREM 7. Let the set A be p-reducible to B and B p-reducible to A;

furthermore let the set A have a padding function ZA satisfying Lemma 3 and
functions SA and DA satisfying Lemma 5. Then B is p-isomorphic to A iffB has
functions SB and DB satisfying Lemma 5.

Proof. If A andB are p-isomorphic under the bijection b then we can define

SB[X, Y] -1o SA[((X) Y]

and

OB(X) DA[qb(X)].

Clearly, Sn and Dn are p-time computable since SA, DA, b and b-1 are;
furthermore for all y

xB iff qb(x)A iff SA[qb(x),y]A

iff qb-o Sa[b(x), y]B.

and

O[S(x, y)] y.

Conversely, if the functions Dn and Sn exist then by combining Lemmas 3
and 5 we get that A and B are p-isomorphic. This completes the proof.

In the next section we apply these results to prove that large numbers of NP
complete and PTAPE complete problems are p-isomorphic. The proof strategy is
very simple; for example, we will show that the classic NP complete set of
satisfiable Boolean functions in conjunctive normal form A (=CNF-SAT) has the
three required functions ZA, SA and DA and therefore any other NP complete set
B which has two functions SB and Dn, satisfying Lemma 5, is immediately seen to
be p-isomorphic to A. Thus we will have proven our main result about NP
complete sets; equivalent results hold for PTAPE and other complete sets.

MAIN THEOREM. An NP complete set B is p-isomorphic to CNF-SAT if and
only if there exist two p-time computable functions S andD such that

(i) (Vx, y)[Sn(x, y) B iff x B],
(ii) (Vx, y)[On(SB(x, y))= y].
We stress that we know no NP or PTAPE complete problems which are not,

respectively, isomorphic to the classic complete problems in the corresponding
classes. Furthermore, all our attempts to construct such problems have failed.

For a related study of invertible reducibilities and padding see [16], and also
the Appendix to this paper.

4. Applications. We first define a number of knownNP complete problems:
1. UNIV---{CODE(xlx2 xn) 4:M # 31M’I’IM accepts Xl" xn in t steps},

ISOMORPHISMS AND DENSITY 313

where CODE(xlx2" .x,,) is a simple digit by digit encoding of
x, x2, , x, so that ICODE(x

2. CNF-SAT--given an encoding of a Boolean expression in conjunctive
normal form, is there some assignment of truth values to the variables
which gives the expression the value true [2]?

3. INEQ[0, 1), (, +,.]--given an encoding of two regular expressions over
0, 1,), (, + ,. do they represent different sets [11]?

4. CLIQUEmgiven an encoding of an undirected graph and an integer k, is
there a subset of k-mutually adjacent nodes [10]?

5. HAMILTON CIRCUITmgiven an encoding of a directed graph is there a
cycle including all nodes which does not intersect itself [10]?

THEOREM 8. The following NP complete problems are p-time isomorphic.
1. UNIV,
2. CNF-SAT,
3. INEQ{0, 1,), (, +,.],
4. CLIQUE,
5. HAMILTON CIRCUIT.
Proof. We first show that CNF-SAT has a padding function satisfying Lemma

3 and functions SA (--,--) and DA (--) satisfying Lemma 5. Then Theorem 7 will
show that any set having functions satisfying Lemma 5 is p-isomorphic to
CNF-SAT.

Consider the function SA (w, y), which is computed as follows: it examines w
to determine if w is a Boolean formula, B, in CNF. If not r 0. If yes, let Xl, ",x
be variables appearing in B (or at least including every variable in B). The value of
r can be determined in p-time. Let y denote a binary string and let y (/’) be the/’th
digit of this string. Let

S (w, y)=

where zj is the literal

Xr+l+j if y(j) 1,
zj

-X+l+ if y(j) =0.

Thus, w is satisfiable if[SA (w, y) is satisfiable. SA (--, --) is clearly p-time comput-
able and a function DA which examines a string to determine if it has a suffix of the
proper form and if so translates it appropriately will also be in p-time. SA (--,--)
and DA (--) together satisfy Lemma 5. The padding function needed for Lemma 3
is defined by ZA (w)= SA (w, 01wl2/1), which clearly satisfies Lemma 3.

We now show INEO satisfies Lemma 5 and so is p-time isomorphic to
CNF-SAT: SA (w, y) first checks that w has the right format, w R1 # R2 when R1
and R2 are encodings of regular expressions. If so it outputs (R1 +0 ly)#
(R2+0nly) [where n =[R1 R21] if not it outputs w :y. The obvious DA
works. So INEQ is p-isomorphic to CNF-SAT. For the other sets we proceed as
follows.

UNIV. SA (W, y) encodes y in inaccessible new states of M/and adjusts : ’s at
end to accommodate new states.

CLIQUE. SA (w, y) checks that w has format k : G, where G is the encoding
of some graph, determines highest labeled vertex, r, used in G. G has vertices vl,

314 L. BERMAN AND J. HARTMANIS

Or+3(j- 1)+2

Ur+3/+l
Or+3(-l)+l

Ur+3(/- 1)+3

Section ofgraph indicating y(/) 1

Ur+3(]-1)+2

Dr+3(]-l)+l

r+3(]- 1)+3

Section ofgraph indicating y(j) 0

FIG. 2. Encodings in Hamilton circuit

Ur+3/+l

/’)2,""", Dr, SA outputs (k + 1)4 G’ where G’ has vertices Vl, v2,’" ", Dr,
/)r+2,""", /)r+21yl+l where G’ has the edges of G plus Vj =<r, Vi_-<lYl G’ contains
edges (v/, Vr+2i) if y(i)= 1 and (v/, Vr+2i-1) if y(i)= 0, and (v, Vr+elyl+l). This SA
and the obvious DA work.

HAMILTON CIRCUIT. SA (w, y) checks that format is correct and inserts
vertices, where r is the highest numbered vertex in G, Vr/l, Vr/2,

Dr+3,""", Vr/3lyl/l, an edge from D -’> Vr+l and Vj_-<ly[inserts edges

and

(Ur+3(j-1)+k, /)r+3]+l) for k 2,3,

(Vr+3(j-1)+2, Ur+3(j- 1)+3),
(I)r+3(1"-1)+3, Vr+3(/’-l)+2),

if y(/)= 1

if y(/) 0

(/-)r+3(j--1)+l, Ur+3(j--1)+2),

(l-)r+3(j-1)+l, l)r+3(j--1)+3)

and if (Dr, /)i) G put (/)r+31yl+l, I)i) Gt. (See Fig. 2.)
Again the obvious Da map also works. This completes the proof.

ISOMORPHISMS AND DENSITY 315

We note that in other known NP problems it is possible to encode the
necessary information in a manner not affecting whether a given string is in the
language. We note specifically that this technique shows that the "simplified" NP
complete problems of Garey, Johnson, and Stockmeyer [5] are all p-time
isomorphic.

One may argue that our isomorphisms are unnatural, that they were con-
structed through recursion theoretic techniques which are out of place in discus-
sions of combinatorial problems. We will show, however, that with a little care our
results yield not only isomorphisms between the various problems, but in fact,
isomorphisms that preserve the underlying combinatorics.

Given a Boolean formula in CNF, we ask how many distinct variable
assignments there are which produce a true value for the formula. Similarly, if we
were given the encodings of a pair of regular expressions, R1 : R2, we might ask
how many strings are accepted by one and not the other. For a language L and a
fixed w L, we will call each "piece of information" which evidences w L a
solution to the (w, L) problem. We use the following notation:

Sl (w’ L) {]x encdes a slutin t the (w’ L)
we L.

It is, in fact, solutions of the various problems which are of practical
importance in computing. We are interested in the elements of Sol (w, L) and not
merely whether [Sol (w, L)I > 0. It is of little use to a multi-process scheduling
algorithm to know that there is a schedule of a given cost; the schedulor must
determine the optimal schedule.

DEFINITION. If A and B are NP complete problems and f:A B is a
polynomial time reduction, we say that f is parsimonious if for all w, ISol (w, A)1
]Sol (f(w), B)I.

Parsimonious reductions have been studied before [14] and it turns out that
many of the well known NP complete problems are related by parsimonious
reductions. We feel that parsimonious reductions should be considered natural
since they do not introduce "new" solutions but yield translated problems whose
solutions are in one-one correspondence with the solutions of the original
problem.

We now state and prove our main result concerning parsimonious reductions:
THEOREM 9. LetA be an NP complete set for which there exist parsimonious

p-time reductions f: A CNF-SAT and g: CNF-SAT A. Let A have functions
SA(--,--) and DA as in Lemma 5, and furthermore assume that /x {0, 1}*
SA (--, X): A -A is parsimonious; then the isomorphism c: A CNF-SAT
guaranteed by Theorem 1 is parsimonious.

Proof. We first note that the composition of parsimonious reductions is
parsimonious. Unfortunately, the SCNV(--,--) function defined earlier is not
parsimonious; however the function SCNF(W y) w/k (Xr+l VXr+l) A Z1 A" A Zn
with zi as before is parsimonious.

Since SCNF(--, --) and SA (--,--) are both parsimonious we know, via Lemma
5 and the observation above that the f’ and g’ of Lemma 5 will in fact be
parsimonious.

316 L. BERMAN AND J. HARTMANIS

Again SCNF gives us a padding function for CNF-SAT (the function is now
parsimonious) which by Lemma 3 tells us the conditions of Theorems 1 are now
satisfied. This time, however, all constituents of our isomorphism are parsimoni-
ous and since the isomorphism is constructed by application of these reductions,
we have that the isomorphism is parsimonious.

We note that the encoding functions of the NP complete problems INEQ,
UNIV, and CLIQUE are all parsimonious, and also that they are each related to
CNF-SAT via parsimonious reductions [14]; therefore we have

THEOREM 10. The followingNPcomplete problems are p-time isomorphic via
parsimonious mappings"

1. CNF-SAT,
2. INEQ,
3. UNIV,
4. CLIQUE.
Proof. The proof is by Theorem 9.
We now turn our attention to languages complete for PSPACE. We again

first define a number of PSPACE complete problems:
1. UNIV---{Mi 4 CODE(x1. x,) # tIM’I[M/ accepts x x on t + n tape

squares} [7].
2. QBF---Given a quantified Boolean formula, e.g., VxBxVx3(xl/--n

xa)/k(Xlk/XVX3), is it true [11].
3. HEXGiven a graph and two distinguished vertices a game is defined in

which the two players alternatively choose vertices. Player 1 wins if he is able to
choose vertices which define a path in the graph between the two distinguished
vertices. Player 2 wins otherwise [3]. The set HEX consists of all those graphs for
which player 1 has a winning strategy.

4. L,---{RIR is a regular expression and L(R) # E*} [11].
THZORZM 11. The following PSPACE complete problems are p-time iso-

morphic"
1. UNIV,
2. QBF,
3. HEX,
4. L,.
Proof. By the same method used to show CNF could be padded in Theorem 8

we see QBF has padding and SA (--, --), Oa (--) functions.
StylV encodes the second argument in inaccessible states as before. Snzx

encodes the second argument in dead end paths. S,(x,y)=
[y+(A+O+l)"+(O+l)"+x],n=lyl. In all cases the obvious D(-) function
works.

We now prove a metatheorem which extends the previous result to tape
complete decision problems concerning regular expressions. Define

x\L {wlxw L} and L/x {wlwx L}.

THZORZM 12. Let P be any predicate in the regular sets over {0, 1} such that
1. P({0, 1}*)= TRUE,
2. PL t.J .o,I*{x\L[P(L)= TRUE}for P LI .o,.{L/x[P(L)- T}] is

not the set of all regular sets over {0, 1},

ISOMORPHISMS AND DENSITY 317

3. Le ={RIR is a regular expression over {0, 1} and P(L(R))= FALSE} is in
PTAPE.

Then Le is p-time isomorphic to L..
Proof. Any Le where P satisfies conditions 1 and 2 above is PTAPE-hard [7]

and 3 above then guarantees Le is PTAPE complete.
In order to show the isomorphism we must find $ and D. Let b be the p-time

map such that R Le iff b(R) L. and let L0be a regular set over {0, 1} not in PL
as in [7]; define h0(0)= 00 and h0(1)= 01. We note that the map

R,- ho(R,). 10. (0+ 1)* +(00+01)* 10. R.

+(00+01)*. [A+O+ 1 + 11(0+ 1)*]

has the properties"
(i) Ri 6 L. iff ff(Ri) Lp,
(ii) O is p-time invertible.

We now define Se(x, y)= O(S.(qb(x), y)); we note Dp(x)= D.(q-a(z)) is the
required D function. Since Lp is PSPACE complete and satisfies Lemma 5 the
sets Lp and L. are p-time isomorphic, as was to be shown.

5. Density considerations. We recall that a proof that no p-sparse set can be
NP complete would imply that P # NP. We cannot solve this problem but we can
show that some other complete and hardest sets cannot be p-sparse.

We prove next that complete sets for EXPTIME and EXPSPACE cannot be
p-sparse. Furthermore, using a recent result from [9] we show that the hardest
context-sensitive languages are not p-sparse. Thus showing that a single letter
alphabet language cannot be a hardest csl. We also conjecture that the hardest
context-free languages cannot be p-sparse. The following result was first obtained
by A. R. Meyer.

THEOREM 13. NO p-sparse language A can be complete in EXPTIME or
EXPTAPE. Thus A a* cannot be complete in EXPTIME or EXPTAPE.

Proof. We will prove this result by constructing a set A0 with the following
properties:

(a) A0 is in EXPTIME,
(b) A0 is not p-sparse,
(c) If A0 is p-reduced to a set B by the mapping/9 then p is a one-one

mapping almost everywhere.
We now describe a TM, M, which accepts Ao. M will be a multitape TM

which on input w computes as follows"
1. on one of its tapes Mwrites down 1 # 10 # 11 #. ,Iwl ,. Each integer

will be treated as the encoding of a transducer, T and T(x) will be limited to Ix
steps so this list will eventually cover all polynomial time bounded transducers.
The list can be written down in time O([w[3) so there is some c such that for all
n -> 1 the time required to carry out step 1 on input of length n is less than 2c".

The second author has recently shown that sets complete for EXPTIME and EXPSPACE cannot be
a.e. complex.

318 L. BERMAN AND J. HARTMANIS

2. fori=lto
for each x such that 2 -< x < w do
(a) compute Ix for 2I1 steps.
(b) if computation (a) completed then:

(I) compute T(x) for Ix[simulated steps or
(II) compute T(x) for 2I1 actual steps whichever comes first

(c) if case I above occurred store (x, i, T(x)) on a storage tape
(since (a), (b), and (c) are each limited to 2Iwl steps and they must be carried out at
most w2Iwl times there is some c’ such that step 2 can be completed within 2
Also for large [xi case II never occurs).

3. Construct two lists Lx and L2 as follows:
for 1 to
find (if it exists) the smallest x < w which satisfies the following two
conditions"
(a) there is some y <x for which T(x) T(y) (T(x) and T(y) must be
listed in step 2)
(b) for all z, (x, z) is not on L
if such an x is found, take smallest y for which T(x) T(y) and put (x, y)
on L1; if no such x is found put on L.

(The length of T(x) is less than 2Ixl and comparisons on a multi-tape machine can
be done in linear time so step 3 can be carried out in time 2’lwl for some c").

4. In ascending order, for each e L2:
for x w perform steps 2(a) and 2(b). If computations complete find
smallest y < w for which T(y) T(w), determines length of longest chain
(y, x)(Xl, x)- (x/-1, x) entirely on L,M accepts w if[for the first for
which a y is found 2m + 1 for some m (if the chain is empty, do not
accept) if no such y has been found for any on list L2 thenMaccepts w.

This last step can also be carried out in exponential time and so the entire machine
has T(M) in DEXPTIME.

It should be clear that for every polynomial time bounded machine T there is
some integer n so that for all x, Ix I> n, the simulation of T on x will be completed
within 2 steps and that therefore no p-time reduction, f, for which there are
infinitely many pairs (x, y) with f(x)=f(y) can reduce A0.

Note that step 3 in the process constructs the past history of M relevant to
M’s action on w.

Since for every EXPTIME (and EXPTAPE) complete set, C, we know there
must be some p-time reduction f:Ao- C and since A0 contains about 2-n
elements of length less than or equal to n, we have that there is some n for which
I{x Ix C and Ix I< r"}] > 2’. This immediately implies that no p-sparse set can be
EXPTIME or EXPTAPE complete. This completes the proof.

We now return our attention to hardest context-sensitive languages.
LEMMA 14. There exists a recursive function tr such that for all linear time

transducers M, the machine M(is a 3 tape transducer satisfying:
1. VxM(x)= Mo(x),
2. c depending only on tr such that M never scans more than

clM l(Ixl/ oglxl) squares on its work tape when processing x.
Proof. The proof follows from efficient simulation techniques in [9].

ISOMORPHISMS AND DENSITY 319

We can now make use of the above transducer to enable us to diagonalize
over linear time transductions on linear tape and get the following result.

THEOREM 15. The hardest context-sensitive languages cannot be p-sparse.
Thus no language over a single letter alphabet can be a hardest csl.

Proof. We describe a TMMwhich accepts a csl which is not p-sparse and such
that any linear-time reduction of this language to another language must be
one-one almost everywhere. M behaves as follows on input w, w *, > 1:

1. writes down as many of the n/log n space bounded transducers which
simulate the linear-time transducers as possible on linear tape,

2. determines which of the transducers M have been eliminated while
processing x < w, (i.e. Mrecomputes what it did for all previous inputs and keeps a
list of the transducers which were eliminated),

3. for each M listed but not eliminated in increasing order M find smallest
x < w such that

(i) M/(x)= M/(w),
(ii) M(x)= M(w) can each be computed (although not necessarily written

down) in wl tape.
If such an x is found, eliminateM and w is accepted iff x was rejected. If no such x
is found for any accept w.

The set accepted by this TM clearly has the property that if f: T(M) A is a
linear time reduction of T(M) to A then f is one-one a.e. Since for every n there
are at least 2 inputs of length n and at most n transducers have been checked, we
see that T(M) is not a p-sparse set.

This shows that no hardest csl’s can be sla languages nor can they be p-sparse,
as was to be shown.

These results can easily be extended to the following:
COROLLARY 16. Let L(n)>-n be tape constructable. Then the hardest lan-

guagefor TAPE[L(n)] cannot be p-sparse. LetL(n be tape constructable and such
that for every k, k >-_ O,

n k

lim 0,

then the complete languages of L(n) cannot be p-sparse.
Note that the question of sparseness for hardest cfl’s has implications for the

question of linear time recognition of cfl’s.
We conclude this section by deriving a result due to A. R. Meyer which

relates the complexity of switching circuits for the recognition of truncated NP
complete problems to the sparseness of oracle sets for the recognition of these
problems. For the set A, A

_
{0, 1}*, let CA (n) be the size (number of gates) of the

smallest switching circuit which realizes the function

f)" {0, 1}" -{0, 1}

such that])(w) 1 iff w
It is easily seen that if for some NP complete language A the function CA (n)

cannot be bounded by a polynomial in n, then P # NP. As a matter of fact,

320 L. BERMAN AND J. HARTMANIS

considerable effort has been expended in trying to prove that CA (n) cannot be
bounded by a polynomial when A is the clique problem.

THEOREM 17. For a setA the]’unction CA is bounded by a polynomial iff there
exists a sparse setB such that a Turing machine with oracle setB can recognizeA in
deterministic polynomial time.

Proof. Assume that B is a sparse oracle set with which the TM MA can
recognize A in deterministic polynomial time. Then, since B is sparse, during the
processing of inputs of length n, n 1, 2, , MA can consult only polynomially
many different members of B and therefore we can construct for each n a
polynomially complex circuit which simulates the computation of Ma on w,
wl n. Thus CA is polynomially bounded.

Conversely, if there exist polynomially complex circuits which for each n
recognize the set A (l Zn, then we can use these circuits to get a sparse oracle set B
as follows. Encode for each n all (polynomially many) "prefixes" of the descrip-
tion of nth circuit so that with polynomially many oracle questions the TM can
reconstruct the nth circuit description. Thus for input w the TM constructs in
polynomial time the nth circuit, n Iwl, and then in polynomial time checks
whether the input w yields "one" as output. Thus A can be recognized in p-time
by means of a sparse oracle B, as was to be shown.

From the above theorem, we see immediately that no set complete for
EXPTAPE can be recognized in p-time by a TM with a sparse oracle. At this time
it is still open whether sets from NP or EXPTIME can be recognized in
deterministic polynomial time by sparse oracle sets [15].

6. Conclusion. A number of interesting and apparently difficult problems
suggest themselves immediately from this work. As we have noted, if all NP
complete problems are p-isomorphic then P NP and if all PTAPE complete
problems are p-isomorphic then P PTAPE. Thus, the question whether all NP
and PTAPE complete sets, respectively, are p-isomorphic could be a very
important and hard question. Similarly, the problem about the existence of sparse
complete sets for NP and PTAPE seems very difficult and could help solve the
P NP PTAPE? problem.

What about EXPTIME and EXPTAPE complete problems? We known that
they cannot be sparse; are they all p-isomorphic? Similarly, are hardest context-
sensitive languages all p-isomorphic?

Appendix. Our work shows that the invertibility of p-time reductions is an
important question. As we noted earlier, if all NP complete sets are related by
invertible maps then P NP. In this section, we mention some questions related
to the invertibility of reductions of various types.

The first question we ask is easily answered:
I. Do all one to one polynomial time computable maps have inverses which

are computable in polynomial time?
The answer to this is no; however, all known counterexamples to this statement
have the property that on some sequence of inputs, the outputs are more than a
polynomial amount shorter than the corresponding inputs. We are primarily
interested in mappings which do not alter lengths by more than a polynomial
amount and our next two questions are designed to limit changes in length.

ISOMORPHISMS AND DENSITY 321

II. If f is a polynomial time length nondecreasing bijection, is f-a comput-
able in polynomial time?

III. If f is a polynomial time length increasing injection is f- (extended by *
to be total) computable in polynomial time?

We have partial answers to these questions. (These results follow immediately
from results of Gary Miller [12].)

If P NP f3 co-Np then II.

If P NP then III.

Whether or not the converses of the above statements hold is an interesting open
question.

As observed above polynomial time maps need not have polynomial time
inverses, one might, however, hope for the following:

IV. If f is a bijection which p-reduces A to B, is B p-reducible to A ?
However, the answer to this question is no also. Let A (0+ 1)* be a set in

DSPACE(2n) which requires 2 space almost everywhere. Let B=
{0 llog (log (log j)) in A}. Let X={lwlw in A}. Then there is a bijection
f: (0+ 1)* (0+ 1)* which reduces B to X; however, there can be no polynomial
time reduction of X to B.

The final question we raise here concerns the comparison of one-one and
isomorphic equivalences.

V. If A and B are one to one polynomial time equivalent, are they
p-isomorphic?

A solution to this question would tell us how much our Theorem 1 can be
strengthened.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[2] S. A. COOK, The complexity of theorems provingprocedures, Proc. 3rd Annual ACM Symposium
on Theory of Computing, Association for Computing Machinery, New York, 1971, pp.
151-158.

[3] S. EVEN AND R. E. TARJAN, A combinatorial problem which is complete in polynomial space,
Proc. 7th Annual ACM Symposium on Theory of Computing, Association for Computing
Machinery, New York, 1975, pp. 66-71.

[4] Z. GALIL, The complexity of resolution procedures for theorem proving in the propositional
calculus, Rep. TR 75-239, Cornell University, Ithaca, NY, 1975.

[5] M. R. GAREY, D. S. JOHNSON AND L. STOCKMEYER, Some simplified polynomial complete
problems, Proc. 6th Annual ACM Symposium on Theory of Computing, Association for
Computing Machinery, New York, 1974, pp. 47-63.

[6] S. A. GREIBACH, The hardest context-free language, this Journal, 1973, pp. 304-310.
[7] J. HARTMANIS AND H. B. HUNT, III, The LBA problem and its importance in the theory of

computing, SIAM-AMS Proceedings, vol. 7, American Mathematical Society, Providence,
RI, 1974, pp. 1-26.

[8] J. HARTMANIS AND J. SIMON, On the structure offeasible computations, Advances in Compu-
ters, vol. 14, M. Rubinoff and M. C. Yovits, eds., Academic Press, New York, 1976.

i-9] J. E. HOPCROFT, W. PAUL AND L. VALIANT, On time versus space and related problems, IEEE
16th Annual Symp. on Foundations of Computer Science, IEEE, New York, 1975, pp.
57-64.

322 L. BERMAN AND J. HARTMANIS

10] R. M. KARP, Reducibilities among combinatorial problems, Complexity of Computer Computa-
tions, R. Miller and J. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

[11] A. R. MEYER AND L. STOCKMEYER, The equivalence problem for regular expressions with
squaring requires exponential space, IEEE 13th Annual Symp. on Switching and Automata
Theory, IEEE, New York, 1972, pp. 125-129.

[12] G. L. MILLER, Riemann’s Hypothesis and tests for primality, Rep. CS 75-27, University of
Waterloo, Waterloo, Ontario, 1975.

[13] S. SAHNI, Some related problems from network flows, game theory, and integer programming,
IEEE 13th Annual Symp. on Switching and Automata Theory, IEEE, New York, 1972, pp.
130-138.

[14] J. SIMON, On some central problems in computational complexity, Rep. TR 75-224, Cornell
University, Ithaca, NY, 1975.

[15] R. SOLOVAY, On sets Cook reducible to sparse sets, IBM Research Rep. RC5215, Yorktown
Heights, NY, January 1975.

[16] L. J. STOCKMEYER, The complexity of decision problems in automata theory and logic, Ph.D.
dissertation, Mass. Inst. of Tech., Cambridge, MA, July 1974.

[17] J. D. ULLMAN, Polynomial complete scheduling problems, Proc. 4th Annual ACM Symp. on

Operating Systems Principles, Association for Computing Machinery, New York, 1973, pp.
96-101.

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

FAST PATTERN MATCHING IN STRINGS*

DONALD E. KNUTHf, JAMES H. MORRIS, JR.:l: AND VAUGHAN R. PRATT

Abstract. An algorithm is presented which finds all occurrences of one. given string within

another, in running time proportional to the sum of the lengths of the strings. The constant of

proportionality is low enough to make this algorithm of practical use, and the procedure can also be
extended to deal with some more general pattern-matching problems. A theoretical application of the

algorithm shows that the set of concatenations of even palindromes, i.e., the language {can}*, can be
recognized in linear time. Other algorithms which run even faster on the average are also considered.

Key words, pattern, string, text-editing, pattern-matching, trie memory, searching, period of a

string, palindrome, optimum algorithm, Fibonacci string, regular expression

Text-editing programs are often required to search through a string of
characters looking for instances of a given "pattern" string; we wish to find all
positions, or perhaps only the leftmost position, in which the pattern occurs as a
contiguous substring of the text. For example, c a e n a r y contains the pattern
e n, but we do not regard c a n a r y as a substring.

The obvious way to search for a matching pattern is to try searching at every
starting position of the text, abandoning the search as soon as an incorrect
character is found. But this approach can be very inefficient, for example when we
are looking for an occurrence of aaaaaaab in aaaaaaaaaaaaaab.
When the pattern is a"b and the text is a2"b, we will find ourselves making (n + 1)
comparisons of characters. Furthermore, the traditional approach involves
"backing up" the input text as we go through it, and this can add annoying
complications when we consider the buffering operations that are frequently
involved.

In this paper we describe a pattern-matching algorithm which finds all
occurrences of a pattern of length rn within a text of length n in O(rn + n) units of
time, without "backing up" the input text. The algorithm needs only O(m)
locations of internal memory if the text is read from an external file, and only
O(log m) units of time elapse between consecutive single-character inputs. All of
the constants of proportionality implied by these "O" formulas are independent
of the alphabet size.

* Received by the editors August 29, 1974, and in revised form April 7, 1976.
t Computer Science Department, Stanford University, Stanford, California 94305. The work of

this author was supported in part by the National Science Foundation under Grant GJ 36473X and by
the Office of Naval Research under Contract NR 044-402.

Xerox Palo Alto Research Center, Palo Alto, California 94304. The work of this author was
supported in part by the National Science Foundation under Grant GP 7635 at the University of
California, Berkeley.

Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts 02139. The work of this author was supported in part by the National Science Foundation
under Grant GP-6945 at University of California, Berkeley, and under Grant GJ-992 at Stanford
University.

323

324 DONALD E. KNUTH, J/t.IVIES H. MORRIS, JR. AND VAUGHAN R. PRATI’

We shall first consider the algorithm in a conceptually simple but somewhat
inefficient form. Sections 3 and 4 of this paper discuss some ways to improve the
efficiency and to adapt the algorithm to other problems. Section 5 develops the
underlying theory, and 6 uses the algorithm to disprove the conjecture that a
certain context-free language cannot be recognized in linear time. Section 7
discusses the origin of the algorithm and its relation to other recent work. Finally,
8 discusses still more recent work on pattern matching.

1. Informal development. The idea behind this approach to pattern match-
ing is perhaps easiest to grasp if we imagine placing the pattern over the text and
sliding it to the right in a certain way. Consider for example a search for the pattern
abcabcacab in the textbabcbabcabcaabcabcabcacabc; initially
we place the pattern at the extreme left and prepare to scan the leftmost character
of the input text:

abc abc ac ab
babc babc abcaabcabcabcacabc

The arrow here indicates the current text character; since it points to b, which
doesn’t match that a, we shift the pattern one space right and move to the next
input character:

abc abc ac ab

babc babc abcaabcabcabcacabc

Now we have a match, so the pattern stays put while the next several characters
are scanned. Soon we come to another mismatch"

abc abc ac ab

babc babc abcaabcabcabcacabc

At this point we have matched the first three pattern characters but not the fourth,
so we know that the last four characters of the input have been a b c x where x # a;
we don’t have to remember the previously scanned characters, since ourposition in
the pattern yields enough information to recreate them. In this case, no matter what x
is (as long as it’s not a), we deduce that the pattern can immediately be shifted four
more places to the right; one, two, or three shifts couldn’t possibly lead to a match.

Soon we get to another partial match, this time with a failure on the eighth
pattern character:

abcabcacab

babc babc abc aabcabcabcaca bc

FAST PATTERN MATCHING IN STRINGS 325

Now we know that the last eight characters were a b c a b c a x, where x # c. The
pattern should therefore be shifted three places to the right"

abc abc ac ab
babcbabcabc aabc abcabcacabc

We try to match the new pattern character, but this fails too, so we shift the pattern
four (not three or five) more places. That produces a match, and we continue
scanning until reaching another mismatch on the eighth pattern character"

abc abc ac ab
ba bcbabcabcaabc abc abc acabc

Again we shift the pattern three places to the right; this time a match is produced,
and we eventually discover the full pattern:

abc abc ac ab
ba bcbabcabcaa bc abc abc ac abc

The play-by-play description for this example indicates that the pattern-
matching process will run efficiently if we have an auxiliary table that tells us
exactly how far to slide the pattern, when we detect a mismatch at its/’th character
pattern[if. Let next[f] be the character position in the pattern which should be
checked next after such a mismatch, so that we are sliding the pattern] next[]]
places relative to the text. The following table lists the appropriate values:

/’=1 2 3 4 5 6 7 8 9 10

pattern[f]=a b c a b c a c a b

next[f] O 1 1 0 1 1 0 5 0 1

(Note that next[j] 0 means that we are to slide the pattern all the way past the
current text character.) We shall discuss how to precompute this table later;
fortunately, the calculations are quite simple, and we will see that they require
only O(m) steps.

At each step of the scanning process, we move either the text pointer or the
pattern, and each of these can move at most n times; so at most 2n steps need to be
performed, after the next table has been set up. Of course the pattern itself doesn’t
really move; we can do the necessary operations simply by maintaining the pointer
variable].

326 DONALD E. KNUTH, JAMES H. MORRIS, JR. AND VAUGHAN R. PRATT

2. Programming the algorithm. The pattern-match process has the general
form

place pattern at left;
while pattern not fully matched

and text not exhausted do
begin

while pattern character differs from
current text character
do shift pattern appropriately;

advance to next character of text;
end;

For convenience, let us assume that the input text is present in an array text[1" n],
and that the pattern appears in pattern[1 :inf. We shall also assume that rn > 0,
i.e., that the pattern is nonempty. Let k and f be integer variables such that text[k]
denotes the current text character and pattern[f] denotes the corresponding
pattern character; thus, the pattern is essentially aligned with positions p + 1
through p + rn of the text, where k =p +f. Then the above program takes the
following simple form"

1:= k := 1;
while/" _-< rn and k _-< n do

begin
while j > 0 and text[k] pattern[f]

do j := next[j];
k:=k+l;j:=j+l;

end;

If/" > rn at the conclusion of the program, the leftmost match has been found in
positions k rn through k 1; but if/" <- m, the text has been exhausted. (The and
operation here is the "conditional and" which does not evaluate the relation
text[k] pattern[f] unless/" > 0.) The program has a curious feature, namely that
the inner loop operation "j := next[f]" is performed no more often than the outer
loop operation "k := k + 1"; in fact, the inner loop is usually performed somewhat
less often, since the pattern generally moves right less frequently than the text
pointer does.

To prove rigorously that the above program is correct, we may use the
following invariant relation" "Let p k-/" (i.e., the position in the text just
preceding the first character of the pattern, in our assumed alignment). Then we
have text[p+i]=pattern[i] for l=<i </" (i.e., we have matched the first f-1
characters of the pattern, if j >0); but for 0_-< <p we have text[t + if pattern[if
for some i, where 1 -< -< rn (i.e., there is no possible match of the entire pattern to
the left of p)."

The program will of course be correct only if we can compute the next table so
that the above relation remains invariant when we perform the operation
j := next[j]. Let us look at that computation now. When the program sets

FAST PATTERN MATCHING IN STRINGS 327

/" := next[f], we know that f > 0, and that the last/" characters of the input up to and
including text[k] were

pattern[l].., pattern[j- 1] x

where x pattern If]. What we want is to find the least amount of shift for which
these characters can possibly match the shifted pattern; in other words, we want
next[f] to be the largest less than/" such that the last characters of the input were

pattern 1]... pattern 1] x

and pattern[i]pattern[f]. (If no such exists, we let next[i]=O.) With this
definition of next[f] it is easy to verify that text[t+l]...text[k]
pattern[l] pattern[k 1] for k f <= < k next[f]; hence the stated relation is
indeed invariant, and our program is correct.

Now we must face up to the problem we have been postponing, the task of
calculating next[f] in the first place. This problem would be easier if we didn’t
require pattern[i] pattern[f] in the definition of next[j], so we shall consider the
easier problem first. Let f[f] be the largest less than/" such that pattern[l]...
pattern[i- 1] pattern[f-i + 1] pattern[j- 1]; since this condition holds vac-
uously for 1, we always have f[/’] >= 1 when/" > 1. By convention we let f[1] 0.
The pattern used in the example of 1 has the following f table:

/’=1 2 3 4 5 6 7 8 9 10

pattern[f]=a b c a b c a c a b

f[/’]=0 1 1 1 2 3 4 5 1 2.

If pattern[j]=pattern[f[j]] then f[f+ 1]=f[j]+ 1; but if not, we can use
essentially the same pattern-matching algorithm as above to compute f[j + 1],
with text pattern! (Note the similarity of the f[j] problem to the invariant
condition of the matching algorithm. Our program calculates the largest j less
than or equal to k such that pattern[I].., pattern[j- 1] text[k-j+ 1]...
text[k- 1], so we can transfer the previous technology to the present problem.)
The following program will compute f[/" + 1], assuming that f[j] and next[l],

next[j- 1] have already been calculated"

:=
while > 0 and pattern[j] pattern[t]

do t := next[t];
f[/’+ 1] := t+ 1;

The correctness of this program is demonstrated as before; we can imagine two
copies of the pattern, one sliding to the right with respect to the other. For
example, suppose we have established that f[8]= 5 in the above case; let us
consider the computation of]’[9]. The appropriate picture is

abcabc acab
abc abcac ab

328 DONALD E. KNUTH, JAMES H. MORRIS, JR. AND VAUGHAN R. PRATT

Since pattern[8] b, we shift the upper copy right, knowing that the most recently
scanned characters of the lower copy were a b c a x for x b. The next table tells
us to shift right four places, obtaining

abcabcacab
abcabcacab

and again there is no match. The next shift makes 0, so]’[9] 1.
Once we understand how to compute f, it is only a short step to the

computation of next[f]. A comparison of the definitions shows that, for/" > 1,

ff[j], if pattern[j] pattern[fir]f;
next[f]

next[f[j]], if pattern [/’] pattern If[if].

Therefore we can compute the next table as follows, without ever storing the
values of f[j] in memory.

j := 1; := 0; next[l] := 0;
while j < m do

begin comment t= f[/’];
while > 0 and pattern[j] pattern[t]

do t := next[t];
:= t+l;/" :=/’+1;

if pattern [/’] pattern It]
then next[f] := next[t]
else next[j] := t;

end.

This program takes O(m) units of time, for the same reason as the matching
program takes O(n): the operation := next[t] in the innermost loop always shifts
the upper copy of the pattern to the riglt, so it is performed a total of m times at
most. (A slightly different way to prove that the running time is bounded by a
constant times m is to observe that the variable starts at 0 and it is increased,
m- 1 times, by 1; furthermore its value remains nonnegative. Therefore the
operation := next[t], which always decreases t, can be performed at most m- 1
times.)

To summarize what we have said so far: Strings of text can be scanned
efficiently by making use of two ideas. We can precompute "shifts", specifying
how to move the given pattern when a mismatch occurs at its/’th character; and
this precomputation of "shifts" can be performed efficiently by using the same
principle, shifting the pattern against itself.

3. Gaining efficiency. We have presented the pattern-matching algorithm in
a form that is rather easily proved correct; but as so often happens, this form is not
very efficient. In fact, the algorithm as presented above would probably not be
competitive with the naive algorithm on realistic data, even though the naive
algorithm has a worst-case time of order m times n instead of m plus n, because

FAST PATTERN MATCHING IN STRINGS 329

the chance of this worst case is rather slim. On the other hand, a well-implemented
form of the new algorithm should go noticeably faster because there is no backing
up after a partial match.

It is not difficult to see the source of inefficiency in the new algorithm as
presented above: When the alphabet of characters is large, we will rarely have a
partial match, and the program will waste a lot of time discovering rather
awkwardly that text[k] pattern[l] for k 1, 2, 3, When/" 1 and text[k]
pattern[l], the algorithm sets/" := next[If=O, then discovers that/" =0, then
increases k by 1, then sets] to 1 again, then tests whether or not 1 is <=m, and later
it tests whether or not 1 is greater than 0. Clearly we would be much better off
making/" 1 into a special case.

The algorithm also spends unnecessary time testing whether/" > m or k > n.
A fully-matched pattern can be accounted for by setting pattern[m + 1]= "@"
for some impossible character @ that will never be matched, and by letting
next[m+l]=-l; then a test for/’<0 can be inserted into a less-frequently
executed part of the code. Similarly we can for example set text[n + 1] "_1_"

(another impossible character) and text[n +2]=pattern[if, so that the test for
k > n needn’t be made very often. (See [17] for a discussion of such more or less
mechanical transformations on programs.)

The following form of the algorithm incorporates these refinements.

a := pattern 1];
pattern[m + 1] := ’@’ next[m + 1] := -1;
text[n + 1] := ’_t_’ text[n + 2] := a;
f:=k:= 1;

get started: comment/" 1;
while text[k] a do k := k + 1;
if k > n then go to input exhausted;

char matched’/" := f + 1; k := k + 1;
loop: comment/" > 0;

if text[k] pattern[f] then go to char matched;
] := next[f];
i/" 1 then go to get started;
if f 0 then

begin
] := 1; k := k+l;
go to get started;

end;
if/ 0 then go to loop;

comment text[k- m] through text[k- 1] matched;

This program will usually run faster than the naive algorithm; the worst case
occurs when trying to find the pattern a b in a long string of a’s. Similar ideas can
be used to speed up the program which prepares the next table.

In a text-editor the patterns are usually short, so that it is most efficient to
translate the pattern directly into machine-language code which implicitly con-
tains the next table (cf. [3, Hack 179] and [24]). For example, the pattern in 1

330 DONALD E. KNUTH, JAMES H. MORRIS, JR. AND VAUGHAN R. PRATT

could be compiled into the machine-language equivalent of

L0: k:=k+l;
LI: if text[k] a then go to L0;.

k := k+l;
if k > n then go to input exhausted;

L2: if text[k b then go to L1;
k:=k+l;

L 3: if text[k] c then go to L1;
k := k+l;

L4: if text[k] a then go to L0;
k:=k+l;

L5: if text[k] b then go to L1;
k:= k+l;

L6: if text[k] c then go to L1;
k := k+l;

L7: if text[k] a then go to L0;
k := k+l;

L8: if text[k] c then go to L5;
k := k+l;

L9: if text[k] a then go to L0;
k := k+l;

L10: if text[k] b then go to L1;
k := k+l;

This will be slightly faster, since it essentially makes a special case for a//values

of/.
It is a curious fact that people often think the new algorithm will be slower

than the naive one, even though it does less work. Since the new algorithm is
conceptually hard to understand at first, by comparison with other algorithms of
the same length, we feel somehow that a computer will have conceptual difficulties
toomwe expect the machine to run more slowly when it gets to such subtle
instructions!

4. Extensions. So far our programs have only been concerned with finding
the leftmost match. However, it is easy to see how to modify the routine so that all
matches are found in turn: We can calculate the next table for the extended
pattern of length m+l using pattern[re+if="@", and then we set
resume := next[m + 1] before setting next[m + 1] to -1. After finding a match and
doing whatever action is desired to process that match, the sequence

/" := resume; go to loop;

will restart things properly. (We assume that text has not changed in the mean-
time. Note that resume cannot be zero.)

Another approach would be to leave next[m + 1] untouched, never changing
it to -1, and to define integer arrays head[1 :m] and link[1 :n] initially zero, and
to insert the code

link[k] := head[f]; head[j] := k;

FAST PATTERN MATCHING IN STRINGS 331

at label "char matched". The test "if/>0 then" is also removed from the
program. This forms linked lists for 1-</=<m of all places where the first /
characters of the pattern (but no more than/) are matched in the input.

Still another straightforward modification will find the longest initial match of
the pattern, i.e., the maximum/" such that pattern[l].., pattern[f] occurs in text.

In practice, the text characters are often packed into words, with say b
characters per word, and the machine architecture often makes it inconvenient
to access individual characters. When efficiency for large n is important on such
machines, one alternative is to carry out b independent searches, one for each
possible alignment of the pattern’s first character in the word. These searches can
treat entire words as "supercharacters", with appropriate masking, instead of
working with individual characters and unpacking them. Since the algorithm We
have described does not depend on the size of the alphabet, it is well suited to this
and similar alternatives.

Sometimes we want to match two or more patterns in sequence, finding an
occurrence of the first followed by the second, etc.; this is easily handled by
consecutive searches, and the total running time will be of order n plus the sum of
the individual pattern lengths.

We might also want to match two or more patterns in parallel, stopping as
soon as any one of them is fully matched. A search of this kind could be done with
multiple next and pattern tables, with one/" pointer for each; but this would make
the running time kn plus the sum of the pattern lengths, when there are k patterns.
Hopcroft and Karp have observed (unpublished) that our pattern-matching
algorithm can be extended so that the running time for simultaneous searches is
proportional simply to n, plus the alphabet size times the sum of the pattern
lengths. The patterns are combined into a "trie" whose nodes represent all of the
initial substrings of one or more patterns, and whose branches specify the
appropriate successor node as a function of the next character in the input text.
For example, if there are four patterns {a b c a b, a b a b c, b c a c, b b c }, the trie is
shown in Fig. 1.

node

0

2
3
4
5
6
7
8
9
10

substring

a

abc
abca
aba
abab
b
bc
bca
bb

if if

7
2
10
7

abcab
6
10
10
7
2

10

if

0
0
3
0

bcac
0

ababc
8
0

bcac
bbc

FIG.

Such a trie can be constructed efficiently by generalizing the idea we used to
calculate next[f]; details and further refinements have been discussed by Aho and
Corasick [2], who discovered the algorithm independently. (Note that this

332 DONALD E. KNUTH, JAMES H. MORRIS, JR. AND VAUGHAN R. PRATT

algorithm depends on the alphabet size; such dependence is inherent, if we wish to
keep the coefficient of n independent of k, since for example the k patterns might
each consist of a single unique character.) It is interesting to compare this
approach to what happens when the LR(0) parsing algorithm is applied to the
regular grammar Sa$lbSlcSlabcablababclbcaclbbc.

5. Theoretical considerations. If the input file is being read in "real time",
we might object to long delays between consecutive inputs. In this section we shall
prove that the number of times/" := next[f] is performed, before k is advanced, is
bounded by a function of the approximate form log6 m, where 4 (1 +/)/2
1.618 is the golden ratio, and that this bound is best possible. We shall use
lower case Latin letters to represent characters, and lower case Greek letters
a,/3,.., to represent strings, with e the empty string and [al the length of a. Thus
lal- 1 for all characters a; I t l- I1 +ltl; and [el =0. We also write a[k] for the
kth character of a, when 1-< k-< I 1,

As a warmup for our theoretical discussion, let us consider the Fibonacci
strings [14, exercise 1.2.8-36], which turn out to be especially pathological
patterns for the above algorithm. The definition of Fibonacci strings is

(1) b=b, b=a;)n-")n_l)n_2 forn_->3.

For example, b3 a b, 4 a b a, 4 a b a a b. It follows that the length [b, is
the nth Fibonacci number Fn, and that 4n consists of the first F, characters of an
infinite string boo when n ->_ 2.

Consider the pattern 48, which has the functions f[/’] and next[f] shown in
Table 1.

TABLE

/’=1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
pattern[i]=a b a a b a b a a b a a b a b a a b a b a

fl/’]=0 1 2 2 3 4 3 4 5 6 7 5 6 7 8 9 10 11 12 8

next[f]=O 1 0 2 1 0 4 0 2 0 7 1 0 4 0 2 1 0 12 0

If we extend this pattern to boo, we obtain infinite sequences f[j] and next[f]
having the same general character. It is possible to prove by induction that

(2) [[f]=f-G,- forFg <=f <Fk+l,

because of the following remarkable near-commutative property of Fibonacci
strings:

(3) l)n_2n_ C()n_l)n_2) for n ->- 3,

where c(a) denotes changing the two rightmost characters of a. For example,
I6 a b a a b a b a and c(b6) a b a a b a a b. Equation (3) is obvious when
n=3; and for n>3 we have c(b_2b,_0=b,_eC(bn_l)=b,_.b_3b_:
b,-lbn-: by induction; hence c(b_:b,_l) c(c(qb-149,-:)) 9-19,-:.

Equation (3) implies that

(4) next[F 1] Fk-1 1 for k _-> 3.

FAST PATTERN MATCHING IN STRINGS 333

Therefore if we have a mismatch when/" Fs-1 20, our algorithm might set
/" := next[f] for the successive values 20, 12, 7, 4, 2, 1, 0 of/’. Since Fk is (b k/ff-)
rounded to the nearest integer, it is possible to have up to log m consecutive
iterations of the/" := next[f] loop.

We shall now show that Fibonacci strings actually are the worst case, i.e., that
log, m is also an upper bound. First let us consider the concept of periodicity in
strings. We say that p is a period of ce if

(5) a[i] ce[i +p] for 1 =<i =< I l-p,
It is easy to see that p is a period of ce if and only if

(6) a (ce lce2)kce
for some k =>0, where [alce2[=p and ce2 E. Equivalently, p is a period of ce if and
only if

(7) ce02 02ce

for some 02 and 02 with }021 1021 =p. Condition (6) implies (7) with 02 ce2cel and
02 ce2ce2. Condition (7) implies (6), for we define k [Ic{/p] and observe that if
k >0, then ce 02/3 implies /302 02/3 and [IBI/P] k- 1; hence, reasoning
inductively, ce Ozce for some ce with Ice 21 < P, and ce 02 02ce i. Writing 02 ce lce2
yields. (6).

The relevance of periodicity to our algorithm is clear once we consider what it
means to shift a pattern. If pattern[If.., pattern[f-1]=ce ends with
pattern[if pattern[i-1]=/3, we have

(8) ce fl01 02fl
where [02[102[/ i, so the amount of shift j is a period of ce.

The construction of next[j] in our algorithm implies further that
pattern[if, which is the first character of 01, is unequal to pattern[j]. Let us assume
that/3 itself is subsequently shifted leaving a residue % so that

(9) /3 3’02 2’
where the first character of 02 differs frrn that of 02. We shall now prove that

(10)

if 1 1+1 1 1 1, there is an overlap of d=lfll+l l-I l characters between the
occurrences of fl and y in f102 =ce 0.0zy; hence the first character of 02 is
y[d + 1]. Similarly there is an overlap of d characters between the occurrences of
/3 and 3/in 02/3 ce y0202; hence the first character of 02 is/3[d + 1]. Since these
characters are distinct, we obtain y[d+ 1]fl[d+l], contradicting (9). This
establishes (10), and leads directly to the announced result:

THzoz. The number of consecutive times that] := next[f] is performed,
while one text character is being scanned, is at most 1 + log6 m.

Pro@ Let Lr be the length of the shortest string ce as in the above discussion
such that a sequence of r consecutive shifts is possible. ThenL 0, L2 1, and we
have 1[3l>=Lr_l, lyl>-L_2 in (10); hence La>-Fr+I 1 by induction on r. Now if r
shifts occur we have m -->E+l->b r-. [-1

334 DONALD E. KNUTH, JAMES H. MORRIS, JR. AND VAUGHAN R. PRATT

The algorithm of 2 would run correctly in linear time even if f[/’] were used
instead of next[f], but the analogue of the above theorem would then be false. For
example, the pattern a leads tof [j] j 1 for 1 =<j =< m. Therefore if we matched
a to the text a"-lbce, using f[/’] instead of next[j], the mismatch text[m]
pattern[m] would be followed by m occurrences of j := f[/’] and m 1 redundant
comparisons of text[m] with pattern[j], before k is advanced to m + 1.

The subject of periods in strings has several interesting algebraic properties,
but a reader who is not mathematically inclined may skip to 6 since the following
material is primarily an elaboration of some additional structure related to the
above theorem.

LEMMA 1. If p and q are periods of ce, and p + q <-_ Ice[+ gcd(p, q), then
god(p, q) is a period of a.

Proof. Let d=gcd(p,q), and assume without loss of generality that
d <p < q p + r. We have a[i] a[i +p] for 1 _<- _<-Ice]-p and a[i] ce[i + q] for
l_<-i--< I[-q; hence c[i +r] [i +q] ce[i] for 1 +r<-i +r<=lcel-p, i.e.,

a[i]=a[i+r] for 1-<ill-q.

Furthermore a 01 02 where [01[p, and it follows that p and r are periods
of/3, where p + r -< 1/31+ d I/3[+ god(p, r). By induction, d is a period of/3. Since
I[[al-p >=q -d >=q-r =p [0a], the strings 0a and Oz (which have the respec-
tive forms 21 and12 by (6) and (7)) are substrings of/3; so they also have d as
a period. The string a (/3a/32)+/31 must now have d as a period, since any
characters d positions apart are contained within 1/2 or/11. [[]

The result of Lemma 1 but with the stronger hypothesis p + q _-< Ice] was
proved by Lyndon and Schiitzenberger in connection with a problem about free
groups [19, Lem. 4]. The weaker hypothesis in Lemma 1 turns out to give the best
possible bound: If gcd(p,q)<p<q we can find a string of length
p + q -god(p, q)- 1 for which god(p, q) is not a period. In order to see why this is
so, consider first the example in Fig. 2 showing the most general strings of lengths
15 through 25 having both 11 and 15 as periods. (The strings are "most general"
in the sense that any two character positions that can be different are different.)

abc def ghi j ka bc d
abc daf ghi j ka bc. da
abc dab ghi ka bc dab
abc dabc hi j ka bc dabc
abc dabc di ka bc dabc d
abc dabc daj ka bc dabc da
abc dabc dab ka bc dabc dab
ab c dab c dab c a b c dab c dab c
ab c aab c aabc a bc aab c aab c a
aac aaac aaac a ac aaac aaac aa
aaaaaaaaaaaa aaaaaaaaaaaaa

FIG. 2

Note that the number of degrees of freedom, i.e., the number of distinct symbols,
decreases by 1 at each step. It is not difficult to prove that the number cannot
decrease by more than 1 as we go from lal n- 1 to I 1- n, since the only new

FAST PATTERN MATCHING IN STRINGS 335

relations are a[n]=a[n-q]=a[n-p]; we decrease the number of distinct
symbols by one if and only if positions n -q and n -p contain distinct symbols in
the most general string of length n 1. The lemma tells us that we are left with at
most god(p, q) symbols when the length reaches p + q-god(p, q); on the other
hand we always have exactly p symbols when the length is q. Therefore each of the
p-god(p, q) steps must decrease the number of symbols by 1, and the most
general string of length p +q- gcd(p, q)-1 must have exactly god(p, q)+ 1 dis-
tinct symbols. In other words, the lemma gives the best possible bound.

When p and q are relatively prime, the strings of length p +q- 2 on two
symbols, having both p and q as periods, satisfy a number of remarkable
properties, generalizing what we have observed earlier about Fibonacci strings.
Since the properties of these pathological patterns may prove useful in other
investigations, we shall summarize them in the following lemma.

LEMMA 2. Let the strings r(m, n) oflength n be definedfor all relatively prime
pairs of integers n >= m >= 0 as follows:

r(0, 1) a, o,(1, 1) b, r(1, 2) ab;

r(m, m + n) r(n mod m, m)r(m, n))
(11)

cr(n,m+n)=cr(m,n)r(n modm, m) ifO<m<n.

These strings satisfy the]ollowing properties:
(i) r(m, qm + r)r(m r, m) r(r, m)r(m, qm + r), for m > 2;
(ii) r(m, n) has period m, for m > 1;
(iii) c(r(m, n))=r(n -m, n), for n > 2.

(The function c(a) was defined in connection with (3) above.)
Proof. We have, for 0 < m < n and q => 2,

r(m + n, q(m + n)+ m) r(m, m + n) r(m + n, (q- 1)(m + n)+ m),

r(m +n, q(m +n)+n)=r(nm +n) r(m +n, (q-1)(m +n)+n),

r(m + n, 2m + n)= r(m, m + n) o,(n mod m, m),

cr(m + n, m + 2n) o’(n, m + n) o-(m, n);

hence, if 01 o-(n mod m, m) and 02 o-(m, n) and q _-> 1,

(12) o-(m+n,q(m+n)+m)=(OxOz)q01, r(m+n,q(m+n)+n)=(OzO1)qOz.

It follows that

o-(m +n, q(m +n)+m)o-(n, m + n)= o-(m, m +n) o’(m +n, q(m +n)+m),

o’(m + n, q(m + n)+ n)o’(m, m + n)= o(n, m + n)o’(m + n, q(m + n)+ n),

which combine to prove (i). Property (ii) also follows immediately from (12),
except for the case m 2, n 2q + 1, or(2, 2q + 1) (ab)’a, which may be verified
directly. Finally, it suffices to verify property (iii) for 0 < m < 1/2n, since c(c(a)) a;
we must show that

c(tr(m,m+n))=tr(m,n)o’(n modm, m) forO<m<n.

336 DONALD E. KNUTH, JAMES H. MORRIS, JR. AND VAUGHAN R. PRATT

When m <= 2 this property is easily checked, and when rn > 2 it is equivalent by
induction to

r(m,m+n)=r(m,n)cr(m-(nmodm),m) for0<m<n, m>2.

Set n mod rn r, [n/m q, and apply property (i).
By properties (ii) and (iii) of this lemma, r(p, p +q) minus its last two

characters is the string of length p +q-2 having periods p and q. Note that
Fibonacci strings are just a very special case, since b,, =cr(F,_a, F,). Another
property of the o- strings appears in 15]. A completely different proof of Lemma 1
and its optimality, and a completely different definition of r(m, n), were given by
Fine and Will in 1965 [7]. These strings have a long history going back at least to
the astronomer Johann Bernoulli in 1772; see [25, 2.13] and [21].

If c is any string, let P(c) be its shortest period. Lemma 1 implies that all
periods q which are not multiples of P(a) must be greater than lal-P(a)+
gcd(q, P(a)). This is a rather strong condition in terms of the pattern matching
algorithm, because of the following result.

LEMMA 3. Let a pattern [1]... pattern [f 1] and let a pattern [/’]. In the
pattern matching algorithm, f[/’]=/’-P(a), and next[f]=f-q, where q is the
smallestperiod ofa which is nota period o[aa. (Ifno such period exists, next[f] 0.)
If P(a) divides P(ca) and P(aa) <f, then P(a)= P(aa). If P(a) does not divide
P(aa) or ifP(aa)=L then q =P(a).

Proof. The characterizations of f[/’] and next[f] follow immediately from the
definitions. Since every period of aa is a period of a, the only nonobvious
statement is that P(a)= P(aa) whenever P(a) divides P(aa) and P(cea) f. Let
P(a) =p and P(aa)= rap; then the (mp)th character from the right of c is a, as is
the (m- 1)pth, as is the pth; hence p is a period of aa.

Lemma 3 shows that the/" := next[j] loop will almost always terminate
quickly. If P(a) P(aa), then q must not be a multiple of P(a); hence by Lemma
1, P(a)+q >=j + 1. On the other hand q >P(a); hence q >1/2j and next[j]<1/2/. In
the other case q P(a), we had better not have q too small, since q will be a period
in the residual pattern after shifting, and next[next[ill will be <q. To keep the
loop running it is necessary for new small periods to keep popping up, relatively
prime to the previous periods.

6. Palindromes. One of the most outstanding unsolved questions in the
theory of computational complexity is the problem of how long it takes to
determine whether or not a given string of length n belongs to a given context-free
language. For many years the best upper bound for this problem was O(n 3) in a
general context-free language as n c; L. G. Valiant has recently lowered this to
O(nog7). On the other hand, the problem isn’t known to require more than order
n units of time for any particular language. This big gap between O(n) and
O(n 2.8a) deserves to be closed, and hardly anyone believes that the final answer
will be O(n).

Let be a finite alphabet, let Z* denote the strings over , and let

P {aaR]a e E*}.
Here cr denotes the reversal of a, i.e., (a,a2 a,) a, azal. Each string
7r in P is a palindrome of even length, and conversely every even palindrome over

FAST PATTERN MATCHING IN STRINGS 337

is in P. At one time it was popularly believed that the language P* of "even
palindromes starred", namely the set of palstars 7rl rn where each 7ri is in P,
would be impossible to recognize in O(n) steps on a random-access computer.

It isn’t especially easy to spot members of this language. For example,
a a b b a b b a is a palstar, but its decomposition into even palindromes might not
be immediately apparent; and the reader might need several minutes to decide
whether or not

baabbabbaababbaabbabbabaa

bbabbabbabbaabababbabbaab

is in P*. We shall prove, however, that palstars can be recognized in O(n) units of
time, by using their algebraic properties.

Let us say that a nonempty palstar is prime if it cannot be written as the
product of two nonempty palstars. A prime palstar must be an even palindrome

R
act but the converse does not hold. By repeated decomposition, it is easy to see
that every palstar/ is expressible as a product fll fit of prime palstars, for
some >= 0; what is less obvious is that such a decomposition into prime factors is
unique. This "fundamental theorem of palstars" is an immediate consequence of
the following basic property.

LEMMA 1. A prime palstar cannot begin with another prime palstar.
Proof. Let taR be a prime palstar such that aOR Ry for some nonempty

even palindrome flflR and some y # e; furthermore, let R have minimum
length among all such counterexamples. If then aaR= flflR3,=a6y
for some 6 e; hence aR 6% and flflR (flflR)R (a6)n 8RaR 6R6% con-
tradicting the minimality of [flflR I. Therefore IflflR[<--__[al; hence a =flflg6 for
some 8, and flflg,y OgoR__RRR. But this implies that y is the palstar
RR, contradicting the primality of

COROLLARY (Left cancellation property.) If aft and or’are palstars, so is ft.
Proof. Let a a a and a[3 fla fl be prime factorizations of a and

aft. If al a fll fl, then fl fl+l.., fl is a palstar. Otherwise let j
be minimal with a. fli; then ai begins with fli or vice versa, contradicting
Lemma 1.

LEMMA 2. Ifo is a string oflength n, we can determine the length ofthe longest
even palindrome fl P such that a fl’y, in O(n steps.

Proof. Apply the pattern-matching algorithm with pattern a and text ct R.
When k-n+1 the algorithm will stop with j maximal such that
pattern[i] pattern [j- 1] text[n + 2-j] text[n]. Now perform the follow-
ing iteration:

while j ->_ 3 and/" even do j := f(j).

By the theory developed in 3, this iteration terminates with/" -> 3 if and on(y
if t begins with a nonempty even palindrome, and/"- 1 will be the length of the
largest such palindrome. (Note that]’[] must be used here instead of next[]]; e.g.
consider the case a a b a a b. But the pattern matching process takes O(n)
time even when [[f] is used.)

THEOREM. Let L be any language such that L* has the left cancellation
property and such that, given any string ct of length n, we can find a nonempty L

338 DONALD E. KNUTH, JAMES H. MORRIS, JR. AND VAUGHAN R. PRATT

such that a begins with or we can prove that no such exists, in O(n steps. Then
we can determine in O(n time whether or not a given string is in L*.

Proofi Let a be any string, and suppose that the time required to test or
nonempty prefixes in L is <-Kn for all large n. We begin by testing a’s initial
subsequences of lengths 1, 2, 4, ..., 2, ..., and finally a itself, until finding a
prefix in L or until establishing that a has no such prefix. In the latter case, a is not
in L*, and we have consumed at most (K+Ka) + (2K+ Ka) + (4K+Ka) +" +
(]a [K+Ka) < 2Kn +Ka log n units of time for some constant Ka. But if we find a
nonempty prefix/3 L where a fly, we have used at most 41[K+K(log2 [/3 [)
units of time so far. By the left cancellation property, a L* if and only if y L*,
and since [71 n -I/31 we can prove by induction that at most (4K+Ka)n units of
time are needed to decide membership in L*, when n > 0. U

COROLLARY. P* can be recognized in O(n) time.
Note that the related language

P* (Tr Y-,* 17r 7r and e 2}*
cannot be handled by the above techniques, since it contains both a a a b b b and
a a a b b b b a; the fundamental theorem of palstars fails with a vengeance. It is
an open problem whether or not PI* can be recognized in O(n) time, although we
suspect that it can be done. Once the reader has disposed of this problem, he or
she is urged to tackle another language which has recently been introduced by S.
A. Greibach [11], since the latter language is known to be as hard as possible; no
context-free language can be harder to recognize except by a constant factor.

7. Historical remarks. The pattern-matching algorithm of this paper was
discovered in a rather interesting way. One of the authors (J. H. Morris) was
implementing a text-editor for the CDC 6400 computer during the summer of
1969, and since the necessary buffering was rather complicated he sought a
method that would avoid backing up the text file. Using concepts of finite
automata theory as a model, he devised an algorithm equivalent to the method
presented above, although his original form of presentation made it unclear that
the running time was O(m + n). Indeed, it turned out that Morris’s routine was too
complicated for other implementors of the system to understand, and he dis-
covered several months later that gratuitous "fixes" had turned his routine into a
shambles.

In a totally independent development, another author (D. E. Knuth) learned
early in 1970 of S. A. Cook’s surprising theorem about two-way deterministic
pushdown automata [5]. According to Cook’s theorem, any language recog-
nizable by a two-way deterministic pushdown automaton, in any amount of time,
can be recognized on a random access machine in O(n) units of time. Since D.
Chester had recently shown that the set of strings beginning with an even
palindrome could be recognized by such an automaton, and since Knuth couldn’t
imagine how to recognize such a language in less than about n 2 steps on a
conventional computer, Knuth laboriously went through all the steps of Cook’s
construction as applied to Chester’s automaton. His plan was to "distill off" what

(Note added April, 1976.) Zvi Galil and Joel Seiferas have recently resolved this conjecture
affirmatively.

FAST PATTERN MATCHING IN STRINGS 339

was happening, in order to discover why the algorithm worked so efficiently. After
pondering the mass of details for several hours, he finally succeeded in abstracting
the mechanism which seemed to be underlying the construction, in the special case
of palindromes, and he generalized it slightly to a program capable of finding the
longest prefix of one given string that occurs in another.

This was the first time in Knuth’s experience that automata theory had taught
him how to solve a real programming problem better than he could solve it before.
He showed his results to the third author (V. R. Pratt), and Pratt modified Knuth’s
data structure so that the running-time was independent of the alphabet size.
When Pratt described the resulting algorithm to Morris, the latter recognized it as
his own, and was pleasantly surprised to learn of the O(m + n) time bound, which
he and Pratt described in a memorandum [22]. Knuth was chagrined to learn that
Morris had already discovered the algorithm, without knowing Cook’s theorem;
but the theory of finite-state machines had been of use to Morris too, in his initial
conceptualization of the algorithm, so it was still legitimate to conclude that
automata theory had actually been helpful in this practical problem.

The idea of scanning a string without backing up while looking for a pattern,
in the case of a two-letter alphabet, is implicit in the early work of Gilbert [10]
dealing with comma-free codes. It also is essentially a special case of Knuth’s
LR(0) parsing algorithm [16] when applied to the grammar

for each a in the alphabet,

where a is the pattern. Diethelm and Roizen [6] independently discovered the
idea in 1971. Gilbert and Knuth did not discuss the preprocessing to build the next
table, since they were mainly concerned with other problems, and the pre-
processing algorithm given by Diethelm and Roizen was of order rn 2. In the case
of a binary (two-letter) alphabet, Diethelm and Roizen observed that the
algorithm of 3 can be improved further" we can go immediately to "char
matched" after/" := next[j] in this case if next[j] > O.

A conjecture by R. L. Rivest led Pratt to discover the log6 rn upper bound on
pattern movements between successive input characters, and Knuth showed that
this was best possible by observing that Fibonacci strings have the curious
properties proved in 5. Zvi Galil has observed that a real-time algorithm can be
obtained by letting the text pointer move ahead in an appropriate manner while
the f pointer is moving down [9].

In his lectures at Berkeley, S. A. Cook had proved that P* was recognizable
in O(n log n) steps on a random-access machine, and Pratt improved this to O(n)
using a preliminary form of the ideas in 6. The slightly more refined theory in the
present version of 6 is joint work of Knuth and Pratt. Manacher [20] found
another way to recognize palindromes in linear time, and Galil [9] showed how to
improve this to real time. See also Slisenko [23].

It seemed at first that there might be a way to find the longest common
substring of two given strings, in time O(m + n); but the algorithm of this paper
does not readily support any such extension, and Knuth conjectured in 1970 that
such efficiency would be impossible to achieve. An algorithm due to Karp, Miller,
and Rosenberg [13] solved the problem in O((m + n) log (m + n)) steps, and this

340 DONALD E. KNUTH, JAMES H. MORRIS, JR. AND VAUGHAN R. PRATT

tended to support the conjecture (at least in the mind of its originator). However,
Peter Weiner has recently developed a technique for solving the longest common
substring problem in O(m + n) units of time with a fixed alphabet, using tree
structures in a remarkable new way [26]. Furthermore, Weiner’s algorithm has
the following interesting consequence, pointed out by E. McCreight" a text file can
be processed (in linear time) so that it is possible to determine exactly how much of
a pattern is necessary to identify a position in the text uniquely; as the pattern is
being typed in, the system can be interrupt as soon as it "knows" what the rest of
the pattern must be! Unfortunately the time and space requirements for Weiner’s
algorithm grow with increasing alphabet size.

If we consider the problem of scanning finite-state languages in general, it is
known [1 9.2] that the language defined by any regular expression of length
m is recognizable in O(mn) units of time. When the regular expression has the
form

the algorithm we have discussed shows that only O(m + n) units of time are
needed (considering* as a character of length 1 in the expression). Recent work
by M. J. Fischer and M. S. Paterson [8] shows that regular expressions of the form

i.e., patterns with "don’t care" symbols, can be identified in
O(n log rn log log rn log q) units of time, where q is the alphabet size and rn
[cela2 cer[+ r. The constant of proportionality in their algorithm is extremely
large, but the existence of their construction indicates that efficient new
algorithms for general pattern matching problems probably remain to be dis-
covered.

A completely different approach to pattern matching, based on hashing, has
been proposed by Malcolm C. Harrison [12]. In certain applications, especially
with very large text files and short patterns, Harrison’s method may be sig-
nificantly faster than the character-comparing method of the present paper, on the
average, although the redundancy of English makes the performance of his
method unclear.

8. Postscript: Faster pattern matching in strings.2 In the spring of 1974,
Robert S. Boyer and J. Strother Moore and (independently) R. W. Gosper noticed
that there is an even faster way to match pattern strings, by skipping more rapidly
over portions of the text that cannot possibly lead to a match. Their idea was to
look first at text[m], instead of text[l]. If we find that the character text[m] does
not appear in the pattern at all, we can immediately shift the pattern right rn
places. Thus, when the alphabet size q is large, we need to inspect only about n/rn
characters of the text, on the average! Furthermore if text[m] does occur in the
pattern, we can shift the pattern by the minimum amount consistent with a match.

This postscript was added by D. E. Knuth in March, 1976, because of developments which
occurred after preprints of this paper were distributed.

FAST PATTERN MATCHING IN STRINGS 341

Several interesting variations on this strategy are possible. For example, if
text[m] does occur in the pattern, we might continue the search by looking at
text[m 1], text[m 2], etc.; in a random file we will usually find a small value of r
such that the substring text[m- r] text[m] does not appear in the pattern, so
we can shift the pattern m-r places. If r- [2 logq m J, there are more than m2

possible values of text[m r]... text[m], but only m r substrings of length r + 1
in the pattern, hence the probability is O(1/m) that text[m r] text[m] occurs
in the pattern; If it doesn’t, we can shift the pattern right m r places; but if it does,
we can determine all matches in positions <m-r in O(m) steps, shifting the
pattern m-r places by the method of this paper. Hence the expected number of
characters examined among the first m [2 logq m is O(1ogq m); this proves the
existence of a linear worst-case algorithm which inspects O(n (1Ogq m)/m) charac-
ters in a random text. This upper bound on the average running time applies to all
patterns, and there are some patterns (e.g., a or (a b)’/2) for which the expected
number of characters examined by the algorithm is O(n/m).

Boyer and Moore have refined the skipping-by-m idea in another way. Their
original algorithm may be expressed as follows using our conventions:

while k _-< n do
begin

]:=m;
while j > 0 and text[k] =pattern[j] do

begin
f:=f-1;k:=k-1;

end;
if] 0 then

begin
matchfoundat (k);
k:=k+m+l

end else
k := k + max (d[text[k]], dd[j]);

end;

This program calls match found at (k) for all O<=k<-n-m such that
pattern[l].., pattern[m] text[k + 1] text[k + m]. There are two precom-
puted tables, namely

d[a] min {sis m or (0 _-< s < m and pattern[m s] a)}

for each of the q possible characters a, and

dd[j] min {s + m -j s >-- 1 and
((s_-> 1 or pattern[i-s]=pattern[i]) for j <i =<m)},

for 1 _<-/" _-<m.

342 DONALD E. KNUTH, JAMES H. MORRIS, JR. AND VAUGHAN R. PRATT

The d table can clearly be set up in O(q + rn) steps, and the dd table can be
precomputed in O(m) steps using a technique analogous to the method in 2
above, as we shall see. The Boyer-Moore paper [4] contains further exposition of
the algorithm, including suggestions for highly efficient implementation, and gives
both theoretical and empirical analyses. In the remainder of this section we shall
show how the above methods can be used to resolve some of the problems left
open in [4].

First let us improve the original Boyer-Moore algorithm slightly by replacing
dd[f] by

dd’[f] min {s + rn -j s => 1 and (s >=j or pattern[f-s] # pattern[f])
and ((s =>i or pattern[i-s] pattern[i]) for j <i =< m)}.

(This is analogous to using next[j] instead of f[j]; Boyer and Moore [4] credit the
improvement in this case to Ben Kuipers, but they do not discuss how to
determine dd’ efficiently.) The following program shows how the dd’ table can be
precomputed in O(m) steps; for purposes of comparison, the program also shows
how to compute dd, which actually turns out to require slightly more operations
than dd’

for k := 1 step 1 until rn do dd[k] := dd’[k] := 2 x rn- k;
j:=m;t:=m+l;
while/" > 0 do

begin
fEi] := t;
while =< rn and pattern[j] pattern[t] do

begin
dd’[t] := min (dd’[t], rn-/’);
:=/It];

end;
t:=t-1;f:=f-1;
dd[t] := min (dd[t], rn-/’);

end;
for k := 1 step 1 until t do

begin
dd[k] := min (dd[k], m + t- k);
dd’[k] := min dd’[k], rn + t- k);

end;

In practice one would, of course, compute only dd’, suppressing all references to
dd. The example in Table 2 illustrates most of the subtleties of this algorithm.

TABLE 2

j=l 2 3 4 5 6
pattern[j] b a d b a c

f[j]=10 11 6 7 8 9
dd[j]=19 18 17 16 15 8
dd’[/’]=19 18 17 16 15 8

7 8 9 10 11
b a c b a
10 11 11 11 12
7 6 5 4
13 12 8 12

FAST PATTERN MATCHING IN STRINGS 343

To prove correctness, one may show first that f[]] is analogous to the f[]] in 2,
but with right and left of the pattern reversed; namelyf[m m + 1, and for] < m
we have

]’[]3 min {i IJ < -<_ m and
pattern[i + 1] pattern[m] =pattern[] + 1]... pattern[m +]-i]}.

Furthermore the final value of corresponds to f[0] in this definition; m is the
maximum overlap of the pattern on itself. The correctness of dd[j] and dd’[j] for
all j now follows without much difficulty, by showing that the minimum value of s
in the definition of dd[]o] or dd’[jo] is discovered by the algorithm when
(t,j)=(jo, jo-s).

The Boyer-Moore algorithm and its variants can have curiously anomalous
behavior in unusual circumstances. For example, the method discovers more
quickly that the pattern a a a a a a a c b does not appear in the text (a b)" if it
suppresses the d heuristic entirely, i.e., if d[t] is set to -oo for all t. Likewise, dd
actually turns out to be better than dd’ when matching a 15 b c b a b a b in
(b a a b a b)", for large n.

Boyer and Moore showed that their algorithm has quadratic behavior in the
worst case; the running time can be essentially proportional to pattern length
times text length, for example when the pattern c a (b a)" occurs together with the
text (xTM a a(b a)")". They observed that this particular example was handled in
linear time when Kuiper’s improvement (dd’ for dd) was made; but they left open
the question of the true worst case behavior of the improved algorithm.

There are trivial cases in which the Boyer-Moore algorithm has qladratic
behavior, when matching all occurrences of the pattern, for example when
matching the pattern a" in the text a". But we are probably willing to accept such
behavior when there are so many matches; the crucial issue is how long the
algorithm takes in the worst case to scan over a text that does not contain the
pattern at all. By extending the techniques of 5, it is possible to show that the
modified Boyer-Moore algorithm is linear in such a situation:

THEOREM. ffthe above algorithm is used with dd’ replacing dd, and if the text
does not contain any occurrences of the pattern, the total number o]: characters
matched is at most 6n.

Proof. An execution of the algorithm consists of a series of stages, in which mk
characters are matched and then the pattern is shifted Sk places, for k 1, 2,
We want to show that Y mk <= 6n; the proof is based on breaking this cost into
three parts, two of which are trivially O(n) and the third of which is less obviously
SO.

Let m, mk 2Sk if mk > 2Sk otherwise let m , 0. When m, > 0, we will say
that the leftmost m, text characters matched during the kth stage have been
"tapped". It suffices to prove that the algorithm taps characters at most 4n times,
since Y. mk <= mk+ 2 Y. Sk and Y’. Sk <--_n. Unfortunately it is possible for some
characters of the text to be tapped roughly log m times, so we need to argue
carefully that m ,_-< 4n.

Suppose the rightmost m’ of the m , text characters tapped during the kth
stage are matched again during some later stage, but the leftmost m ,-m/,’ are

344 DONALD E. KNUTH, JAMES H. MORRIS, JR. AND VAUGHAN R. PRATT

being matched for the last time. Clearly (kn ,- m’) =< n, so it remains to show that
m[,’<-_3n.

Let Pk be the amount by which the pattern would shift after the kth stage if the
d[a] heuristic were not present (d[a] -c); thenp -< s, andp is a period of the
string matched at stage k.

Consider a value of k such that m/,’ > 0, and suppose that the text characters
matched during the kth stage form the string ce =alaZ where lal=m and
[cezl m;,’ + 2s; hence the text characters in a are matched for the last time. Since
the pattern does not occur in the text, it must end with xa and the text scanned so
far must end with za, where x z. At this point the algorithm will shift the pattern
right sk positions and will enter stage k + 1. We distinguish two cases: (i) The
pattern length rn exceeds m +pg. Then the pattern can be written O3a, where
It l pg; the last character of/3 is x and the last character of 0 is y x, by definition
of dd’. Otherwise (ii) rn =<m +pk; the pattern then has the form/3a, where
[/31 <--p <_-s. By definition of m;,’ and the assumption that the pattern does not
occur in the text, we have It’ll /1 21, i.e., It l In both cases (i) and
(ii), p is a period of

Now consider the first subsequent stage k’ during which the leftmost of the
text characters tapped during stage k is matched again; we shall write k k’ when
the stages are in this relation. Suppose the mismatch occurs this time when text
character z’ fails to m.atch pattern character x’. If z’ occurs in the text within tel,

regarding ce as fixed in its stage k position, then x’ cannot be within/ce where
now occurs in the stage k’ position of the pattern, since Pk is a period of/a and the
character Pk positions to the right of x’ is a z’ (it matches a z’ in the text). Thus x’
now appears within 0. On the other hand, if z’ occurs to the left of a, we must have
]cel 0, since the characters of ce are never matched again. In either event, case
(ii) above proves to be impossible. Hence case (i) always occurs when m’> 0, and
x’ always appears within 0.

To complete the argument, we shall show that -,k-.k’ m[; for all fixed k’, is at
most 3Sk,. Let p’ =Pk’ and let a’ denote the pattern matched at stage k’. Let
k <...<k be the values of k such that k-k’. If Io’l+p’<-_m, let/’a’ be the
rightmost p’ +la’l characters of the pattern. Otherwise let a" be the leftmost
la’l +p’-m characters of a’; and let/3’a’ be a" followed by the pattern. Note that
in both cases a’ is an initial substring of J’a’ and I/’] P’. In both cases, the actions
of the algorithm during stages k + 1 through k’ are completely known if we are
given the pattern and/’, and if we know z’ and the place within/3’ where stage
k + 1 starts matching. This follows from the fact that fl’ by itself determines
the text, so that if we match the pattern against the string z’fl’fl’fl’... (starting at
the specified place for stage k + 1) until the algorithm first tries to match z’ we will
know the length of a’. (If Ic’l < p’ then/3’ begins with a’ and this statement holds
trivially; otherwise, a’ begins with fl’ and has period p’; hence fl’fl’fl’.., begins
with a’.) Note that the algorithm cannot begin two different stages at exactly the
same position within/3’, for then it would loop indefinitely, contradicting the fact
that it does terminate. This property will be out key tool for proving the desired
result.

Let the text strings matched during stages kl, kr be 01, Or, and let
their periods determined as in case (i) bep p respectively; we have pi <

FAST PATTERN MATCHING IN STRINGS 345

for 1 _-</" =< r. Suppose that during stage kj the mismatch of xj # zi implies that the
pattern ends with yi/3icei, where [fljl Pi. We shall prove that [a 1[+" + leer[-< 3p’.
First let us prove that I ;I <p’ for all j: We have observed that x’ always occurs
within 0; hence y/3a occurs as a rightmost substring of x’a’. If I ,1 >--p’ then
p +p’--< [flal; hence the character p positions to the right of yi in x’a’ is xi, as is
the characterp +p’ positions to the right of yi. But the character p’ positions to the
right of y in x’ce’ is a yj, since p’ is a period of x’ce’; hence the character p’ +pi
positions to the right of y is also y, contradicting x # yj.

Since Iceil < P’, each string cei for j >- 2 appears somewhere within fl’, when fl’
is regarded as a cyclic string, joined end-for-end. (It follows from the definition of
k k’ that zce is a substring of ce’ for/" => 2.) We shall prove that the rightmost
halves of these strings, namely the rightmost [1/21ceil] characters as they appear in
fl’, are disjoint. This implies that 1/21cel+... +1/21cerl <--P’, and the proof will be
complete (since Ice 11----- P’).

Suppose therefore that the right half of the appearance of cei overlaps the
right half of the appearance of cei within/3’, for some /" >= 2, where the rightmost
character of cei is within cei. This means that the algorithm at stage kg begins to
match characters starting within cei at least pi characters to the right of zj where
zicei appears in fl’, when the text ce’ is treated modulo p’. (Recall that pi <
The pattern ends with xicej, and pj is a period of xlai. The algorithm must work
correctly when the text equals the pattern, so there must come a stage, before
shifting the pattern to the right of the appearance of cej, where the algorithm scans
left until hitting zi. At this point, call it stage k", there must be a mismatch of

z. x., since Pi or more characters have been matched. (The character pi positions
to the right of z. is x., by periodicity.) Hence k" < k’; and it follows that k" kg. (If
k"> k we have zcei entirely contained within ce", but then k k’ implies that
k"= k’.) Now k"= k implies that zi z and xi x. We shall obtain a contradic-
tion by showing that the algorithm "synchronizes" its stage k + 1 behavior with its
stage k. + 1 behavior, modulo p’, causing an infinite loop as remarked above. The
main point is that the dd’ table will specify shifting the pattern pi steps, so that yi is
brought into the position corresponding to zj, in stage k as well as in stage ki. (Any
lesser shift brings an x. into position pi spaces to the right of zi; hence it puts y xi
into the position corresponding to zi, by periodicity, contradicting xi y.) The
amount of shift depends on the maximum of the d and dd’ entries, and the d entry
will be chosen (in either k or ki) if and only if zi is not a character of fli; but in this
case, the d entry will also specify the same shift both for stage ki and stage k..

The constant 6 in the above theorem is probably much too large, and the
above proof seems to be much too long; the reader is invited to improve the
theorem in either or both respects. An interesting example of the rather complex
behavior possible with this algorithm occurs when the pattern is bO and the text is

Oa4r for large r, where

COROLLARY. The worstcase running time ofthe Boyer-Moore algorithm with
dd’ replacing dd is O(n + rm character comparisons, if the pattern occurs r times in
the text.

Proof. Let T(n, r) be the worst case running time as a function of n and r,

346 DONALD E. KNUTH, JAMES H. MORRIS, JR. AND VAUGHAN R. PRATT

when m is fixed. The theorem implies that T(n, 0) -< 7n, counting the mismatched
characters as well as the matched ones. Furthermore, if r >0 and if the first
appearance of the pattern ends at position no we have T(n, r)_-<7(no 1)+m
+ T(n no + m 1, r- 1). It follows that T(n, r) <- 7n + 8rm 14r. [-]

When the Boyer-Moore algorithm implicitly shifts the pattern to the right, it
forgets all it "knows" about characters already matched; this is why the linearity
theorem is not trivial. A more complex algorithm can be envisaged, with a finite
number of states corresponding to which text characters are known to match the
pattern in its current position; when in state q we fetch the character x := text[k
t[q]], then we set k := k + s[q, x] and go to state q’[q, x]. For example, consider
the pattern a b a c b a b a, and the specification of t, s, and q’ in Table 3; exactly 41
distinguishable states can arise. An asterisk (*) in that table shows where the
pattern has been fully matehed.

The number of states in this generalization of the Boyer-Moore algorithm
can be rather large, as the example shows, but the patterns which occur most often
in practice probably do not imply many states. The number of states is always less
than 2", and perhaps a much smaller upper bound is possible; it is unclear which
patterns of a given length lead to the most states, and it does not seem obvious that
this maximum number of states is exponential in rn.

If the characters of the pattern are distinct, say alaz a,, this generaliz-
ation of the Boyer-Moore algorithm leads to exactly 1/2(m2+ m) states. (Namely,
all states of the form o... ak ... ai+1 a,, for 0-<_k <]-<_m, with ak
suppressed if k 0.) By merging several of these states we obtain the following
simple algorithm, which uses a table c[x] where

The algorithm works only when all pattern characters are distinct, but it improves
slightly on the Boyer-Moore technique in this important special case.

f:=k:=m;
while k _-< n do

begin := c[text[k]];
if < 0 then] := m
else if 0 then
begin for := 1 step 1 until m- 1 do

if text[k i] pattern[m i] then go to nomatch;
match found at (k m);

nomatch:/" := rn;
end else if +j _> m then] := else j := m;
k := k +];

end;
Let us close this section by making a preliminary investigation into the

question of "fastest" pattern matching in strings, i.e., optimum algorithms. What
algorithm minimizes the number of text characters examined, over all conceivable
algorithms for the problem we have been considering? In order to make this
question nontrivial, we shall ask for the minimum average number of characters

FAST PATTERN MATCHING IN STRINGS 347

examined when finding a// occurrences of the pattern in the text, where the
average is taken uniformly with respect to strings of length n over a given
alphabet. (The minimum worst case number of characters examined is of no
interest, since it is between n m and n for all patterns3; therefore we ask for the
minimum average number. It might be argued that the minimum average number,
taken over random strings, is of little interest, since people rarely search in
random strings; they usually search for patterns that actually appear. However,
the random-string model is a reasonable approximation when we consider those
stretches of text that do not contain the pattern, and the. algorithm obviously must
examine every character in those places where the pattern does occur.)

The case of patterns of length 2 can be solved exactly; it is somewhat
surprising to find that the analysis is not completely trivial even in this case.
Consider first the pattern a b where a b. Let q be the alphabet size, q _-> 2. Let
f(n) denote the minimum average nurnber of characters examined by an
algorithm which finds all occurrences of the pattern in a random text of length n;
and let g(n) denote the minimum average number of characters examined in a
random text of length n + 1 which is known to begin with a, not counting the
examination of the known first character. These functions can be computed by the
following recurrence relations:

f(O) =/(1) g(O) O, g(1) 1.

f(n) 1 + min (l(f(k- 1) +g(n -k))+l(g(k 1)+f(n-k))
<=k <-_,,\q q

+(1--)(f(k-l)+f(n-k))),
n-->2.

The recurrence for f follows by considering which character is examined first; the
recurrence for g follows from the fact that the second character must be examined
in any case, so it can be examined first without loss of efficiency. It can be shown
that the minimum is always assumed for k 2; hence we obtain the closed form

n(q2+q-1) (q-1)(q2+2q-1) (1- q)"
f(n)

q(2q- 1) q(2q- 1)
+ q"-3(q- 1)(2q- 1)2,

n(q2+q-1) (q-1)(q2-3q+l) (1 q)"
g(n) +

q(2q- 1) q(2q- 1)2 qn-2(2q- 1)2,

solution

n=>l.

(To prove that these functions satisfy the stated recurrences reduces to showing
that the minimum of

q q

for 1 -< k _-< n occurs for k 2, whenever n -> 2 and q -> 2.)

This is clear when we must find all occurrences of the pattern; R. L. Rivest has recently proved it
also for algorithms which stop after finding one occurrence. (Information ProcessingLetters, to appear.)

348 DONALD E. KNUTH, JAMES H. MORRIS, JR. AND VAUGHAN R. PRATT

TABLE 3

s[q,x],q’[q,x]

state q known characters t[q] other

0 ooooooo, 0 0,1 1,8 4,9 8,0
a 1 7,10 0,2 7,10 7,10

2 ooooooba 2 0,3 7,10 2,11 7,10
3 o,o a b a 3 5,12 0,4 5,12 5,12
4 b a b a 4 5,12 5,12 0,5 5,12
5 c baba 5 0,6 5,12 5,12 5,12
6 ac baba 6 5,12 0,7 5,12 5,12
7 b a c b a b a 7 *5, 12 5, 12 5, 12 5, 12
8 b 0 0,2 8,0 8,0 8,0
9 c 0 0,13 6,14 4,9 8,0
10 a 0 0,15 1,8 4,9 8,0
11 c b a 0 0,1 6,14 8,0 8,0
12 aba 0 0,17 3,18 4,9 8,0
13 c a 7,10 0,19 7,10 7,10
14 b 0 0,20 3,18 4,9 8,0
15 a a 7,10 0,21 7,10 7,10
16 c b a a 1 7,10 0,5 7, 10 7,10
17 a b a a 7,10 0,22 7,10 7,10
18 b 0 0,23 3,24 8,0 8,0
19 c b a 2 0,25 7,10 7,10 7,10
20 b a 7,10 0,26 7,10 7,10
21 a b a 2 0,27 7,10 2, 11 7,10
22 a b a b a 2 0,28 7,10 2, 29 7,10
23 b a 7,10 0,30 7,10 7,10
24 b b 0 0,31 3,24 8,0 8,0
25 c a b a 3 5, 12 0,5 5, 12 5, 12
26 boooba 2 0,32 7,10 2,11 7,10
27 a a b a 3 5, 12 0,33 5, 12 5, 12
28 a b a a b a 3 5, 12 0,34 5, 12 5, 12
29 a c b a 0 0,35 6,14 8,0 8,0
30 boba 2 0,4 7,10 7,10 7,10
31 b b a 7,10 0,36 7,10 7,10
32 b a b a 3 5, 12 0,37 5, 12 5, 12
33 a b a b a 4 5, 12 5, 12 0,38 5, 12
34 a b a b a b a 4 5, 12 5, 12 *5, 12 5, 12
35 a c b a a 7,10 0,38 7,10 7,10
36 b b b a 2 0,37 7,10 7,10 7,10
37 b b a b a 4 5, 12 5, 12 0,39 5, 12
38 a c b a b a 5 0,40 5, 12 5, 12 5, 12
39 b c b a b a 5 0,7 5, 12 5, 12 5, 12
40 a a c b a b a 6 5, 12 *5, 12 5, 12 5, 12

If the pattern is a a, the recurrence for f changes to

f(n)=l+ min (())l<=k<=n
(g(k 1) + g(n k)) + 1 (f(k 1) +f(n k)) n >-_ 2;

but this is actually no change!
Hence the following is an optimum algorithm for all patterns of length 2, in

FAST PATTERN MATCHING IN STRINGS 349

the sense of minimum average text characters inspected to find all matches in a
random string:

k:=2;
while k -< n do

begin c := text[k];
if c pattern[2] and text[k 1] pattern[l]
then match found at (k- 2);
while c pattern [1] do

begin k := k + 1; c := text[k];
if c =pattern[2] then match found at (k 2);

end;
k :=k+2;

end;

For patterns of length 3 the recurrence relations become more complex; they
depend on more than simply the length of the strings and knowledge about
characters at the boundaries. The determination of an optimum strategy in this
case remains an open problem. The algorithm sketched at the beginning of this
section shows that an average of O(n(log m)/m) bit inspections suffices over a
binary alphabet. Clearly [n/m is a lower bound, since the algorithm must inspect
at least one bit in any block of n consecutive bits. The pattern a can be handled
with O(n/rn) bit inspections on the average; but it seems reasonable to conjecture
that patterns of length rn exist for arbitrarily large m, such that an average of at
least cn (log rn)/m bits must be inspected for all large n. Here c denotes a positive
constant, independent of rn and n.

Acknowledgment. Robert S. Boyer and J. Strother Moore suggested many
important improvements to early drafts of this postscript, especially in connection
with errors in the author’s first attempts at proving the linearity theorem.

REFERENCES

[1] ALFRED V. AHO, JOHN E. HOPCROFT AND JEFFREY D. ULLMAN, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.
[2] ALFRED V. AHO AND MARGARET J. CORASICK, Efficient string matching: An aid to

bibliographic search, Comm. ACM, 18 (1975), pp. 333-340.
[3] M. BEELER, R. W. GOSPER AND R. SCHROEPPEL, HAKMEM, Memo No. 239, M.I.T.

Artificial Intelligence Laboratory, Cambridge, Mass., 1972.
[4] ROBERT S. BOYER AND J. STROTHER MOORE, a fast string searching algorithm, manuscript

dated December 29, 1975; Stanford Research Institute, Menlo Park, Calif., and Xerox Palo
Alto Research Center, Palo Alto, Calif.

[5] S. A. COOK, Linear time simulation of deterministic two-way pushdown automata, Information
Processing 71, North-Holland, Amsterdam, 1972, pp. 75-80.

[6] PASCAL DIETHELM AND PETER ROIZEN, An efficient linear search for a pattern in a string,
unpublished manuscript dated April, 1972; World Health Organization, Geneva, Switzer-
land.

[7] N. J. FINE AND H. S. WlLF, Uniqueness theorems for periodic functions, Proc. Amer. Math. Soc.,
16 (1965), pp. 109-114.

[’8] MICHAEL J. FISCHER AND MICHAEL S. PATERSON, String matching and other products,
SIAM-AMS Proc., vol. 7, American Mathematical Society, Providence, R.I., 1974,
I19. 113-125.

350 DONALD E. KNUTH, JAMES H. MORRIS, JR. AND VAUGHAN R. PRATT

[9] ZvI GALIL, On converting on-line algorithms into real-time and on real-time algorithms for
string-matching and palindrome recognition, SIGACT News, 7 (1975), No. 4, pp. 26-30.

[10] E. N. GILBERT, Synchronization of binary messages, IRE Trans. Information Theory, IT-6
(1960), pp. 470-477.

[11] SHEILA A. GREmACH, The hardestcontext-free language, this Journal, 2 (1973), pp. 304-310.
[12] MALCOLM C. HARRISON, Implementation of the substring test by hashing, Comm. ACM, 14

(1971), pp. 777-779.
[13] RICHARD M. KARr’, RAYMOND E. MILLER AND ARNOLD L. ROSENBERG, Rapid identifi-

cation of repeated patterns in strings, trees, and arrays, ACM Symposium on Theory of
Computing, vol. 4, Association for Computing Machinery, New York, 1972, pp. 125-136.

[14] DONALD E. KNUTH, Fundamental Algorithms, The Art of Computer Programming, Vol. 1,
Addison-Wesley, Reading, Mass., 1968; 2nd edition 1973.

[15] ., Sequences with precisely k + k-blocks, Solution to problem E2307, Amer. Math.
Monthly, 79 (1972), pp. 773-774.

[16],On the translation of languages from left to right, Information and Control, 8 (1965), pp.
607-639.

[17], Structured programming with go to statements, Computing Surveys, 6 (1974),
pp. 261-301.

[18] DONALD E. KNUTH, JAMES H. MORRIS, JR. AND VAUGHAN R. PRATT, Fast pattern
matching in strings, Tech. Rep. CS440, Computer Science Department, Stanford Univ.,
Stanford, Calif., 1974.

[19] R. C. LYNDON AND M. P. SCHOTZEN3ZrtGEg, The equation alVt=blce in a free group,
Michigan Math. J., 9 (1962), pp. 289-298.

[20] GLENN MANACHER, A new linear-time on-line algorithm for finding the smallest initial
palindrome of a string, J. Assoc. Comput. Mach., 22 (1975), pp. 346-351.

[21] A. MARKOFF, Sur une question de Jean Bernoulli, Math. Ann., 19 (1882), pp. 27-36.
[22] J. H. MORRIS, JR. AND VAUGHAN R. PRATT, A linearpattern-matching algorithm, Tech. Rep.

40, Univ. of California, Berkeley, 1970.
[23] A. O. SLISENKO, Recognition of palindromes by multihead Turing machines, Dokl. Steklov

Math. Inst., Akad. Nauk SSSR, 129 (1973), pp. 30-202. (In Russian.)
24 KENTHOMPSON, Regularexpression search algorithm, Comm. ACM, 11 (1968), pp. 419-422.
[25] B. A. VNKOV, Elementary Number Theory, Wolters-Noordhoff, Groningen, the Netherlands,

1970.
[26] PETER WEINER, Linear pattern matching algorithms, IEEE Symposium on Switching and

Automata Theory, vol. 14, IEEE, New York, 1973, pp. 1-11.

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

STABLE SORTING AND MERGING WITH OPTIMAL SPACE AND
TIME BOUNDS*

LUIS TRABB PARDOn"

Abstract. This work introduces two algorithms for stable merging and stable sorting of files.
The algorithms have optimal worst case time bounds, the merge is linear and the sort is of order

n log n. Extra storage requirements are also optimal, since both algorithms make use of a fixed number
of pointers. Files are handled only by means of the primitives exchange and comparison of records and
basic pointer transformations.

Key words, stable sorting, stable merging, minimal storage, optimal time bounds

1. Introduction. An algorithm which rearranges a file is said to be stable if it
keeps records with equal keys in their initial relative order. This work presents an
algorithm for merging two contiguous files in a stable manner (the PARTITION
MERGE). As an immediate application of this, a stable algorithm to sort a file (the
PARTITION MERGE SORT) is given.

The algorithms attain optimal worst case bounds with respect to time, the
merge is of order n and the sort is of order n log n. Both algorithms require only a
fixed number of pointers for auxiliary storage.

While D. E. Knuth was preparing his book about sorting techniques, he noted
that the known algorithms for stable sorting either were of order n 2 or they used
approximately n pointers for additional memory space. Therefore he asked ([3
5.5, exercise 3]) whether it was possible to do stable sorting in less time than

order n 2, using at most O(log n) pointers for additional storage. The first progress
on this problem was made by R. B. K. Dewar [1], who developed a stable sorting
algorithm or order n 1.5, using O(log n) pointers. Further improvements in the
running time were made by V. Pratt [6], F. Preparata [7], R. Rivest [8], and A.
Nijenhuis [5]. E. C. Horvath [2] constructed stable merging and sorting
algorithms with optimal time and space bounds; however, his algorithms involve
the operation of key modification; thus they apply only to files in which the key is
explicitly stored within the record.

In that respect the algorithms here presented are completely general, since
they treat files as sequences of unmodifiable records, with the keys evaluated from
the record contents and not necessarily stored within them.

The algorithms in the present paper make use of a minimum set of primitive
operations on files (exchange and comparison) and in this sense appear to offer the
final solution to Knuth’s problem, except of course for questions dealing with the
optimum constants of proportionality in the time and space bounds.

The partition merge strategy (presented in 3) is the key to the PARTITION
MERGE algorithm and was inspired by the work of Kronrod on a nonstable

* Received by the editors December 19, 1974 and in revised form January 6, 1976.

" Computer Science Department, Stanford University, Stanford, California 94305. This research
was supported by the National Science Foundation Grant GJ-36473X.

351

352 LUIS TRABB PARDO

merging algorithm with optimal time and space bounds ([4]; see also [3, answer to
exercise 5.2.4-18]).

2. Basic concepts. This section presents the notation used throughout the
paper and describes a set of elementary operations on files that will be used for
further definitions of more complex transformations.

2.1. Notation. A record R is a unit of information; its contents cannot be
altered. The key k of a given record R results from the evaluation of a certain
function K applied to R, k K(R). A file is a sequence of records, =
(R1, Re, , Ri, , Rn). Each position in a file has associated with it a pointer
value, an integer in the range 1, n].

If and] are pointers, two primitive operations (and only these) may be used
to access the file"

(a) an exchange primitive, denoted by exchange (i,]) that exchanges Ri with

(b) a comparison primitive, denoted by F(i) <-F(j), whose value is true if and
only if K(R)<=K(Rj). Since the other relations <, =, #, >-, > can be easily
expressed in terms of one or two -<’s they will be used in the definition of
algorithms, as a shorthand for the corresponding relation expressed in terms of the
-< primitive.

A block U (of length p) is a subsequence of p consecutive elements of ,
U--(Rm, Rm+l,.. Rm+p_l). The length of Uwill be denoted by IUI; thus in the
above case uI- p. The block U will be also identified by the pointers to its first
and last elements and denoted by Fire "m +p- 1]. The first and last records of U
will be first(U) R, and last(U) Rm+p_1. The term prefix(suffix) of U will refer
to an initial (final) sequence of contiguous records of the block U.

The number ofdistinct keys in a block U will be A (U). Obviously A (U) -<-IuI,
with the case A (U)= UI corresponding to a block composed of records with
distinct keys.

A segmentX is a sequence of contiguous blocks

A segment will be also recorded as a block with the notations IXI, first(X), last(X)
and A (X) having the previous meaning.

Normally only nondecreasing order will be considered. The predicate
ordered(U) is true if and only if the block U is ordered in nondecreasing order.

A stable transformation is a permutation of a file, that preserves the relative
order of these records with equal keys. In particular, this work is concerned with
two stable transformations: the stable merge of two contiguous ordered blocks U
and V denoted by merge(U, V), and the stable sort of a block U (denoted by
sort(U)).

In the examples a file will be represented by the actual sequence of records,
with the keys explicitly written down.

Algorithms will be presented in ALGoL-like procedures. The language used
will be ALGOL W with the addition of a new type pointer, whose range depends
only on the length of the common file.

STABLE SORTING AND MERGING 353

2.2. Some basic transformations using minimal extra storage. These trans-
formations are used throughout the rest of this work so their definition and time
bounds are included here, though they have been presented previously (especially
see [2]). The reader is referred to [2] or [9] for a formal description of the
algorithm and derivation of time bounds for each transformation.

In the following paragraphs U and V will denote the blocks U Flu1 :u2]
and V= Fly :V2].

2.2.1. Permutation ot two contiguous blocks: PERMUTE(uI, u2,
The permuting process is done by application of three successive reversals, and
takes

(2.1) Tr,zgM(U, V) O(1UI + Vl).
2.2.2. Stable insertion of two contiguous ordered blocks:

INSERT(ul, u2,/31, VZ, fl, fZ). The file =AUVB is transformed into =
AV’ UW’B, where V’ V" V and last (V’) < first(U) =< first(V"). The pointers are
set in such a way that

U Fin :u2] W F[v:v2] and W’= Fa :fz].
As a direct consequence of the above definition, we have
CLAIM 2.1. Let U, V, W and W’ be as above, and U= U’U"; then

merge(U, V) merge(U’, V’) merge(U", V").
The time bounds result:

(2.2) T,Ns(U, v)= o(Iul+lv’l) [= o(Iul+lvl)3,
2.2.3. Direct merge ot two contiguous ordered blocks:

BLOCK.MERGE.FORWARD(u1, uz, vD v) and BLOCK.MERGE
BACKWARD(u1, uz, vD vz). The file AUVB becomes
A merge(U, V)B. The forward merge is accomplished by an iterative process of
insertions of successively smaller suffixes of U into successively smaller suffixes of
V. Thus, after a stable insertion of U into V as in 2.2.2 yielding V UV2, U is
partitioned U1 U2 (where U2 is the largest subblock with first(U2) > first(V2)), and
the problem reduces to merge(U2, V2). The backward merge is similar, but the
insertions are done in a backwards direction.

The time bounds for the forward and backward merges are:

(2.3) T(rM(U, V) O(1UI, (U)) + O(I V’I)
where V’ is that prefix of V (V V’ V") such that last(V’) < last(U) _-< first(V");

,-back.)(2.4) LOCKU, V) O(I VIA (V)) + O(I U"l)
where U" is that suffix of U (U U’ U") such that last(U’)_-< first(V) < first(U").

Instead of introducing the definitions of V’ and U" the block merge processes
could have been bounded by the overall lengths [Wl and IU[, but these bounds
pretend to emphasize the fact that the running time is only a function of the
elements that are actually exchanged by the process.

3. The partition merge strategy. This section outlines the basic strategy on
which the partition merge algorithm is based, without considering either storage
requirements or time bounds.

354 LUIS TRABB PARDO

The first subsection introduces the segment insertion process, a stable
transformation that is basic to the stable merge, while the second subsection
analyzes the strategy itself.

3.1. The segment insertion process. This stable transformation deals with
two contiguous ordered blocks U and V, of length equal to a multiple of a given
value f. This last condition on the length allows treating U and V as segments of
blocks of length f, and thus

U=UI’" Ui’" Uk and

(3.1)
for some k > 0 and

with the block length

I /I- Iv,.I-f

1>0,

forl<-i_-<k and l<_-j-<l.

Informally the segment insertion can be described as a permutation of the
sequence of blocks Ua UVa V/yielding the minimum number of inver-
sions, but, of course, being stable.

In order to characterize such a permutation it can be argued that any block U/
in U cannot go after any block in V that could contain a record with key equal to
any key of the records in U/. Thus a block U/should be positioned between the
contiguous blocks V and V./I such that

(3.2) last(V) < first(U) <_- last(V.+ 1).

(In order to make the above equation hold in every case, the fictitious blocks Vo
and V/+I must be assumed, with last(V0) -oo and last(V/x)= +oo.) Since (3.2)
might yield the same value of] for various consecutive blocks U, U/I, , U+p,
it must also be stated that the permutation must retain the original relative
ordering of blocks in U and V. So in this case the final layout will contain the
segment V/.U/U/+I U/+p V/.+I.

Example 3.1. As an example, let us consider U and V as below, for a block
size f 2:

U V

12 22 2 3 4 5 68 1 1 2 3 3 3 5.5

a b c d e f g h AB CD El: GH

U1 U2 U3 U4 U5 Vl V2 V3 V4
Applying (3.2) to U1 we see that

last(Vo) oo < first(U1) 1 _-< last(V1) 1.

Thus U1 will go before V1. For the blocks U2 and U3,

last(Vl) 1 < first(U2) 2 _-< last(V2) 3

STABLE SORTING AND MERGING 355

and
last(Va) < first(U) 2 =< last(Vz),

so Uz and U will be positioned between V and V2, with U2 preceding U. After
considering U4 and U it can be seen that the final permutation will be

12 11 22 23 23 33 45 55 68

a b AB cd e f CD El: gh GH

Ua El U2 U3 V2 V3 U4 V4 U5
The final result of the segment insertion can be characterized as the sequence

of segments

(3.3) YaZ Y2Z2 YaZa
where Y1Y2" Ya Y U and Z1Z2 Za Zt V and all the segments
Ya and Za containing at least one block, with the possible exception of Y1 and Zt.

Renaming Ya and Za as

Ya Y’aLa with lLal f
(3.4) and

Za FaZ’a with lFal f
(that is, La is the last block in Ya and Fa is the first one in Za), the following
restrictions apply to the layout in (3.3):

(3.5) (i) last(Za_O < first(Ya), 1 < d <= t,

(3.6) (ii) first(Ln) -< last(Fa), 1 _--< d _-< t.

The characterization given by (3.3) to (3.6) is no more than a formal
statement of the initial considerations. Thus in Example 3.1,

Y1-U1, Zl- Vl,

Y UU3,

Y3 u4, z3 v4,

Y4 U, Z4: empty.

Equations (3.5) and (3.6) state boundary relations between contiguous
segments. Somehow they give us the hint that a merge of U and V could be
reduced after segment inserting U and V, to a sequence of "local" merges of the
pairs of segments Yn and Za. That is the idea underneath the partition merge
strategy and so it is the topic of the next subsection.

3.2. Description of the partition merge strategy. Let U and V be two
contiguous ordered blocks of length greater than a given value f
(3.7) IU{>f and]Vl>f.
For the sake of simplicity, and only for the time being, it will be assumed that U is
of length equal to a multiple of f
(3.8) uI-- k. f for k >_- 1.

356 LUIS TRABB PARDO

The partition merge will proceed in the following way:
(a) Segment insert U and the longest prefix of V of length equal to a multiple

off.
(b) "Finish up" the merge, by means of local merges.

So let
U-- U1. Ui Uk

(3.9)
V= V1... V.... VITo

with V/I V,.[- f and

The segment insertion of U and VI"" V yields

with the segments Yd and Zd as described in (3.3) to (3.6) of the previous
subsection.

In order to analyze the finish up process we shall first consider the rightmost
portion of the file, in particular the situation at the boundary of Y and Zt. It is
-assumed that Zt is not empty. The case Z empty will be quite similar.

By comparing last(Y) with first(Z) two cases may arise:
(i) If last(Yt)<-_first(Zt) then the segment YtZtTo is already in order and,

what is more important, in its final position within the merged file. This last
statement is a direct consequence of the segment insertion definition, since by
(3.5)
(3.10) last(Zt_ 1) < first(Yt)

and so all records of ZI"’" Zt-1 must precede first(Y). But also last (Y-0 <=
first(Yt) because U was originally in order. Thus, all the elements to the left of
first(Yt) must precede it, so the above statement is true. Then nothing needs to be
done about this segment, and the finish up proceeds by replacing t by t- 1.

(ii) if last(Yt)>first(Zt) it is going to be necessary to proceed with the
finish up of the segment YtZtrv, as described below.

The finish up of YtZtTo will consist of three steps. In order to describe them,
let us adopt the notation of the previous subsection, and for reasons that will be
immediately clear, let us rename To as C+1. By doing so, the rightmost portion of
the file can be written as

(3.11) Zt_1Y’tLtF,ZCt+I
where YLt Yt and FtZ; Z with Ig, If, l--.

This initial disposition is depicted in Fig. 3.1 (a). Notice that Fig. 3.1 shows the
values of the keys along the vertical axis, thus displaying the relative ordering of
records.

The first step in the finish up process is to stable insert Lt into Ft, thus
transforming LtFt into ..t.t.rz’rrz,,t, such that

(3.12) last(F) < first(Lt) =< first(F’).
Figure 3.1(b) shows the situation after the first step. It can be seen that all the
elements in L and ,w,rt,-i are greater or equal to those towards the left of L.
This last assertion can be formally stated as the following claim.

STABLE SORTING AND MERGING 357

CLAIM 3.1. After step 1, first(L,) is already in its final position within the
merged file, and the overall merge has been reduced to the respective merge of the
records to the left and to the right of first(Lt).

Proof. All the elements to the right of first(Lt) are greater than or equal to it
since

(a) those originally in U are greater than or equal to first(Lt), by the initial
order of U;

(b) those originally in V are greater than or equal to first(F’), and, by (3.12),
it is first(Lt) first(F’). (The block F’ is never empty, since first(Lt) <-_ last(Ft), by
(3.6), and then by (3.12) at least last(Ft) must belong in F’.)
Similarly the elements to the left of first(Lt) are less than or equal to it:

(a) those originally in U by the initial ordering;
(b) those originally in V are less than or equal to last(F’t) and by (3.12)

last(F) < first(L,).

(In the case that F’t resulted empty, the first element originally in V to the left of
is last(Zt_l), and by (3.5) and the initial order of U last(Zt_l) < first(Yt) <- first(Lt).)

Hence, the stability of the merge imposes that first(Lt) remain in its current
place, since it was originally in U. And clearly the overall merge is reduced as
stated in our claim.

So, the second step in the finish up is the merge of Lt with "7,c’
At -"t+

Now let us consider Y and F, if Y is nonempty. Assume that F is of the
form

(3.13) F’t CtC where last(Ct) < first(Y) <=first(C).

(This partition ofF is identical to the one that would have been obtained by stable
inserting Y’t into F.)

The third and last step in the finish up process of YtZtCt/I is the merge of
and F. But by Claim 2.1 the merge of Y and F yields

(3.14) merge(Y’t, F)= Ct merge(Y’t, C).

If Y is empty, the third step does not take place, and Ct is simply taken to be
F;.

It is possible now to issue the following claim.
CLAIM 3.2. After step 3 all the elements to the right of Ct are already in their

final position.
Proof. Only the case Y’t nonempty needs to be considered. When Y’t is empty

the claim follows trivially from Claim 3.1.
Consider first(Y’t). By (3.13) and the stability of the merge it must occupy the

first position in merge(Y’t, C’t). Also by a similar reasoning as in Claim 3.1 (but
applying (3.13) instead of (3.12)) it can be seen that it is in its final position within
the merge. Clearly the rest of the elements in Y’t and those in C’t must be placed to
the right of first(Y’t), and by Claim 3.1 to the left of first(L/). Then, all the elements
in

merge(Y’t, C) merge(L,, tlTttTtCt+l)

must be in their final positions. [-1

3 58 LUIS TRABB PARDO

The final result of the finish up of YtZtft+l is shown in Fig. 3.1(c).

(A)

(B)

(c)

FIG. 3.1. "Finish up" merges for the rightmost section of the file
(a) Initial layout
(b) After inserting Lt into Ft
(c) After merging forwards Lt into F’ZtCt+ and merging backwards F into Y’t

It is left to the reader to verify that the above process is valid also in the case of
empty Z. The only difference is that C+ plays the role of F, and F’ can therefore
be empty.

The overall finish up will consist of the application of the above process
successively to YtZtCt+l, Yt_lZt_lCt, Y1Z1C2. The proof that this process
yields the merge of Uand Vis a straightforward induction on t, using Claim 3.2.

A remark must be made about the initial restriction on the length of U, given
by (3.8),

IUl=k ..
The general case

U[mod f 0

STABLE SORTING AND MERGING 359

can be reduced to the one considered here by partitioning

(3.15) U=U’U"

(with IU’I modf= 0 and u"l and stable inserting U" into V, thus yielding
U’ V’ U" V". By Claim 2.1 the overall merge is reduced to

merge(U, V) merge(U’, V’) merge(U", V")

and now the partition merge strategy can be applied to merge U’ and V’.
So, in the general case the partition merge strategy will be:
(a) Insert the suffix U" into V yielding U’V’ U" V".
(b) Segment insert U’ into V’.
(c) Finish up the merge of U’ and V’: for d t, t- 1,. ., 1;

(c- 1) Stable insert La into
(c-2) Merge La and r:,,w,

dZ..,d.d+
(c-3) Merge Y and F

(d) Merge U" and V".
To conclude it must be noticed that in all the merge processes, at least one of

the blocks to be merged is of lengthf or less. As it will be seen later this is a key fact
in order to achieve linear time bounds.

4. Keeping storage requirements minimal. So far, no analysis has been
made about extra storage needs for the actual implementation of the partition
merge, and it is not obvious how to implement it using only absolute minimum
(O(log n) bits) extra storage.

This section presents the concept of internal buffer, the implementation of
another merging technique (the BUFFER MERGE), later used as a local merge
for the finish up phase, and an implementation of the segment insertion process.

The usage of an internal buffer for a nonstable form of the buffer merge was
first introduced by Kronrod [4]. Horvath further developed these ideas for the
stable case (see [2]).

The segment insertion was also implemented by Horvath but this implemen-
tation (called the "stable Russian merge") requires the modification of keys. This
last fact, explicitly avoided in this paper (records are considered nonmodifiable)
also establishes constraints on the length of the files to be merged. The implemen-
tation here presented avoids those problems.

Timing analysis for the algorithms presented in subsections 4.1 and 4.2 can be
found in [2] or [9]. Section 4.3 is treated in more detail in [9].

4.1. The concept of internal buffer. Let B be an ordered block consisting of
records with distinct keys, that is,

(4.1) ordered(B) and A(B)=IBI.
Then B will be called an internal buffer.

Two useful characteristics of internal buffers may be singled out in advance:
(i) Permutations of an internal buffer do not affect the stability of a sorting or

merging process (since the internal buffer might always be sorted back in a stable
manner). This property is the basis of the buffer merge technique presented in the
next subsection.

36,0 LUIS TRABB PARDO

(ii) A given permutation of [B[or less elements can be "stored" in a buffer B
by simply permuting its elements correspondingly. This will be the key to the
implementation of the segment insertion process, appearing in 4.3.

Both properties could be used provided an internal buffer is present in the file
being processed. Nevertheless, whenever a buffer is needed to process a block U it
is possible to rearrange U in order to produce the desired buffer. Such a process
will be called buffer extraction.

DEFINITION 4.1. Given an ordered block U, the extraction of a buffer B of at
most records transforms U into U’B, with U’ and B also ordered blocks, such
that

(4.2)

and B is an internal buffer

(4.3) and

merge(U’, B) U

[B[A (B) and ordered(B)

IBl=min(l,A(U)).
That is, the buffer extraction collects at most distinct keyed records (or if the

block U has only A (U)< records with distinct keys, only , (U) are collected)
placing them at the end of the original block; the rest of the records are
compressed in U’.

In order to satisfy condition (4.2), for any sequence of records with equal keys
in U, the last one is picked, so when merging U’ and B, the original block U is
obtained.

The following facts (analyzed in detail in [9]) must be pointed out:
(i) The extraction process needs only a fixed amount of pointers as extra

storage.
(ii) The buffer extraction technique can be applied to a fixed number of

contiguous ordered blocks; we will be interested in the extraction of a buffer out of
the two blocks to be merged, and in this case the time bounds are

(4.4) TBE(U, V, U’, V’, B, l) O(I UI +[VI) + 0(IBI2).
4.2. Merging using an internal bulter: The BUFFER.MERGE.

The BUFFER.MERGE of two contiguous ordered blocks U and V requires an
internal buffer B of length IBI-> min ([U[, Vl).

In order to describe the buffer merge, let us assume first that VI-<_ IBI, and let
B B’B" with IB’I- vl. Then the file looks like

UV... B’B"....

We first exchange V and B’, obtaining

UB’... VB"....
Now the actual merge takes place by repeatedly exchanging last(U) or last(V)

(according to the relative values of their keys) with last(B’) and redefining U, V
and B’ correspondingly. Once this process is exhausted we get

merge(U, V)... B’"B"...

(where B’" is a permutation of B’).

STABLE SORTING AND MERGING 361

The process briefly described above will be called BUFFER_MERGE_
BACKWARD. A completely similar one applies when IuI_-<IBI (BUFFER_
MERGE_BACKWARD).

The time bounds are

(4.5) ,-/-,(back.)
BUMtU, V, B) O(I U"[)+ O(I

where U U’U" and last(U’) _-< first(V) < first(U").
(Equation (4.5) reiterates a point already considered when discussing the

block merge (2.2.3): The running time is bounded by the number of elements
that are actually exchanged.)

Similarly, for the forward merge
,-r(forw.)(4.6) BUFM\ U, V, B) O(I UI) + O(1V’])

where V V’ V" and last(V’) < last(U) <- first(W’).

4.3. Implementation ot the segment insertion process. This subsection
describes how the segment insertion can be implemented with the aid of an
internal buffer, using as extra storage only a fixed number of pointers.

Recalling the definition stated in 3.1, the two contiguous ordered segments
U and V

U= U1. Ui Uk,
(4.7)

V.--Vl... Wj... Wl
where u/I: vjl f

are transformed into

YZI"" YaZa"" tZt
where the segments Ya and Za are defined by (3.3)-(3.6).

With .the segments Za- YaZaYa considered as

Zd_ Vj_r W]._ l,

(4.8)
Ya U/’’" U/+p,

v,.
Ya+, m/+p+l mi+p+s,

equations (3.5) and (3.6) yield

last(Vj_,)

< first(U/) =<... =< first(U/+p)
(4.9)

=< last(Vj) -<... -<_ last(V+q)
< first(U/+p+l).

Equation (4.9) indicates an easy method to determine the final order of the blocks.
Consider sequentially U1, U2, etc. until reaching the smallest p with

last(V1) < first(Up).

362 LUIS TRABB PARDO

Then U1 Up-1 are the first blocks in the final permutation. Now consider V1,
V:z, etc. until reaching the smallest q with

first(Up) =< last(Vq),
thus establishing that the sequence V1 Vq-1 will come after Up_ The process
is now repeated until U and V are exhausted.

The above process gives us a method to compute the permutation that must
be applied to the blocks in UV. But somehow that permutation must be stored
before permuting the blocks, since its definition is based on the original ordering
of the blocks. Thus the algorithm will have two phases:

(a) Compute and "store" the permutation.
(b) Permute the blocks.
In order to "store" the permutation, an internal buffer will be used. The key

point is that the permutation as defined in (4.9) can be computed by inspecting the
blocks in the exact order in which they are going to be permuted. Then it is
possible to "remember" the final position of each block by exchanging one of its
elements (say the first one) with the element in the buffer that corresponds to its
final position (recall that a buffer is an ordered block). After that, the permuting
phase becomes simply a sorting process in which each block has as its key the key
of its first element.

In order to permute the blocks, a sorting method that minimizes the number
of exchanges, since they are block exchanges, must be chosen. The "straight
selection sort" [3, 5.2.3] is well suited for our purposes.

After this the records that were exchanged with those in the buffer are
restored to their final position.

The dominant factor in the running time is the time needed to sort the blocks
(marking the blocks and restoring exchanged records can be done in time linear on
the number of blocks). WithN blocks, each one off records, the straight selection
sort runs in O(N2) -I- O(S. f) time. So since UI +IVI Nf the time bounds for the
segment insertion result,

(4.10) TszoiN(U, v, f) 0((I uI / vl)2/f2) / 0(I uI / vl).
5. The partition merge algorithm. Section 3 presented the partition merge

strategy. In’ 4 the necessary tools to keep storage requirements minimal were
considered. With that background it is now possible to introduce the partition
merge algorithm and bound its running time.

5.1. Description. The algorithm here presented closely follows the process
introduced in 3, except for the addition 6f an initial buffer extraction step and, of
course, a final merging step to merge back the internal buffer previously obtained.
Figures 5.1-5.7 illustrate the process on a particular example.

Let U and V be two contiguous ordered blocks to be merged. The following
procedure defines the partition merge algorithm:

procedure partition merge (pointer value ul, U2, /)1, /)2);
begin comment: U is F[ul"u2] and V is FLY1" v2];

pointer n, f, b, t, t2, v3, v4, l, 12, Wl, w2, w3, w4, p;
n:=v2-Ul+l;

STABLE SORTING AND MERGING 363

Step 1. Extract an internal buffer of length at most

F41ul+lvll.
buffer_extraction:
BUFFER_EXTRACT2(ua, u2, va, vz, ceiling(sqrt(n)), ba, bz);
b := b2-ba + 1; f := floor(n/b);

This step transforms UV into U’ V’B, where B is an internal buffer of length
b bz-ba + 1. (See Figs. 5.1 and 5.2.)

U V

1
Ul U2

2 2 2 4 6 7 9

a b d e g h k

Iul= 11

/31 D2

3 3 3 4 4 4 4 4 66 7 7 9

A B CD E F GH K LMN O P QR S

IUI+IVI 30

141UI+IV]=6
FIG. 5.1. Initial layout

Ivl= 19

U B

Ul U2

12 2 24 5 5 67 9

a b d e g h k

Iu’l= 11

D1 D2

1133344445679

A B D E F H K MO Q S

Iv’l= 13

IBI=b =6
f= [n/bJ [30/6J =5

FIG. 5.2. AfterStep 1

bl b2

134567

CGLNPR

Let f= [n/b].
Step 2. If either U’I or V’I has length less than or equal to]’, then merge them

directly and proceed with the final step (merging back B).

check_lengths:

then begin
if (U2--U "+" 1)>b

364 LUIS TRABB PARDO

then BLOCK_MERGE_FORWARD (ul, U2, /)1, /)2)
else BUFFER_MERGE_FORWARD (ul, U2, Vl, /)2, bl, b2);

go to merge_back _B
end

else if (v2- v + 1)-<f then
begin

it (/)2--/)1 -[- 1)> b
then BLOCK_MERGE_BACKWARD (u, u2, Vl, .v2)
else BUFFER_MERGE_BACKWARD (u, u., v, v2, bl, b2);

go to merge_back_B;
end;

Notice that depending on the length of the buffer, the algorithm chooses either
block_merge or buffer_merge. This choice allows linear running time as will be
analyzed below.

Step 3. Prepare things for segment insertion by getting rid of that suffix Tu of
U’ of length

Ir,[Ig’[modj.
insert_suffix"

t: := u:; ua := u:-(u:-u + 1) motif; t := u:+ 1;
comment: U" is F[Ul:U:] and T, is F[tl: ta];
INSERT (h, t., vl, va, v3, v4);
comment: V" is now F[v :v:] and V’" is F[v3:v4];

After the insertion U’ V’ becomes U"V"T, V’", where U"T, U’ and V" V’" V’.
By the characteristics of stable insertion the merge of U’ and V’ is now reduced to
the merge of U" and V" and that of Tu and V’".

Now [U"I mod f 0, by the choice of Tu, so U" and V" can be viewed as
segments such that:

U,’--- U1... Ui Uk
and W’=V... V.’... VT,

where [U[IVy.[=f for l<-_i<-k and 1_-<]_-<1 and [Tv[<f. (See Fig. 5.3.)

1]]gi]Vi VI

Ul U2

4 6

b d h

UI U2

Iu"l lo

131 132

4 4 4 4 6

A B D E F H K M O Q

vl v2 Tv

V"

FIG. 5.3. AfterStep 3

tl 133

t2 134

9 9

S

T.

b2

4 6

C G L N P R

STABLE SORTING AND MERGING 365

Step 4. Segment insert UI"’" U... Uk into VI"’" V. V.
segment_insertion"
SEGMENT_INSERT (Ul, Ue, vl, re-(re-v1 + 1) rood f, f, bl, be);

The next step will be the finish up process (see 3), but some discussion is
needed first.

Assume that the layout after the segment insertion is

Wl Wm Wk+lTvTuV’n, where W... Wm Wk+ corresponds to

Y1Z"" YaZa YZ as presented in 3. Unfortunately there is no explicit
information about the way the blocks W,, are grouped to form the segments YZa.
But fortunately the local merges must be performed only on those pairs YZa such
that last(Ya)>first(Za); hence the finish up can be done by repeating the
following sequence until the whole segment WI’" W,... Wk+T has been
processed:

(a) In order to locate the next pair YaZd to be merged, scan to the left until a
block W,,, such that last (W,,)> first(W,,+0 is found.

(b) Perform the local merge:
1st step. Insert W,, in W,+, thus transforming WmW,,+ into W’W,,W".
2nd step. Merge W,, forward.
3rd step. Merge W’ backward.
Both definitions result in equivalent operation, if the merging method stops

once the merge is complete. In this case the bounds are preserved simply by the
existing order in the file, thus making it unnecessary to keep track of them. In
other words, the grouping of Wl Wm Wk+ into YIZI"’" YaZa"" YtZt
is useful to prove that the algorithm works (and, as will be seen later, to compute
its time bounds) but it is not needed to take it into account for implementation
purposes. (See Fig. 5.4.)

W W

Ul U2

2 2 2 4 3 6 7 4 4 4 4 6 7

b d A B D E F g h H K M O Q

Wl W3

T V’" B

tl t)

tz)4

9 9

k S

iT.V"’

b b7

3 4 6 7

C G L N P R

In the notation of 4,

www3w4 YZ YZ: (t 2)
with the following grouping:

Y=Wt=U z=w=v
Y.= W3=U z.= W4= V:.

FIG. 5.4. AfterStep 4

366 LUIS TRABB PARDO

Step 5. Finish up the merge of W1 W, Wt/kTv.

finish_up"
p :=/)2- (/)2- vl -- 1) mod [; if p =/)2 then p := p-f;
while p > U do

begin
comment: find next pair YaZa to be merged;

while (p > Ul) ^ (F(p) <_-F(p + 1)) do p := p-f;
if p > ul then

begin comment: local merge;
comment: Wm is F[II" 12], Wm+l is F[Wl" W2];
11 := p-f+ 1; 2 := p;
w := p+ 1; WE := min (p+f, v2);
INSERT (/1, 12, Wl, WE, W3, W4);
comment: now W’ is F[Wl" WE] and W" is F[w3" w4];
comment: in order to do the merges

"forward (of Win)" means F[wa’v).],
"backward (of W’)" means Flu1" Wl 1];

camment: depending on the size b of the buffer the
algorithm chooses:

BUFFER_MERGE if b _-> f
BLOCK_MERGE if b <f;

if b>=f
then begin

BUFFER_MERGE_FORWARD (I, la, w, v, bl, b2);
BUFFER_MERGE_BACKWARD (u, w-l, v, wa,

ba, b2)
nd

else begin
BLOCK_MERGE_FORWARD (11, 12, W3,/)2);
BLOCK_MERGE_BACKWARD (Ul, w-1, Wl, w2)

end;
p:=p-f

end if_p
end while_p;

It must be noticed that the algorithm chooses either BLOCK_MERGE or
BUFFER_MERGE depending on the relative sizes of the blocks and the buffer.

Step 5 transforms the layout into

merge U", W’) T, W"B’

where B’ is a permutation of B (and B’ B if block_merge was used in Step 5).
(See Fig. 5.5.)

STABLE SORTING AND MERGING 367

Layout after segment insertion"

Ul P4

12224

P3

11333

P2

55567

abcde ABDEF fghi

Pl

44445

HIJKM

/9

67

OQ

/93

/94

9

S

bl b2

134567

CGLNPR

When p--P2, F(p)>F(p + 1), and the first local merge is done:

Ul

1222411333

a bc de ABDEF

P

ll 12

55567

fghi

W W2

44445

HIJKM

/92

9

W1 W2

4444
HIJK

12224113334444

a b c d e ABDEF HIJK

merge backward of W’ T
stops here /

11 12

55567
fghij

W3

/92

679
OQk

555566779

g h Mi Oj Qk

merge T
forward of |
Wm stops here|

After
inserting
Wm into Wm/l

After
merging
(BUFFER_MERGE
is used)

When p P4, again F(p) >F(p + 1), so

12224
abcde

11333
ABDEF

After inserting W (in this case
yielding W’ empty and W"= Win/

After merging"

Ul

111222333444445 5556677

a ABbcdDEFe HI J KfghMiOj Q

merge (U", V")

/92

/93

9

S

V"

bl b2

165347

CP NGL R

FIG. 5.5. Thefinish upprocess applied to the example

368 LUIS TRABB PARDO

This step completes the merge of U’ and V’, thus yielding merge(U’, V’)B’. (See
Fig. 5.6.)

merge (U", V") T,, V’" B’

(a)

merge (U’, V’) B’

merge (U’, V’)
11 /)4

2 2 2 4 4 4 4 4 6 6 7 7 9 9

a A B b d D E F e H K g h M O Q k S

B

6 4 7

C P N G L R

(b)

FIG. 5.6. (a) The situation a]’ter Step 5 (b) The result alter Step 6

Step 6. Merge Tu and V"’.

merge T, V’""
i[b >-t2-tl + l

then BUFFER_MERGE_FORWARD (tl, t2, v3, v4, bl, b2)
else BLOCK_MERGE_FORWARD (ta, t2, v3, v4);

Step 7. Sort B’ and merge it backward.

merge_back _B
STRAIGHT_INSERTION_SORT (b, b2);
BLOCK_MERGE_BACKWARD (Ul, v4, ba, b2)

end partition_merge;

Here STRAIGHT_INSERTION_SORT (bl, b2) sorts B’ into the original buffer
B, according to the techniques described in [3, 5.2.1]. And Step 7 finally yields
the desired merge of U and V. (See Fig. 5.7.)

merge (U, V)

2 2 2 4 4 4 4 4 4 6 6 6 7 7 7 9 9

A B C b d D E F G H K L g h MN O P Q R k S

FIG. 5.7. Final result

The storage requirements for the partition merge are the fixed number of
pointers declared at the beginning (14 in total, though a more careful usage
could have saved some) plus those needed by the different procedures called.
Since those procedures (BUFFER_EXTRACT2, BLOCK_MERGE’s,
BUFFER_MERGE’s, INSERT, SEGMENT_INSERT, and STRAIGHT

STABLE SORTING AND MERGING 369

INSERTION_SORT) require also a fixed amount of pointers (and clearly there is
no recursive call involved) the overall storage requirements are absolute
minimum, that is O(log n).

5.2. Time bounds for the partition merge algorithm. Each of the steps of the
partition merge runs in time linear on the length of the merged file. Hence the
overall time bounds result"

(5.1) T,(U, V) O(I Ul / Vl).
This subsection will very briefly present the derivation of bounds for the

different steps (with Step 5 treated in a slightly more detailed way). The reader is
referred to [9] for a complete analysis. Throughout this subsection, n will stand for
n ul/lvl.

5.2.1. Time bounds [or Steps 1, 2, 3, 4, 6 and 7. Since [BI =< [nq, bounds for
Step 1 are

(5.2) T1 O(n) + O([x/n] 2) O(n).
Step 2 yields the merge of U’ and V’ when u’l or V’l. Assume U’l f.

When buffer merge is used, the time is trivially O(n). Block merge is used when
u’l > b, and in this case it can be shown that h (U’)-< b. Hence

T= 0(I U’l, (U)) / O(I V’l) O(f. b) / O(I Vl) O(n).

The case [V’I--<f is similar, and thus

(5.3) T2= O(n).

In Step 3, the insertion takes

(5.4) T3 O(I Zul/lVl) O(I UI /lVl) O(n).

The fact that f>(n-b)/b, and [u"l+lVl" Vll<--n-b bound the segment
insertion in Step 4, by

(5.5) T4 O((n b)2/f2) + O(n b) O(n).

By a completely similar analysis to the one for Step 2

(5.6) T6= O(n).

Finally, in Step 7, the sort takes O(b) and the block merge O(n-b)+
O(b, (B)), but , (B) b

(5.7) T= O(b2)+O(n-b)+O(b2) O(n).

.2.2. Time bounds for Step . In order to compute these bounds, it is
convenient to resort to the notation in 3. The segment insertion in Step 4
transforms U"V" into Y1Zi’’" YaZa"" YtZtG+I, where

U"= Y1. Ya Y and V"=Z1. Za ... ZtCt/I.

Also, let La be the last block of Ya, and Fa the first one of Za, thus renaming

(5.8) Ya Y’aLa and Za FaZ’a with Izl- levi =.

370 LUIS TRABB PARDO

The finish up process of Step 5 can be viewed as:

for d := t step -1 until 1 do
begin

insert Ld into Fd, transforming LdFd into FdLdF;
merge Ld forward;
merge F backward;

end

Time bounds for insertion (TI). Clearly

(5.9) ZI Ed ZINs(Zd’ fd) O(d (IZl + IF I)) O(I U"I + Iv’l).

Time bounds for merges (TF and TB). The time bounds for block and buffer
merge are functions of those records that are actually exchanged (see remarks at
the end of 2.2.3 and 4.2).

Claim 3.2 shows that during the finish up of YdZd, all the elements to the right
of Ca/I are already in their final position. Hence when merging Ld forward, it
merges into "dd’-’d+I,’"Z’r regardless of how far to the right of Cd+I the merge limits
point. So in order to bound the running time the process "merge Ld forward" will
be regarded as "merge Ld forward into w,,7, c

d,t..,d d+
A quite similar reasoning shows that "merge F5 backward" is equivalent to

"merge Ft backward into Y&".
There are two cases depending on whether block or buffer merge is used, and

they will be analyzed separately:
(a) Case b->f, BUFFER_MERGE: By (4.5) and (4.6)

TF + Z O(IZdl) + O(IFZ’dfa/ll) +, O([F[)+ O(1 YI)
d d d d

(5.10) =E O(]Y’dL[)+Y. O([F’dF’Z’aI)+E O(1C/1])
d d d

o(I u"l
(b) Case b <f, BLOCK_MERGE: Here it is

TI + Tn E O([LdlA (L)) +E O(IFZ’dCa+l[)
d d

+E o(I vI)+E (ll, (F))
d d

Now, it can be shown that if U is a segment U= UU... U, then
(g)+k lNiNk (), and then

TF + Tn O(I g"l + w’l) +o(g") + t) +fO(A (V") + t).

STABLE SORTING AND MERGING 371

And since f> b implies A (UV) b and t -< b

(5.11) Tv+Tn=O(n)+ZfO(b+b)=O(n).
Overall bounds for Step 5. Clearly by (5.10) and (5.11)

(5.12) Ts= O(n).

6. The partition merge sort. The availability of a linear time merge
algorithm gives rise to the possibility of an (n log n) time bounded sort. A few
slightly different variations of the same basic strategy are possible, and [9]
presents one of them in detail.

The sorting strategy consists of successive merging passes over the entire
block to be sorted, each pass merging pairs of blocks of length 1, 2,
4," , 2i, , 2k until the entire file is sorted.

The time bounds for this sorting method are very easily computed since when
sorting a block U, the merging passes are repeated up to

k [log lUll 1,
and each pass is linear on the length of U. Then

(6.1) Tp_M_SORT(U) O(I UI log uI).
Clearly the partition merge sort can be implemented using a fixed amount of

pointers over those used by the partition merge.

7. Conclusions. The most interesting of the results presented here is the
partition merge algorithm, since as the reader was able to see, the partition merge
sort resulted as a straightforward consequence of it.

By analyzing the previously published results, especially the work by Horvath
[2], it can be concluded that there were two considerations that led to the general
result presented here.

First, the utilization of an internal buffer, without any modification of the
keys, to "mark" a permutation of a segment, allowed the segment insertion
process to be implemented within extra storage bounds of O(log n) bits.

Secondly, the adaptivity of the algorithm to the characteristics of the file
being processes (by proper choice of either BUFFER or BLOCK_MERGE)
resulted in a linear time "finish up".

It is interesting to note that the operation "p +q" on pointers is strictly
needed only for the permutation of blocks in the SEGMENT_INSERT process
(4.3). All the other sums of pointer values could have been realized by successive
"p + 1" operations within the same time and space bounds. It remains an open
question whether these minimum time and space bounds are obtainable only with
the primitives "exchange(p, q)", "F(p) <=F(q)", "p + 1", "p q", and "p := q".

Acknowledgments. The author is greatly indebted to Professor Donald E.
Knuth, not only for his help and encouragement in the present work, but for the
many things the author learned from him.

REFERENCES

[1] ROBERT B. K. DEWAR, A stable minimum storage algorithm, Information Processing Letts., 2
(April, 1974), pp. 162-164.

372 LUIS TRABB PARDO

[2] EDWARD C. HORVATH, Efficient minimum extra space stable sorting, Ph.D. thesis, Dept. of
Electrical Engrg., Princeton Univ., Princeton, N.J.; also in Proc. 6th Annual Symp. on
Theory of Computing (SIGACT 6), Association for Computing Machinery, New York,
1974, pp. 194-215.

[3] DONALD E. KNUTH, The Art of Computer Programming, Vol. 3: Sorting and Searching,
Addison-Wesley, Reading, MA, 1973.

[4] M. A. KRONROD, An optimal ordering algorithm without a field of operation, Dok. Akad. Nauk
SSSR, 186 (1969), pp. 1256-1258.

[5] ALBERT NIJENHUIS, private communication, 1974.
[6] VAUGHAN PRATT, private communication, 1974.
[7] F. P. PREPARATA, A fast stable sorting algorithm with absolutely minimum storage, Theoretical

Computer Science, (1975), pp. 185-190.
[8] RONALD RIVEST, A fast stable minimum storage sorting algorithm, Rep. 43, Institute de

Recherche d’Informatique et d’Automatique, Rocquencourt, France, Dec. 1973.
[9] LuIs TRABB PARDO, Stable sorting and merging with optimal space and time bounds, Comput.

Sci. Rep. STAN-CS-74-470, Stanford Univ., Stanford, CA, Dec. 1974.

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

THE DEPTH OF ALL BOOLEAN FUNCTIONS*

W. F. McCOLL? AND M. S. PATTERSON

Abstract. Every Boolean function of n arguments has a circuit of depth n + 1 over the basis

{flf:{0, 1}2{0, 1}}.
Key words, depth, Boolean functions, complexity, circuit, formula

1. Introduction. Spira showed in [3] that any n argument Boolean function
has a circuit of depth n + log* n where

log* (n) (if n -< 1 then 0 else log* (log2 n) + 1).

Upper bounds on depth for specific values of n, given by Preparata and Muller [2],
are

n for n _--< 8,

n+l forn_-<28+8=264,
n + 2 for n _--< 2264 + 264,

etc.;

whereas Knuth has shown, by computer analysis, that there are four argument
Boolean functions requiring depth 4.

In this paper, we describe constructions which yield an upper bound of n + 1
for all values of n, and bounds of the form n + O(1) for circuits over various
restricted bases.

2. Schemes. Our present constructions, and all previous ones for minimizing
depth that we know of, have the property of being "uniform" for all functions of n
arguments. The same directed graph with the same assignment of arguments to
inputs is used for all the functions, the necessary variation being only in the
assignment of base functions to the nodes. Lupanov’s construction for minimizing
formula size [1] is notable for escaping this form. We formalize this restriction in
our definition of "circuit scheme" and show that for schemes our construction
achieves the optimal depth to within an additive constant.

Let B {0, 1} and B, {f:B" - B}. Xn (Xo, xl," ", x,_) is the set of
formal arguments we shall use in formulae and circuits.

DEFINITION. A circuit scheme is a connected acyclic directed graph in which
nodes have either in-degree 2 (gates) in which case the pair of incoming arcs are
ordered, or else in-degree 0 (input nodes) in which case an argument xi is assigned
to the node. A formula scheme is a circuit scheme in which all gates have
out-degree at most one.

Let C, B, and b
_
B2. A circuit scheme S covers C over basis b if for each

f e C, there is an assignment of functions from b to the gates of S such that the

Received by the editors October 9, 1975, and in revised form July 7, 1976.
5" Computer Science Department, Strathclyde University, Glasgow G1 1XH, Scotland. This

author was supported by a Science Research Council Studentship during the course of this research.
Departm6nt of Computer Science, University of Warwick, Coventry, Warwickshire CV4 7AL,

England.

373

374 W. F. McCOLL AND M. S. PATERSON

x1 x2

Xo

FIG. 1

Xl X2

resulting circuit computes f. Figure 1 shows a formula scheme which covers/33
over basis B2. This follows from the expansion

f(X0, X 1, X2) (XoA fl(X 1, X2)) f0(X1, X2)

where 03 denotes sum modulo 2, fo(xl, x2) =f(0, Xl, x2) and fl(Xl, X2)
f(1, Xl, x:z)O)f(O, xa, x2). We have verified that this is the unique formula scheme
(to within obvious symmetries) with fewer than five gates that covers B3. Its depth
of 3 is therefore optimal. A general lower bound on the depth of schemes can be
proved by a simple counting argument.

THEOREM 1. Any circuit scheme which covers B, over any basis b
_
B2 has

depth at least n 1. Furthermore if bl _-< 4 or b[2 the depth is at least n or n / 1
respectively.

Proof. A scheme of depth D has at most 2- 1 gates, and so by varying the
assignment to gates from b it can cover at set of at most Ibl2-1 different functions.
Since [B,I 22" we have

1b[2-1_>22"

which yields the stated bounds. V1
In the next three sections we describe the main result of the paper, a scheme

of depth n + 1 to cover B, over the basis B2.

3. Outline of construction. Our starting point is a pair of familiar dual
expansions for Boolean functions. Let Y-(Yl," ", Yk) and Z (Zl," ", z,,) be
sets of binary variables. Any function f(Y, Z) in Bk+, may be expressed as a
disjunctive expansion about Z by

f Y, Z) V c(Z)/f Y, c)
CeB

where

1 if Z= C,
c(Z)=

0 otherwise.

DEPTH OF ALL BOOLEAN FUNCI’IONS 375

The dual conjunctive expansion about Z is

f(Y, Z) =/gc(Z)Vf(Y, c)
C

where 6c is the complement (negation) of 6c.
Each 6 or 6 term requires a formula of depth only [log2 m] and in each case

the total depth used exceeds the maximum for t}c, 6c and f(Y, C) by m + 1. The
outer disjunctions or conjunctions over 2" subformulae need depth rn and one
extra level is used for the single conjunction or disjunction used to attach the 6’s or
6’s. It is the accumulation of these extra single levels in a recursive expansion
about successive subsets of arguments which accounts for the log*n term in
Spira’s bound. We plan to avoid these increments.

Consider one term 3c(Z)/ f(Y, C) of the disjunctive expansion. We may
ensure that f(Y, C) is expressed as a conjunction of many small terms by using the
conjunctive expansion for the next subset of arguments. Using the associativity of
conjunction we might attempt to reassociate 8c into f(Y, C) but Unfortunately the
number of subterms of f(Y, C) will be exactly a power of two. Our seemingly
reckless solution is to discard one of these terms to make room for 8c, and to be
content with an "approximation" to the original function. To accomplish this ruse
for each expansion we alternate disjunctive and conjunctive expansions about
successive subsets of variables. The result of this first construction will be a
formula of depth only n, but it will represent merely an approximation to the
required function.

In the surprising finale we are able to show that the true function may be
achieved by not-equivalencing (0)) this preliminary result with a second function
which we can generate using the whole construction recursively in depth n also.
The result is therefore of depth n + 1.

In the details of the first construction, some attention must be paid to the
sequence of cardinalities of the expansion subsets, and the way in which a term is
omitted from the expansions is not quite straightforward. We shall describe our
construction in terms of formulae rather than more abstractly as schemes. It will
be clear throughout however that the formulae are uniform.

4. Initial construction. To define the subsets of arguments for the expansion,
let Ro, R,..., R, be a partition of X, with IRI--r, for all i. We shall use the
simple sequence (ro, ", rp) defined by

ro 2,

r=i+l for0 <i<p,

rp n- Sp_ where Sm ri
i=0

and where p is maximal such that

p(p+ 1)
-l<n.

376 W. F. McCOLL AND M. S. PATERSON

For example, if n 17, we have (2, 2, 3, 4, 5, 1). We can equally well use for our
present purposes any sequence of positive integers satisfying

(i) r0=rl=2,
(ii) Sp n,
(iii) r,, <_- 2s-,-2 for m >_- 2 and m even,
(iv) r,, _-< 2s’--2- 2s"-3 for m -> 3 and m odd.

The fastest-growing sequence satisfying (i)-(iv) begins for large n with
(2, 2, 4, 12, 256, 220- 256, 2276, ").

The following definition allows us to describe the kind of function we can
produce with the initial construction.

DFaINITON. Given S {R1,"" ", Rk} where Rj c__Xn for all 1-<_ <-_k, we
define g(Xn) to be S-simple if

g(Xn) 0 whenever Rj 0 for some Ri S,

where 0 (0, 0,..., 0).

After the outline of 3 we are prepared for the initial construction.
THEOREM 2. For n > 4, every {RI,. , Rp_}-simple function g(X,) has a

formula of depth n.

Proof. Since n > 4, then p > 1. We express g as an expansion about Re which
is disjunctive if p is odd and conjunctive if p is even. Each of the 2rp terms in this
expansion is expressed in depth Sp_ by using the results and constructions of the
following lemma.

For an inductive proof we must incorporate a more detailed specification of
the formulae at each stage.

LZMMA. Let Ro, R,..., R,, (m >0) be disjoint sets of arguments with
cardinalities ro, ", r,, satis]’ying conditions (i), (iii) and (iv) above. Then]’or any
function g(Ro," ", Rm), which is {RI, ., R,,}-simple, there is a formula]’or g
consisting of:

Case (a) ifm is odd, a dis]unction of 2 1 subformulae each ofdepth
Case (b) ifm is even, a con]unction of 2 1 subformulae each ofdepth

and another subformula of depth S,,-2.
Proof. We proceed by induction on m using two alternative expansions about

R,,. In Case (a),

g(Ro,""". R,.)= V (c(R,,.)/gc(Ro,"’, R,,._I))

and in Case (b),

g(Ro,’’’, R,.)= --o(U,.)/ A (gc(R,.) /gc(Ro.’". Rm-))

where in each case gc g(R0,"’’, R,,_I, C).

The validity of these expansions is easily verified. If m 1, then the first
expansion is of the required form since both 6c and gc have depth 1 and so we
have a disjunction of 3 formulae of depth 2. If m > 1 and m is odd then in the same
expansion we may, by the inductive hypothesis, take gc to be a conjunction of
U"--1-1 subformulae of depth S,,-2 and a smaller subformula of depth Sm-3.

DEPTH OF ALL BOOLEAN FUNCTIONS, 377

X7 X16 X4 X5 X6 X0 X6 Xo X6 X0 X6 X0 X6 X0 X6 Xo X6 X0 X6

go(Ro, R , R)/D(R3)

FIG. 2

Since 6c is essentially a conjunction of r, arguments and rm <- 2s"- 2s"-, it may
be conjoined with the smaller subformula to produce a formula of depth S,,-2.
The resulting conjunction of 2r’-- formulae of depth S,,-2 can be written in depth
r,,,-1 + S,,-2 S,,_a. The requirements of Case (a) are thereby met. If m is even
then the second expansion is used, the 3c are themselves of depth Sin-2 and Case
(b) is easily satisfied. [-1

X7X8 X9Xl0 XllXl2 X13X14

II
FG. 3

X 15X 16 X4 X5

X6

378 W. F. McCOLL AND M. S. PATERSON

X4X5 X6 XoXl X2 X3 X0 X1 X2 X3 X0 Xl X2 X3

c(R0, R x, R2)

FIG. 4

The lemma may be illustrated with n 17, m=3 and the sequence
(2, 2, 3, 10). The resulting formula for g(Ro, Ra, R2, R3) is a disjunction of 1023
formulae each of the form shown in Fig. 2. The leftmost subformula of Fig. 2 is
given in more detail in Fig. 3, where the base functions associated with certain
gates are not defined if they depend on D.

Each of the hc(Ro, R, R2) subformulae from Fig. 2 are of the form illus-
trated in Fig. 4, where the base functions associated with unmarked gates depend
on C.

5. Main result. It remains to be shown how formulae for arbitrary functions
are to be derived from the construction jugt described for simple functions.

LZMMA. Suppose R1,’", R are disjoint subsets of X,. For all f(X,),
there exist fl(X. R1), f (X, Rk) such that gk (Xn) f (GiL fi is
{R 1," ", gk}-simple.

Proof. This is by induction on k. The lemma holds trivially for k O. Let k > O,
and suppose the result is true for k-1. Then, there exists
fl(X,-RO,"’, fk-l(Xn--Rk-1) such that for all j, 1-<_j <k,

k-1

Ri=Ogk_l(X,)=f@) f/=0.
i=1

We define

fk(Xn_Rk)={O if:l/, l<--i<k,R=O,

gk- with arguments Rk set to 0, otherwise.

It is evident that gk has the required property.
The principal result of the paper is now readily proved.

DEPTH OF ALL BOOLEAN FUNCTIONS 379

’THEOREM 3. For all n, n >-_ 1, there is a formula scheme with depth n + 1 which
col)ers Bn over B2.

Proof. Schemes for B1, BE are obvious, while for B3, B4 expansions can be
made about 1 and 2 arguments respectively to yield schemes of depth 3 and 4.

By the previous lemma and properties of , any function f(Xn) may be
expressed as g(Xn)(i_ [i(X,-Ri) where g(X,)is {R1,’’., Rp_l}-simple,
and the Ri are defined at the beginning of 4. For n > 4, Theorem 2 yields a
formula of depth n for g(X), to which we must "add" appropriate functions
fl, ",fp-1 where f has ni n 1 arguments. Whenever n _-< 4, a formula for
f is constructed directly, otherwise the present construction is used recursively to
yield a formula of depth n + 1 n- i.

Thus f is expressible as
t--I

g(X,,)O) f(X,,-R).
i=1

or, after reassociation, as

gt(fl[)(f2(’’" tf/o__l))...).

Since f has depth n- for 1,..., p-1, the latter represents a formula of
depth n + 1.

Again it is clear that the construction is uniform and thus yields a scheme.

6. Restricted bases. The formulae considered so far have used all of B2 as the
basis. Provided that the basis b permits a scheme to cover B2 and contains at least
one function from each of the following three types:

/-type p*/q*,

V-type P*Vq*,

0)-type p* 0)q,

where a starred variable represents either the variable or its complement, the
construction can be followed more or less as before, complementing subformulae
as necessary to achieve an upper bound of n + (depth of a scheme to cover BE).

An interesting basis is the set which excludes the two 0)-type functions. In
using this unate basis we may replace @ by

pO)q (pAgl)V(Aq).

In order to fit in the correcting functions efficiently we choose a new sequence

(ro, rl, r2,")= (2, 2, 4, 6, 8, 10,.)

so that each f contains 2 fewer arguments than the previous one. The result is a
scheme of depth n + 3.

CONJECTURE. For any b
_
B2, if there is a scheme over b which covers B2 then

there is a constant c such thatfor all n there is a scheme over b of depth n + c which
covers Bn.

For b (NAND, 7/’1} (where NAND(p, q)= PV] and 7rl(p, q)= p) we have,
at present, achieved no better than n + O(log* n).

380 w.F. McCOLL AND M. S. PATERSON

We must distinguish the notions of complete bases for formulae and for
schemes. For example, b {NAND} is complete for formulae but obviously no
singleton basis can be complete for schemes; hence the condition on b is necessary
in the conjecture.

7. Conclusion. We have described a uniform scheme for expressing all
n argument Boolean functions in depth n + 1, and have matched this upper bound
with a lower bound of n- 1 under the restriction of uniformity. For a basis of
unate functions only, our upper bound is n + 3.

In our construction we used a sequence (2, 2, 3, 4, 5,.), but a sequence
which grows much faster could be used instead. The effect of the choice of
sequence on formula size has not been considered but easy counting arguments
limit the possible size to within 2n-1 and 2"+1 for our method. Lupanov’s
construction [1] yields formulas of sizes about 2"/1og2 n, though not of course
using schemes. This raises the following question.

Open problem. Does a lower bound of n O(1) on depth hold for formulae as
well as schemes?

REFERENCES

[1] O. B. LUPANOV, Complexity of formula realisation of functions of logical algebra, Problemy
Kibernet., 3 (1960), pp. 61-80; Problems of Cybernetics, 3 (1962), pp. 782-811.

[2] F. P. PREPARATA AND O. E. MULLER, On the delay required to realise Boolean functions, IEEE
Trans. Computers, C-20 (1971), pp. 459-461.

[3] P. M. SPIRA, On the time necessary to compute switching functions, Ibid., C-20 (1971), pp.
104-105.

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

SOME PRESERVATION PROPERTIES OF NORMAL FORM
GRAMMARS*

DAVID B. BENSON"

Abstract. The normal form grammars, such as those developed by Chomsky and Greibach,
preserve certain properties of the original grammar. Ordinarily attention is only directed to weak
equivalence, that is, that the original grammar and its normal form version both generate the same
language. By paying greater attention to the functions carrying a grammar to its normal form,
considerably stronger preservation properties can be proved. We demonstrate that several normal
forms preserve ambiguities. More surprisingly, a variant of Chomsky’s normal form, called canonical
two form, forms an adjunction in connection with the original grammar. This fact shows that canonical
two form preserves a large number of the structural properties of the original grammar. In particular,
we show that the canonical two form is LR (k) iff the original grammar is LR (k), strengthening a result
of Gray and Harrison. Preservation of structural properties such as ambiguity is important in semantic
considerations, and the methods given for the determination of property preservation’seem to be of
general applicability.

Key words, normal form grammars, syntactic structures, ambiguity, syntax category, grammar
functors, adjunction

1. Introduction. The literature contains numerous instances of normal form
grammars. In every case, a grammar G and its normal form G’ are shown to be
weakly equivalent, that is L(G) L(G’). In almost every case, no more is shown.
In fact, the normal form grammars preserve a large amount of the structure
present in the original grammar. How much structure is preserved depends on the
normal form. Intuitively, Chomsky’s normal form preserves almost everything
while Greibach’s normal form, due to left recursion removal, preserves very little.
This intuition suggests that there is a classification of normal forms by how much
structure is preserved. Our intent in this paper is to give some precision to these
preservation ideas.

The structures of primary interest are the syntactic structures assigned to
strings by the grammar. If the grammar is context-free the syntactic structures are
p-markers or derivation trees. For general phrase-structure grammars, the syn-
tactic structures are similarity classes of inessentially distinct derivations (Hotz
[18], Griftiths [16], Benson [6], [8]). Both context-free and type 0 grammars are
considered in developing preservation properties of normal forms. For context-
sensitive grammars there are at least three distinct notions of syntactic structure
(Benson [6], Woods [31], Peters and Ritchie [24]). For this reason context-
sensitive grammars are not considered in this note, although the preservation
theory developed here should apply to context-sensitive grammars as well.

The interest in syntactic structures arises from syntax-directed translations
and various notions of semantics for formal languages. In both cases the syntax,
not the strings, are the entities of primary interest. In this situation one wishes to
discover the extent to which normal form transformations preserve the syntax.
The preservation theory given is basic in that we restrict attention to the

* Received by the editors January 3, 1975, and in revised form August 3, 1976.
t Computer Science Department, Washington State University, Pullman, Washington. Now at

Department of Computer Science, University of Colorado, Boulder, Colorado 80302. This work was
supported in part by the National Science Foundation under Grant GJ-43495.

381

382 DAVID B. BENSON

"homomorphic" transformations. In the categorical framework used, these are
the functors from one syntax category to another. There is ample evidence in the
literature to show that functors are the basic homomorphisms of syntactic
structures (Benson [8], Walter [30], Bertsch [9] and [10], Schnorr [26], Schnorr
and Walter [27], Walter [29], Hotz and Claus [20]). Concepts such as coverings
(Gray and Harrison [14], Aho and Ullman [2]) do not preserve all the structure
available and are rather more difficult to work with.

These homomorphisms are exactly what are needed to transfer the semantics
between grammars without going to the complexities involved in syntax-directed
translations (Alagi6 [3], Benson [7]).

2. Categories and grammars. The basic notions of categories and functors
are assumed known to the reader (MacLane [22], Herrlich and Strecker [17],
Arbib and Manes [4]). However, we compose arrows (morphisms) in arrow-order.
That means: if f: ce /3, g:/3 3’ are arrows in a category then the composite
arrow, "first f, then g", is denoted f g: a 3’. The sign for composition, o, is
frequently elided. In category C the set of all arrows from a to b is denoted
C(a, b). A strict monoidal category (MacLane [22, p. 171]) is a triple (C, +, ,)
where C is a category, +" C C C is a bifunctor and , is a designated object of C,
all subject to the axioms:

(i) For all x, y, z, arrows of C, (x + y) + z x + (y + z).
(ii) For all a,/3, 3’, objects of C, (a +/3) + 3’ c + (/3 + /).
(iii) For all x, an arrow of C, x + la x 1 + x, where lx is the categorical

identity at ,.
(iv) For all a, an object of C, a + a A + ce.

These axioms cause the objects of C to be a monoid under + with unit element ,.
Our interest lies in the case that this object-monoid is the free monoid over some
alphabet V.

Let (V*, +, A) be the free monoid over Vwhere + denotes string concatena-
tion and ,t the null string. The general notion of rewriting system used in this note
is defined after we develop the notion of directed graph (diagram scheme,
precategory, MacLane [22, pp. 48-49]) needed here. A directed graph (0, R, d, c)
consists of a set of nodes O, a set of arcs R and two functions, d, c: R O.
d :R O assigns the domain (source) node to each arc, c :R O assigns the
codomain (target) node to each arc. Thus rR is an arc from d(r) to c(r),
r: d(r)c(r). Note that several arcs may share the same source and target. An
indexed general rewriting system (V*, R, d, c, +, ,) consists of a free monoid
V*, +,) and a directed graph (V*, R, d, c). The entire note is stated in terms of
indexed rewriting systems and grammars with indexed rules since the index proves
to be technically useful. We write (V*, R) for (V*, R, d, c, +, A).

Consider the rewriting system P (V*, R) underlying a grammar G. P may
also be considered as a function, P: R V* V*: r--(d(r), c(r)). Rather than
P(r)=(a,/3) we follow the usual convention in grammar theory and write
P(r) a-. In this view, the rewrite rules are indexed by R via the function
P R V*X V*.

V*, R) generates a free strict monoidal category (Hotz [18]), which we call
the syntax category for V*, R and denote S(V*, R) or just S when the generating

PROPERTIES OF NORMAL FORM GRAMMARS 383

indexed general rewriting system is clear. A full development of S(V*, R) is given
in Benson [8]. Here it suffices to note the following: An arrow in S, say f: c -*/3, is
a "derivation" from c to/3. The arrows are isomorphic to derivation trees if the
rewriting system is context-free. For general rewriting systems the arrows are
similarity classes of inessentially distinct derivations. If f: a ->/3 and g"/3 --> y are
derivations in S, then the composite derivation fg- a -* y is the derivation of first
deriving by f and then deriving by g. For f: c-->/3 and g" 3,-*6 in S, the
concatenate f+ g" a + 3’ -*/3 + 6 is the derivation from the string aT a + y to the
string/36 =/3 + 6 which consists of deriving byf on the left, and in parallel, by g on
the right. If f: c -*/3 is a derivation the source, or domain, string is denoted by
d(f) a. The target, or eodomain, string is denoted by c(f) .

Using the notion of syntax category gives a convenient algebraic setting for
explorations of normal form. Every derivation in S(V*, R) has a length, the
number of rewrite rule instances used in it, so every nonidentity derivation f may
be written as the composite of terms, each term being of length one. That is,

C) = lo oL,
i=1

where f 1., + r + 1, with /z, , e V*, r e R, 1 -< -< n. If r" a -*/3 then the
domain of f is d(f)--p +d(r)+ =/xa and the codomain of f is c(f)
p + c(r)+ , Ifl,. For this reason terms are denoted by f =/z + r + ,, letting
the strings/x and , denote the identities, derivations of length zero, 1,, and 1,.
For f C)i fi, eachf a term, the length of f is l(f) n. The composition of terms
("-- (/x + r + u) is canonical if for all i, 1 -< -< n, /(/X+l) < l(tx + c(r)). The
composition is cocanonical if for all i, 1 -< < n, l(,+) < l(c(r) + ’i). As Hotz [18]
and others have shown, every derivation has a unique canonical representation
and a unique cocanonical representation if the grammar is type 0.

The concatenate of derivations g may be written as

g= g=gl+g2+’’’+g,.
i=1

With this orientation, our grammars are defined slightly differently than
usual. Let P (V*, R) be an indexed general rewriting system. Let : and N be
sets such that Z 12 N V, : fq N . Z is the set of external or terminal symbols;
N is the set of internal or nonterminal symbols. Call " e N* the point or start string.
With this, G (N, Z, P, ’) is a grammar. The syntax category of the underlying
rewriting system P is denoted by S(G) or by S when the intended grammar is clear
from context. The language generated by grammar G (N, Z, P, r) is L(G)=
{to E*lS(sr, to) }. Otherwise stated, to e L(G) just in case there is a derivation
from sr to to, f: sr-* w, and to e E*.

However, the primary interest in derivations is for semantic reasons. Several
notions of semantics for formal languages and programming languages depend on
the derivations to give semantic content to the sentences of the language (Benson
[6], Goguen et al. [13]). Indeed the same dependence exists for the various
versions of syntax-directed translations (Alagi6 [3]) and the relationships between
syntax-directed translations and semantics (Benson [7], Buttelmann 11], Knuth
[21]). An interpretation is a functor from the syntax category to some semantic

384 DAVID B. BENSON

category--the category of sets and functions in Benson [6]. Goguen et al. [13]
generalize to other notions of the syntactic-semantic distinction, but always
functorially.

On semantic grounds then, it is important to find the exact method of
mapping between grammars to discover how the semantics or interpretation is to
be preserved.

Let S and S’ be syntax categories. A syntaxfunctor, F: S S’ is a functor which
preserves concatenation and the null string; F(a + [3) F(a) + F([3), F(f+ g)
F(f) +F(g), and F(A)= A. In other words, a syntax functor is a strict monoidal
functor between free strict monoidal categories. A grammar functor, F: S(G)-
S(G’), is a syntax functor carrying internal symbols to internal symbol strings,
external symbols to external symbol strings, and the point of G to the point of G’.
Symbolically, let G (N, E, P, () and G’ (N’, E’, P’, (’) be grammars. F: S(G) -S(G’) is a grammar functor if F is a syntax functor and

(i) F(A)6 (N’)* for all A iV,
(ii) F(a) (E’)* for all a E, and

(iii) F(’)= ".
A grammar functor is externally fixed if E E’ and F(a) a for all a E. This
much apparatus gives the first useful result.

LEMMA 1. Let G (N, E, P,) and G’ (N’, E, P’, ’) be grammars with
common external alphabet E. Let F: S(G) S(G’) be an externally fixed grammar
functor. Then L(G) L(G’).

Proof. Let S= S(G), S’= S(G’). Since F is a functor, if S(a,)# ; then
S’(F(a), F(fl))# . Thus for all to E*, S(’, to) implies S’(’, to) . [-]

Many proofs of language containment in the literature are an application of
this simple lemma, which is a variant of Hilfsatz 7 of Hotz and Claus [20, p. 73].

Appealing to the lemma is considerably more satisfactory than the usual
trivial proof by induction given, or appealed to, in each separate case. As the proof
of Lemma 1 shows, no induction argument is actually required.

Since S(G) is a freely generated strict monoidal category, to define a grammar
functor F it suffices to specify F on the vocabulary V NE and to specify F
on the rewrite rules R. Free generation takes care of the rest of S(G). The
only portion of this which requires care is to ensure that F is indeed a functor. That
is, if R :c-fl is a rewrite rule then F(r) must rewrite F(a) into F(fl). This
principle may be stated precisely as follows.

Standard result. Let RWS be the category of all indexed general rewriting
systems and homomorphisms between them. These homomorphisms preserve
both the monoid structure of the nodes and the source, target structure of the arcs.
Let FSM-Cat be the category of all strict monoidal categories whose object set is a
free monoid under the bifunctor together with the strict monoidal functors
between them. Let : FSM-Cat- RWS be the "forgetful" functor which forgets
the composition and concatenation of arrows. Then there is a unique functor
S: RWSoFSM-Cat which assigns to each indexed general rewriting system
(V*, R) its syntax category S(V*, R). There is an RWS-homomorphism
I: (V*, R)- (S(V*, R)) which is the identity on each string and each rewrite
rule. Now, let C be any syntax category and f: (V*, R) (C) a homomorphism.
Then there is a unique syntax functor F: S(V*, R) C such that f I (F) as in

PROPERTIES OF NORMAL FORM GRAMMARS 385

I
$(V*, R (V*, R) (S(V*, R))

F (F)

c (c)

FIG.

the commutative diagram on the right of Fig. 1. Hence giving the functor data, f,
on the rewriting system suffices to uniquely define the entire syntax functor, F. We
have left out the details which may be completed in analogy to I1.7 in MacLane
[22]. [3

The other portion of showing language equality via grammar functors
requires a preliminary notion. If F: CD is an arbitrary functor, F may be
restricted to each of the sets C(a, b) where a and b are objects of C. The definition
is

F(a, b): C(a, b)- D(F(a), F(b)): x--F(x).

With this control over each hom-set, C(a, b), we have
LEMMA 2. With the hypotheses ofLemma 1, ifF(, to) is a surjection for each

to *, then L(G) L(G’).
Proof. If F(’, to) is a surjection, then S(sr, to) implies S’
Lemmas 1 and 2 provide a fundamental method of demonstrating the weak

equivalence of two grammars" set up a functor and show the surjective property.
Surjectivity is a remarkably elusive property to characterize. Hotz and others have
worked on this for several years. Hotz [19] provides a review of all but the latest
work on grammar functor surjectivity. See Bertsch [9], [10] for the latest work.

Because of this difficulty it is usually easier, although not necessarily trivial, to
prove the stronger property that the functor is full. A functor F: C D is said to be

full if for every pair of objects, (a, b), of C, F(a, b) is surjective (MacLane [22, p.
14]).

COROLLARY 3. With the hypotheses of Lemma 1, if F: S(G) S(G’) is full
then L(G)= L(G’).

The existence of a full externally fixed grammar functor is considerably
stronger than weak equivalence since it specifies that the derivations in S(G’) are
"homomorphic" images of those in S(G) and are no more numerous than those in
S(G). As we shall illustrate in the examples, many standard normal form proofs of
weak equivalence are in fact proofs of the existence of full externally fixed
grammar functors.

3. Preserving ambiguities. In comparing a grammar G with its normal form
version G’, it is often of interest to know that G and G’ have the same degree of
ambiguity, that is, that for each to E* there are as many derivations from " to to in
S(G) as there are from " to to in S(G’). Again it is easiest to generalize: A functor
F: C- I) is faithful if for every pair of objects, (a, b), of C, F(a, b) is injective

386 DAVID B. BENSON

(MacLane [22, p. 15]). If F: C-D is both full and faithful then F(a, b) is a
bijection from C(a, b) to D(F(a), F(b)).

PROPOSITION 4. Let G (N, ,, P,) and G’ (N’, , P’, ’) be grammars
with a common external alphabet . Let F: S(G)- S(G’) be an externally fixed
grammarfunctor. IfFisfull andfaithful then Fpreserves ambiguities. That is, for all
a *, the cardinality of S(sr, o) is equal to the cardinality of $((’, w).

The existence of a full and faithful functor implies more than equal cardinal-
ity. The functor shows how derivations of the codomain syntax category are
unique homomorphic images under the functor. The functorial homomorphism
has implications for the study of semantics preservation.

Here is a useful sufficient condition for faithfulness in the current cases. First
some notation: A grammar functor F: Sa - S2 is expansive if l(F(f)) >= l(f) for all
derivations f. For each r in the set of rule indices R generating $1 let

E(r) r, R2IF(r (tz, + r,+ ui
i=1

That is, E(r) is the set of all rule indices occurring in the image of r under
F: --> S2. For all r R, let

D(r)= E(r)- U E(s).
sR1

The elements of D(r) are said to be the distinguishers of r. If/z + r + u is a term, let
D(/z +r+u)=D(r). x is satiated if for all p, o- V* and derivations y,x
p + y + implies p =r A. That is, x is satiated if every letter in its domain is
rewritten by some rewrite rule in x.

For Proposition 5 and Lemma 6, let F: $1 - S2 be a grammar functor between
syntax categories generated by type 0 grammars Gi (N, Ei, P, sr), 1, 2.

PROPOSITION 5. If F restricted to ,’1 is injective to , F restricted to N1 is
injective to Na and for all r P1, d(r) c(r), then F is expansive.

LEMMA 6. /f
(i) F: E -’>2 is injective,
(ii) F: NI - Na is in]ective,
(iii) F is expansive,
(iv) for all r R 1, D(r) # ; and
(v) for all r R 1, F(r) is satiated,

then F is faithful.
Proof. Each F(a,/3): Sl(a, fl)->SE(F(a),F(fl)) is injective by induction on

the length of derivations. If l(f) 0 and F(f) F(f’), then f is an identity and by
(iii), f’ is an identity. By (i) and (ii), f f’. Assume for every pair of derivations f, f’
in S where l(f) n that: F(f) F(f’) implies f f’. Consider g with l(g) n + 1
and g’ such that F(g) F(g’). g has canonical representation g C)=0 g. Due to
(iii) each F(g) has length _>-1 so g’ has canonical representation g’ C)i=0 g. If
go-- g then as left cancellation holds in syntax categories for type 0 grammars,
(Hotz [18], Hotz and Claus [20]),

PROPERTIES OF NORMAL FORM GRAMMARS 387

and the result follows from the induction hypothesis and (iv). To this end, consider
D(go) f)D(g’o). If the intersection is not empty, D(go)= D(g’o). Therefore go
/z + r + u and g =/x’ + r + u’ for some r 6 R1,/x, u,/x’ v V*. If/x =/x’ then since
/z + d(r)+ a =/z’ + d(r)+ ’, u v’ and go g. To show that/z =/x’, consider
satiated , ’ such that g 0 + + to and g’= 0’ +’+ to’ for O, O’, to, to’ 6 V*.
F(g) FOP) +F(, + F(to) F(’) +F(,’) + F(to’) F(g’) implies that ff p’ and
to to’. Write and ’ canonically as

g= gi,
i=0

from which one immediately has gi 0 + gi + o, g 0 + + to for each i. Now
o =p +r+r, , =p’+r +r’ for p, p’, r, r’ 6 V* such that/x O+p,/x’ =q+p’,
v o" + to, u’= o" + to. If p p’ we’re done, so by symmetry assume l(p) < l(p’) and
p’ =p+- for re V+. Then

F(,o) F(O + h, + F(

F(,’o) F(O) + F(r) + h2 + F(o-’)

where the two instances of F(r) have been relabeled h and h2 for clarity. As F(0)
appears first in the composition

i=0

the rule applications in ha depend on the prior application of no other rules in
F(). (See Benson [8] for definitions of rule application and dependency. The
concepts are the obvious ones.) Similarly, h2 depends on the prior application of
no other rules in F(g’). Since F(r) is satiated, ha and ha can be done in parallel in
F()=F(’) and l(F(r))>=l(d(F(r))). By (i) and (ii), l(’)>-l(d(r)). Since F(r)
occurs twice in F()=F(’), r must occur twice in both and g,*’ and both
occurrences depend on the prior application of no other rules. Therefore, , is not
the canonically first term of ’. This contradiction shows that r ,t so that go g’o.

Now consider the case that D(go)f3 D(g’o)= . Since F(g)= F(g’) the rules
done in the F(go) subderivation are accomplished within F(g’) subderivations for
various > 0. Consider any distinguisher s D(go) and the subderivation F(g’) in
which it occurs. Since s appears in F(go), the application of s does not depend on
the prior application of any rules in F(g’o). Therefore s is accomplished entirely to
the right of F(g’o) and since s distinguishes go, all the rules in F(go) are accom-
plished to the right of any rule in F(g’o). By symmetry, the same argument applies
to distinguishers of D(g’o) to conclude that all the rules in F(g’o) are accomplished
to the right of any rule in F(go). This contradiction shows it is not possible to have
D(go) fq D(g’o) f. I]

388 DAVID B. BENSON

If one views "deriving" as the relation between strings, faithfulness
reduces to a triviality and the correspondent to the above lemma is uninteresting
as it would say nothing about ambiguity or semantics preservation.

Our first example is from Savitch [25]. He gives a conversion from type 0
grammars in "a standard alternative" form to type 0 grammars in strong normal

DEFINITION 1. A grammar G (N, E, P, S), S N is in standard alternative
form if every rewrite rule is in one of the following forms, where A, B N and
a V* (NU Z)*"

(i) BA aA,
(ii) AB Aa,
(iii) B a.
DEFINITION 2. A grammar G (N,, P, S), S N, is in sgong normalform if

there is a partition of N into N, N and N such that every rewrite rule is in one of
the forms,

(i) A a, with A eN and a e ,
(ii) AB A, with AN and B N, where h is the null string.
Let s be the class of grammars in "standard alternative" form and n be

the class of grammars in strong normal form. We give, by construction, a function
SNF: sa snf-

Let G. a,. G =. (N, E, P, if). efie G’=.(N’, E, P’, S) as follows" N’=
NU Nx UN U N: U N: where N1, Nx, N: and Na are mutually disjoint sets of
symbols not in N such that N’ consists of five distinct copies of N. e subscript
and over-arrow notation will indicate to which opy of N an internal symbol
belongs, e.g., 1 . Let R’=1U1UeUNe U R where P: R W .
R’ is the set of indices for the rewrite rules of G’ and the new internal symbols are
pressed into service as rule indices in this case. The indexed set of rewrite rules,
P’" R’ V’)* V’)*, V’ N’ , is given by:

(1) For 1R1, e’()=A AI.
() For R1, e’(l)= A IA.
(3) For : R:, e’:) g: X.
(4 For : R:, e’: gl: .
(5) For r R with P(r) AB Aa, P’(r) B .
(6) For r R with P(r) BA aA, P’(r) B .
(7) For r R with P(r) B , P’(r) B .

As G’ is in snf, define SNF(G)= G’. Compare with Savitch [25].
For each G sa and G’= SNF(G) there is an externally fixed grammar

functor F: S(G) S(G’), completely determined by the following data.
(F1) For A , F(A) A.
(F2) For r R with P(r) AB Aa,

F(r) ((A -’ Agl)+U) (AI +(U :)) (A +(1: a ,)+).
(F3) For r R with P(r) BA aA,

F(r) (+(" IA))o ((B ff2)+IA)o (ff + (A2, " A) +A).
(F4) For r R with P(r) B , F(r) B .

PROPERTIES OF NORMAL FORM GRAMMARS 389

The only complexity is introduced by (F2) and (F3). Consider (F2). The derivation
of length one, r" AB Aa is carried by F into a derivation of length three such
that F(r) rewrites,_AB to Aa by first applying A1" A A lea._vingBxed, then
applying r" B A2a leaving AA fixed, and finally applying A2" A1A2 A leav-
ing A and a fixed.

By Lemma 1, L(G)L(SNF(G)). That F: S(G) S(G’) is full follows by
Savitch’s Lemma 2, requiring only the addition of indexing which does not change
the proof in any material way. Hence the languages are equal. F is faithful by the
immediate application of Lemma 6.

Not only does this result show that Savitch’s strong normal form construction
is ambiguity preserving, it gives an embedding of S(G) in S(G’). Stated differently,
a full and faithful functor means that the original S(G) derivations are recoverable
from their images in S(G’).

Stanat [28] gives a different normal form for type 0 grammars, called
standard form. His Theorem 6.1, if translated into the categorical terminology,
shows that there exists a full and faithful externally fixed grammar functor into
standard form grammars.

4. Functors from the normal form. Functors must map every derivation of
every length without a tree automaton’s ability to scan other portions of a
derivation before deciding how to map. Therefore some normal forms do not
admit a functor between an original grammar and the normal form grammar.
Greibach’s prefix normal form [15] is the best example. The primary difficulty is
the removal of left recursion. This does sufficient violence to the syntactic
structure that there is no hope of a functor in either direction. However, the
remainder of the Greibach transformation, lifting external symbols to the prefix
position, does have functorial properties. Specifically, if G is a context free
grammar (cfg) free of left recursion and G’ is the prefix normal form of it, there is a
faithful externally fixed grammar functor from S(G’) to S(G). This functor fails to
be full, although it possesses a weaker property (externally full) which suffices to
guarantee equality of languages.

We follow Aho and Ullman’s Algorithm 2.14 [1, p. 158] in producing the
details and follow their notation to the extent possible. Specifically, since cfg G
(N, , P, S) is free of left recursion there exists a total orderingA 1, A2, An of
the internal symbols N such that for all r 6 R, P(r) Ai - Ajce implies <. The
algorithm then iterates from n down to 1 in the outer loop to produce the prefix
form grammar G’. At each step of the algorithm there is an inner loop from n to
+ 1. After each step j of the inner loop there is implicitly a grammar Gij. At the
end of the inner loop at step (i, + 1), one uses G,+I as input to the step (i- 1, n).
The algorithm begins with G Gnn and terminates with G’= G12. We give the
details for the functors S(Gj) S(G,j/I). Since faithfulness and external fullness
are preserved under functor composition, to show that each functor S(Gi)
S(G,/I) is faithful and externally full suffices to obtain the result that the
composite functor S(G’) S(G) is faithful and externally full.

Specifically, at step (i, j) of the algorithm all the rules of the form As Aia in
G,i/l are eliminated and replaced by the derived rules Ai /ka where Aj -/3k is
the kth rule rewriting A. Let G,/I (N, , P,/I, S) where P,/I: R,j/I

390 DAVID B. BENSON

Nx V*. Let

and

R’i,j+ {r[Pid+ (r) Ai -> Aa, a W*},

R(S>id+ {rlPid+l(r) Aj --> , fl W},
R ;,’+, {(r, r’)lr R’ r’i,j+X and Ri,+x}.

The rule indices of G,,I are R, (R,+ R,j+ 1) LI Ri+1. The rule function for G,
is P,," R,i-->N V* such that Pi, restricted to the indices common to both
grammars is equal to Pi,j+l, i.e., Pi,IR,+I fq Ri, P,+IIRid+I Ri,j. On the new
indices in R ’,+1, P,(r, r’) A =--)o iff P,+l(r) At --> Aa and P,j+I (r’) A ->/3.
This completely determines G, (N, E, Pi,i, S).

The functor H: S(G,)--> S(Gi,j+I) is given by
(H1) for all X V, H(X) X,
(H2) for all r Ri,j CI .R,i+x, H(r) r,
(H3) for all (r, r’)R[’+l,

)oH(r, r’) (Ai - Ala) ((A fl) + a

H: S(G,)-> S(G,j/I) is faithful by an application of Lemma 6.
Let G (N, X, P, ’), G’= (N’, X, P, sr’) be grammars, S’= S(G’), S S(G).

An externally fixed grammar functor, H: S’ --> S is externally full if for all a V*
and all o *, H(a, o)" S(a, co)--> S(H(a), co) is surjective.

PROPOSITION 7. H: S(Gi,) -> S(Gi,+1) is externally full.
Proof. Let S’= S(G,), S= S(G,+I). The proof is by strong induction on the

length of derivations in S. The base is trivial since for o * the only derivation is
the identity. Let g: a --> o be a derivation of length n + 1 in S with co *, and let

(,n+lg ,_.,= g be the canonical representation of g. Consider gl =/z + r + ,, where
V* andrR/l. IfrR’ then gl is a derivation in S’ suchthatH(gl)=gli,j+l

By induction then, there is a derivation f: a--> o in S’ such that H(f)= g. If
r R[+I then P+l(r) A -A3, for some , V*. By the fact that c(g) o

"<’"+
gi, g2 =/z + r’ + ,, for some r’ R j.)+l. The derivationand the canonicity o k_;=

fl ix + (r, r’) + , in S’ maps into gl g2 as H(fl) H(l) + H(r, r’) + H(,)
Ix + H(r, r’) + g g2 by (H3). Induction again establishes the result. D

Composing the functors H: S(G,) S(G,j+) gives the preservation proper-
ties of the prefix normal form.

COROLLARY 8. Let G be a cfg free of left recursion and let G’ be the
corresponding prefix normalform grammar. ere is a faithful and externally full,
externallyfixed grammarfunctorH: S(G’) S(G). In paracularL G’) L G) and
prefixnormal form preserves ambiguies.
e existence of a functor from the normal form to the original grammar

makes it particularly easy to carry the semantics of the original language to the
normal form. Suppose T: S(G)A is an interpretation of G. The corresponding
interpretation of G’ is given by composition with H:

H T
HT: A S(G) A.

Let G.= (N, , P*, S) be a cfg with nonindexed productions P*=
{A BlBrR, with d(r)=A, c(r)=fl}. ere is always a functor S" S(Gi,I)

PROPERTIES OF NORMAL FORM GRAMMARS 391

S(G) which is the identity on objects and which maps each rule r into the unique
corresponding rule in P*. While S" Ri,j P* is surjective, it is not in general
injective, since there may be distinct (r, r’) and (s, s’) in R ,’/1 Ria for which

Pi,j(r, r’) Ai fla and Pia(s, s’)

while/3a =/3’a’. Hence in the diagram

S(G,.*) S(G .i+1)

there is no canonical choice of functor-- since S is not faithful. Without
indexing then, lifting external symbols to the prefix position does not in general
preserve ambiguities. The above analysis, mentioned by a referee, shows that
indexing is important in semantically motivated studies of syntactic relationships.
There may very well be two rules P(r)=A-a, P(s)=Aa with different
interpretations T(r) T(s). Ambiguity preservation guarantees that the syntaxes
remain free to accept arbitrary interpretations mediated by the connecting functor
H: S(G’) S(G).

5. Adjoint situations. Let C, D be categories and F: C--)D, G" C--)D be
functors. A natural transformation from F to G, r/" F G, is a family of arrows in
D, indexed by the objects of C, such that for each object a of C, r/(a) is an arrow
from F(a) to G(a), (a): F(a) - G(a). These arrows are subject to the axiom: for
all arrows f: a--) b in C,

n(a)
F(a)) G(a

F(f) 1 G(f)
F(b) O(b)

n(b)

commutes, that is r/(a)o G(f)= F(f)o n(b).
For each category C, the identity functor on C is denoted Ic.
An adjunction from C to I) consists of two functors and two natural

transformations, (H, F; r/, e): C-- I), where H: C--) I), F: 1)--) C are functors and
q: Ic HF and e:FH It) are natural transformations. The data renders com-
mutative the-triangular identity diagrams in Fig. 2.

In this, HF: C- C and FH: !)--)I) are the composite functors, where HF
means "first H, then F" and FH means "first F, then H.". qH, He, Fq and eF are
all natural transformations, r/H means use r/to find an arrow and then applyH to
that arrow. Similar meanings are attached to the other three natural transforma-
tions. In (H, F; r, e) H is called the left adjoint and F is called the right adjoint.
MacLane [22] contains a detailed exposition of adjoints.

392 DAVID B. BENSON

nH

H > HFH

He

FHF < F

FIG. 2

If FH= It then H is said to be right-inverse to F. If (H, F; r/, e) is an
adjunction and H is right-inverse to F, then H is called the left-adjoint-right-
inverse to F. In this case e is the identity natural transformation and the
adjunction is written (H, F; r/, -). The existence of an adjunction
(H, F; r/, -): C D implies a great deal about the structural similarity of C and D.

A cfg G (N, , P, S) is in canonical two form if for P: R -Nx V*, P(R)
_

Nx ({A } U VU N2). Canonical two form is a slight extension of Chomsky’s normal
form. If G is an arbitrary cfg and G’ is its canonical two form equivalent, there is
an adjunction (H, F; r/, =)" $(G’) $(G). While intuition says that canonical two
form preserves the structure of G, the existence of an adjunction is surprising. We
proceed to the details, with notation following that of Gray and Harrison [14].

Let 2 be the class of cfg and let 2 c 2 be the subclass of grammars in
canonical two form. Let C2:2- (92 be the function such that for each G-
(N, E, P, S) 2 results in C2(G) (N’, , P’, [S]) where

N’=N1UN2,

N1 {[ALIA V), a new copy of V,

P(r) A aft, a V*, fl V2 V*},
P’: R’- N’ X (V’)*,

in which R’ R LJ R -J R2, R is the set of indices of rules in G, R {[fl]][fl N2)
is a new copy of N2 and R2 {[]]a 2:) is a new copy of Z. P’ is specified by:

1. For r R,

[A]- A

P’(r) [A]- [B]

[A]- [B][fl]

if P(r) A ---> A,

if P(r)=A ->B, A eN, B V,

if P(r) A Bfl, A e N, B e V, fle V+.
2. For [Aft e R1, P’([Aft]) [Aft]- [A][/3].
3. For [a]eR2, P’([a])=[a]a.

C2:32- 2 is the canonical two forming function.
For each G e 32 there are a pair of externally fixed grammar functors,

F: S(G) S(C2(G)) and H: S(C2(G)) S(G). We proceed to define them.
(H1) For a e E, H(a) a.
(H2) For [fl e N’, H([fl]) =/3.
(H3) For r R, H(r) r.

PROPERTIES OF NORMAL FORM GRAMMARS 393

(H4) For [fl]ERll..JR2, H([fl])= 18, the identity derivation at the string

The specifications (H1) and (H2) generate H on all the objects (V’)*. Part (H3) in
combination with the data 2 in the specification of the canonical two forming
function determine the way that H "removes brackets" from rewrite rules
indexed by R. Part (H4) trivializes the "bracket adding" rules in R1 and the
"externalizing" rules in R2. Since S(C2(G)) is a free sm-category and H is a
sm-functor, H is completely determined by (H1)-(H4). H may be called the
bracket removal functor.

To specify the bracket adding functor F: S(G)-S(C2(G)), the following
notation is convenient. For A N, e[A] ltal, the identity derivation at [A]. For
a E, e[a] ([a]: [a] a), the externalizing rewrite rule. This defines e for every
[A]N1.

(F1) For a Y.., F(a) a.
(F2) For A N, F(A [A].
(F3) For r E R such that P(r) A -. A, F(r) r.
(F4) For r R such that P(r) A - B, B V, F(r) r e[B].
(FS) For rR such that P(r)=A BC, B, C V, F(r) ro(e[B]+e[C]).
(F6) For r E R such that P(r) A -AA2 ", An, n 2, A 6 V,

n--2

F(r)= r C) (fAll""" [Ai]+[Ai+l"’" A,])o E e[A].
i=1 i=1

Some explan__ation is in order. In (F4), if P(r)=A- a with a e E, then F(r)=
[A]-- [a] t- a. In [F6], P’(r)=[A]->[A1][A2 An]: The bracketed symbol
[A2. A, must be rewritten to the fully bracketed string [A2]. [A,]. This can
only be accomplished via the rewriting rules [A+a.. A,,]: [A+x"" A,]-
[Ai+][A+2" A,] with n- 2 steps since the last step is [A,_xA]: [An-xA,]-
[A,-1][An]. The resulting string is in N. The symbols of the form [a], for a e E,
must be externalized and the parallel rewriting =1 e[A] accomplishes this.

LEMMA 9. FH: S(G) S(G) is the identity functor on S(G).
Proof. Let g be any derivation in S(G). Let g Q)i= gi be any decomposition

of g into terms gi + ri + ,. Since FH is a functor, FH(g) Q)= FH(g). As F
fully brackets strings and H removes them, FH(/x)=/ and FH(u)=u for
1 _-< =< m. The rewrite rules ri must be treated by the cases corresponding to (F3)
through (F6).

(i) If P(r) A A then FH(r) r.
(ii) If P(r)= A -. B then F(r)= r e[B]. H(r e[B])= H(r) H(e[B])=

rO lB =r.
(iii) If e(r) A -BC then F(r) r (e[B]+ e[C]). H(r (e[B]+ e[C]))

H(r) (H(e[B])+ H(e[C]))= r (1B + lc)= r 1Bc r.
n--2(iv) If P(r)=A AI An, F(r)=ro(,=x ([A1]"" .[Ai]+

[A,+I""An]) Ei=le[A,]. Now H(r)=r, H([A]...[A]+[A+...An])
AI"’" A + IA,+I...A, lal...an for l_-<i_--<n-2, and H(= e[A]) 1A1...A..
Composing the above derivations, H(F(r)) r. U

394 DAVID B. BENSON

For each symbol X V’, define a derivation r/(X) in S(C2(G)) as follows:
(xll) For a s , r/(a)
(x12) For a sE, r/[a]=[a]: [a]oa.
(x13) For A N, r/[A]= 1[A].
(14) For [Aa A,,] N2,

n--1

r/[A1""" An] Q) ([31]... [Ai-1]+[Ai’" A.])o E e[Ai].
i=1 i=1

Note that N2 and R2 are defined so that r/[A1 A,] does always exist. This is
Gray and Harrison’s construction, necessary and just sufficient to define C: c.
c, so that nothing has been artificially introduced to construct r/. Further note
that (x12) and (x13) define r/(X), for X N1, as r/(X) e(X). On strings in (V’)*, r/
is defined by the usual monoid homomorphism recursion equations:

(5) r/(A) lx,
(6) r/(aX) "1 (a) + rl (X), a V’)*, X V’.
LEMMA 10. Let S’= S(Cz(G)). r/as defined in 0q 1)-(’q6) is a natural transfor-

mation ,/:Is, HF.
Proof. We must show that for all derivations f: y 6 in S’ that f /(6)=

q(y) fHF, where [HF means F(H(f)). Since S’ is freely generated, it suffices to
show that

t aHF

3 HF
()

commutes for all rules r R’. Since R’ R tA R J R2 there are three cases.
Case 1. r R. There are four subcases corresponding to (F3) through (F6).
(i) P’(r)= [A]- A. rHF=r, so (x13) and (-qS) give the commuting diagram.
(ii) P’(r)=[A][B], B V. rHF= r e[B] so ltAl r e[B]= r e[B].
(iii) P’(r)=[A]-[B][C]. rHF= ro(e[B]+e[C]) and again ltAOro(e[B]+

e[C]) r (e[B] + e C]).
(iv) P’(r)=[A]o[A1][A2 A,], n >2.

n--2

rHF=ro (([A1]"" [Ai]+[Ai+a"" A.])o e[Ai].
i=1 i=1

Now

’r/([A1][A2""" A])= r/lAx]+ r/[A2"""
n-2

e[al]+ () ([a2]""" [ai]+[ai+l""" a,,]) y’. e[ai]
i=1 i=2

n--2

Q) ([al][a2]""" [ai]+[ai+l""" An]) Y’. e[ai]
i=1 i=1

so again the diagram commutes.

PROPERTIES OF NORMAL FORM GRAMMARS 395

Z(r)

Case 2. rR1, P’(r)=[Aa An]--->[Aa][A2" A,,]forsome n >=2. rHF=
lxl...x, where X [Ai if Ai N and X Ai if Ai Z. The same argument as in
(1.4) shows that r (r/[al]+ r/[a2 a,,]) r/[A1

Case 3. r R2, P’(r) [a]-> a for some a Z. rHF= la. Since r/[a] r and
r/(a) la, again the diagram commutes.

THEOREM 11. The data given above form an adjunction (H,F; r/,=):
S(C2(G))-- S(G).

Proof. Lemmas 9 and 10 as the triangular identities are immediate.
COROLLARY 12. From MacLane [22, pp. 88-93], S(G) is isomorphic to a

reflective subcategory of S(C2(G)), F is injective on objects, full andfaithful. Hence
C2(G) preserves the ambiguities in G. Since H is right-inverse to F, H is full and
L(C2(G)) L(G). An interpretation of either G or C2(G) gives, via the appropriate
adjoint [unctor, the corresponding interpretation of the other grammar.

The adjunction (H, F; r/, =)" S(C2(G))---S(G) provides a proof that C2(G)
is LR(k)iff G is LR(k), strengthening a result of Gray and Harrison [14]. The
nicest way to the proof is via certain categories derived from syntax categories.

DEFINITXON 3. Let G (N, , P, S) be a cfg with syntax category S. Let
T= {a + r+ wla V*, r P, w*} be the set of "rightmost" terms in S. The
rightmost category of G, R(G), is the smallest subcategory of S such that * is
a subset of the objects of R(G) and T is a subset of the arrows of R(G).

Objects in R(G) are of the form aAw for a V*, A N, w * or are in *.
R(G) is not a strict monoidal category. For every derivation from the point
S, [: S 3’, the cocanonical representation of f is rightmost.

PROPOSITION 13. Every derivation in R(G) is both monic and epic.
Proof. Epicity (left cancellation) follows from G being of type 0. Monicity

(right cancellation) follows from the uniqueness of the rightmost representations
in R(G). [3

With care to preserve rightmost representations, the adunction
(H, F; /, =)" S(C2(G))-S(G) provides an adjunction between R(C2(G)) and
R(G). Here are the details.

The bracketing functor B: R(G)- R(C2(G)) is determined by the following
data. Let [.]: V* (V’)* be the monoid homomorphism carrying each X V to
[X] V’. B is given on objects Aw V*NE* by

B(aAw) ["](aA) + w
and is the identity on strings in 2:*. Next we define a map r from some objects of
R(Cz(G)) to the arrows of R(Cz(G)). Let N {[a]la eN} and Ne {[a][a eZ}.

+ [ai])=o[a]+Zi=a [ai]andFor a[A] NIN/and 2i=1 fail Ne let ((a[A Y.i=a
’(Y’.= [a]) Y.= [a]. Define Z from the productions of G to the derivations in
R(C2(G)) as:

r

_
[Xj]--I-[X/+I... Xn ([Xl] [Xn]

i=1 i--1
if P(r) A -XI X., n >- 2,

r e[B] if P(r)= A B,

r otherwise.

396 DAVID B. BENSON

Now B is defined on the derivations f in R(G) by letting Q)= (/x + r + w) denote
the cocanonical representation of f and setting

B(f) O (["](/x) + Z(r) + wi).
i=1

It is apparent by the construction of the rightmost categories that B is a functor,
but not a strict monoidal functor as rightmost categories are not strict monoidal.

Since the bracket removal functor H: S(C2(G))- S(G) preserves cocanoni-
cal representations, H restricts to a bracket removal functor from R(C2(G)) to
R(G), also denoted by H.

PROPOSITION 14. For suitable 1" IR(C2(G)) HB, (H, B; q, =): R(C2(G))
R(G) is an adjunction.

Proof. It suffices to define r/so that the appropriate diagrams commute for
each term/z + r + w in R(C2(G)), as the remaining details are similar to Theorem
11. Let Ne --{[a][a E}. For [Xa... X,] N2, define

n--1

e[Xl’’’ Xn] 0 (IX1]""" [X/-1]-[-[X/""" Xn]) ’([Xl)""" [Xn]).
i=1

For a e (V’)*, X’e N’, x e* define

rl(aX,x)=
rt(a)+e(X’)+ l if c(e(X’))eY_,*,

1 + e (X’) + lx otherwise

r/(x)- ix. 71

COROLLARY 15. B is full, faithful and infective on objects. His full. B reflects
and preserves limits.

Rightmost categories are close to being a suitable space in which to consider
LR parsing. It is more convenient to introduce an augmentation so that the
objects are the partial strings so far scanned by the LR shift-reduce parser.

DEFINITION 4. Let R be a rightmost category. The augmented category A is
given by:

(A1) The objects of R are the objects of A.
(A2) (f, z)’a - fl is an arrow of A whenever f: a flz is an arrow of R and

z*.
(A3) A is the smallest category closed under the composition

(fl, Z 1) (f2, Z2) (fl (f2 + Z 1), Z2 -[" Z 1)-

A is a category since composition is associative, i.e.,

((fl, Zl)o (f2, Z2)) (f3, Z3)

(fl (f2 + Z 1), Z2 q" Z 1) (f3, Z3)

(fl (f2 + Z1) (f3 + Z2 q- Z1), Z3 -+- Z2 + Z1)

(fl ((f2 (f3 -[- Z2)) -[" Z 1), Z3 -[- Z2 -[- Z 1)

(fl, Z 1) (f2 (f3 + z2), z3 -[- z2)

(fl, Zl) ((A, z2) (f3, z3)).

PROPERTIES OF NORMAL FORM GRAMMARS 397

To ease the notation, arrows (f, A) in A will frequently be written as f.
Let R1, R2 be rightmost categories and (H, B; r/, =)- R2 R1 an adjunction.

Define

H: A.-> A: (f, z)--->(fH, zH),

B: AI-> A2: (g, y)-> (gB, yS),

PROPOSITION 16. (/-/, B; r/’, =): A2---A1 is an adjunction.
This adjunction between the augmented categories A(CE(G)) and A(G) will

be used to show that C2(G) is LR (k) iff G is LR (k). Hereafter we write r/for r/’.
Because of the adjunction, there is an isomorphism

: AI(aH, fl) A2(a, fiB)
for all objects ce, ft.

Let A1 A(G), A= A(C2(G)). In this case the adjunction isomorphism
specializes to

: AI(S,/8) A2([S], fiB)

which, along with the more general form, will be used subsequently.
Turning specifically to LR-ness, the LR (k) property of a grammar can be

characterized by the existence of certain limits in A.
DEFINITION 5. G is LR(k)iff for all a, % to e V*, w e Ek, z, z’e E*, rules

r: A -> fl, r’: A’--> fl’, if in R(G)

f: S - aflwz (S f- aAwz) (a + r + wz)
and

g" S- aflwz’ (S g- 3"A’w) (3" + r’ + to)

then r r’, a 3", and to wz’.
One may compare this definition with that of Hotz and Claus [20, p. 191].
DEFINITION 6. Let (f, z): S --> t; be an arrow in A(G), for some cfg G. f has

k-handle (a+r+w) for rule r:A-->/, week, if 8=a13w and (f,z)=
(f’, z) (a + r + w, A). Further for ce, fl V*, w E, ceflw is a parsable prefix with
k-parse-term (ce + r + w) if there is an (f, z) with k-handle (ce + r + w). G is locally
LR(k) at y if y is a parsable prefix with k-parse-term (ce + r + w) and for all
(g, z): S --> y, (ce + r + w) is the k-handle of (g, z).

The following two propositions are the characterization of LR-ness as a set of
limits in A(G).

PROPOSITION 17. G isLR (k iffG is locallyLR (k ateveryparsableprefix.
PROPOSITION 18. G is locally LR (k) at V iff y is a parsable prefix with k-

parse-term t: - 3" andfor all (f, z): S - 3’ there is a unique (f’, z): S -> such that
S

(f,z)
\ (f’,z)
\
\

\

commutes.

398 DAVID B. BENSON

The limit characterization of LR-ness, together with the fact that
B" A1-> AE--as a full and faithful right adjoint--preserves and reflects limits,
gives the proof that C2(G) is LR(k) iff G is LR(k). We begin with lemmata.

LEMMA 19. If an arbitrary cfg G is locally LR(k) at y with k-parse-term
t: 6 -> y then for all y ,* and all (f, z): S -> yy there is a unique (f’, z):S --> y such
that .a y

(f’,z) t+y

S ,y

commutes. (f, z)

Proof. The map (y, y): A(S, Ty)->A(S, T): (f, z)--> (f, yz) is injcctive for
each T and y. Thus if every arrow S-> T factors uniquely through t, every arrow
S --> Ty factors uniquely through t + y.

LEMMA 20. If C2(G) is LR(k) then for all 0 (V’)*E* for which there exists
(f, z):[S]--> O in A2, every (g, z):[S]-> OHB factors uniquely through /(0):0->
OHB.

Proof. If /(0) is the identity, the conclusion is trivial. Otherwise, let Q)il ti
be the cocanonical decomposition of /(0). Let yn be the parsable prefix of OHB,
with unique k-parse-term t’. OHB yn + y for some y * since OHB is a right
sentential form. By Lemma 19 (g, z) factors through t’+y and t, t’+y. A
straightforward induction from t, to tl finishes the proof.

COROLLARY 21. A2([S], 0)-- A2([S], OHB) for 0 (V’)*Z*.
THEOREM 22. If C2(G) is LR (k) then G is LR (k).
Proofi The argument uses the adjunction between A2 A(C2(G)) and A1

A(G) to find, for each parsable prefix y of G, certain limit diagrams in A2. Since
B: Aa A2 reflects limits, the A2 diagrams reflect into limit diagrams in Aa,
showing that G is locally LR (k) at y.

Let y be a parsable prefix of G with some k-parse-term t: 8y, t=
(a+r+w). One has B(t)=([.](a)+r+w)o7(O) where O=[.](a)+c(r)+w
with c(r) being the codomain of r in C2(G), and y OH so that yB OHB. For any
(g, y): [S] yB, Lemma 20 shows that there is a unique (g’, y): [S] 0 for which
(g, y) (g’, y) t (0). Write t’ for ([.](a) + r + w). Since t is a k-parse-term, there
are (f, z): S --> y and (f, z): S --> 6 in A1 for which (/, z) (f, z) t. Then B(/, z)
B(f’, z)o t’ ,/(0). Since C2(G) is LR(k), t’ is the unique k-parse-term at 0.

Hence each (g, y): IS] --> yB uniquely factors

[s]:

(g’, y)

6B
/ I t’

n(o)

OHB yB

PROPERTIES OF NORMAL FORM GRAMMARS 399

through t’ n(O) as shown in the diagram. Since B is full, every (g, y)" [S] yB is
the image of some (f, y)" S y. Since B reflects limits,

S

is a limit diagram in , indeed a limit diagram for every (f, y)" S y since B is
faithful. Hence every (f, y)" S 3’ factors uniquely through t.

THEOREM 23 (Gray and Harrison). ff G is LR(k) then C(G) is LR(k).
Proofi We show that C(G) is locally LR(k) at every parsable prefix using a

proof by rule type. The cases are (i) the rule is one of the [a] inR, (ii) the rule is in
R, and (iii) the rule is one of the [B R.

(i) Let y be a parsable prefix in with 0-parse-term (+[a]). By the
construction of C(G), it is clear that Ca(G) is locally LR (0) at % By Lemma 19,
C(G) is locally LR (k) at yw for each w e; such that yw is a parsable prefix.

(ii) Let 3’ be a parsable prefix with k-parse-term (+ r + w) for r e R. Let
(g, y)" [S]-y factor through t, (g, y)= (g’, y)o for some g’. Since (gliB,
(g, y) r(y), we have the diagram

,,," (g, y)

"yHB

Since r E R, by a trivial induction HB .
Noting that S [S]H the pertinent adjunction isomorphisms are"

&" A([S], ,yHB) AI(S, /H),

&" A2([S], 8HB) AI(S, 8H),

&" A2(8, THB)-AI(3H,

giving the commuting diagram
8H

(g’, y)J’
S @(t on(),))

,H

400 DAWD . 3zrqsor

in A1. Now ck(to7(’y))=(aH+r+w), so it is the unique k-parse-term for
parsable prefix yH, since G is LR (k). Since B--as right adjoint--preserves limits,
each B(f, z): [S] yHB factors uniquely through 7 (’) B((t n ())). Since
n(Y) is monic, B(f, z) factors uniquely through (), B([, z)= (h, z) W() for
some unique (h, z) :[S] . Therefore A([S],) Az([S], yHB) A(S,.
Hence every (h, z): [S]y factors uniquely through t: 6, so that C(G) is
locally LR(k) at y.

(iii) Let be a parsable prefix with k-parse-term t:6 , t (a +[fl]+ w),
[]R. Let (g, y): [S] factor through t. By the construction of C2(G), there
exists (g’, y) such that

(g,y)=(g’,y)o + r oO([Xx]...[]+[+x...X,]) +w
i=1

for some r R and in which O Xk+x’’" X,. e proof in part (ii) then goes
through to show that C2(G) is locally LR (k) at y.

6. Notes on covering. This section discusses certain aspects of Gray and
Harrison’s thought-provoking paper [14]. Obviously, familiarity with it is
assumed.

Gray and Harrison originally presented eorem 23 (their Theorem 2.1) in
terms of covers. The following proposition shows that we have correctly used
functors in the previous section.

PROPOSITIO 24. Let F: S(G’) S(G) be an externally fixed, externally full
grammarfunctorfor cfg’s G’, G, such thatfor each rule r’ R’, F(r’) is a ru& ofR or
an identity (zero-&ngth derivation. Let H’ {r’ R’IF(r’) R }. Then (G’, H’)
covers (G, P) under F; hence G’ completely covers G.

Since H: S(C2(G)) S(G) is full, we immediately obtain their Theorem 1.1:
Cz(G) completely covers G. We note in passing that the construction used in their
Theorem 2.2 is functorial as well.

Furthermore, the concept of weak Reynolds cover introduced by them is
actually nothing but an externally fixed grammar functor, first explicated in 1966
by Hotz [18]. Therefore the existence of H and F between S(C2(G)) and S(G)
show that C2(G) and G weakly Reynolds cover each other, despite 2 in Gray and
Harrison [14, p. 684].

These methods also show that part (b) of the proposition on page 682 of [14]
is wrong. To say that (G’, P’) covers (G, P) under F says only that F is a functor
taking rules in R’ into rules in R. is doesn’t suffice to show that S’(S’, x) and
S(S, x) have the same cardinality for each x L(G) L(G’) as trivial examples
show. One requires functor surjectivity.

Despite these minor problems, covers form a more powerful tool than
grammar functors as their Theorem 1.2 [14] and the paper of Mickunas [23]
demonstrate. Both of these concepts, central to the idea of parsing simulation,
deserve further work. Somewhat related program simulation ideas are in Goguen
[a2].

7. Concluding remarks on categoric methods. Comparing the examples
presented here with the cited literature shows that one can obtain stronger results
for very little additional effort, by applying categorical algebra. For example,

PROPERTIES OF NORMAL FORM GRAMMARS 401

Theorem 22 fell out essentially for free while obtaining the current proof of
Theorem 23. Indeed, comparing the structure of the proof for Theorem 23 with
Gray and Harrison’s original proof shows that the current proof is essentially
simpler. This is not surprising once one notices that Gray and Harrison have
almost established the adjunction and almost proved the preservation of limits,
general theorems on which we rely.

Using the tools of categorical algebra simplifies and sharpens many of the
results in formal language theory. The reader may find that most of the effort in
the examples presented is in setting up the requisite categories, functors and
natural transformations. This is, I believe, typical of the applications of category
theory. The categorical propositions are general and powerful; the application
requires only finding the appropriate framework in which to apply the proposi-
tions as opposed to the traditional technique of creating proofs de novo. At least
part of the purpose is the discovery of how the algebra of formal language syntax
relates to other branches of mathematics. Since monoidal categories are ubiquit-
ous, one finds many connections, especially to universal algebra (Benson [7],
Benabou [5]).

Acknowledgment. I appreciate the thoughts provided by referees, resulting
in clarifying the relationship of grammar functors to other notions of grammatical
relationships.

REFERENCES

1] A. V. AHO AND J. D. ULLMAN, The Theory ofParsing, Translation, and Compiling. Volume I:
Parsing, Prentice-Hall, Englewood Cliffs, NJ, 1972.

[2],The Theory ofParsing, Translation, and Compiling. Volume II: Compiling, Prentice-Hall,
Englewood Cliffs, NJ, 1973.

[3] S. ALAGI(, Naturalstate transformations, J. Comput. System Sci., 10 (1975), no. 2, pp. 266-307.
[4] M. A. ARBIB AND E. G. MANES, Arrows, Structures, and Functors: The Categorical Imperative,

Academic Press, New York, 1975.
[5] J. BENABOU, Structures algdbriques dans les categories, Cahiers Topologie G6om. Ditt6rentielle,

10 (1968), no. 1, pp. 1-126.
[6] D. B. BENSON, Syntax and semantics: A categorical view, Information and Control, 17 (1970),

pp. 145-160.
[7], Semantic preserving translations, Math. Systems Theory, 8 (1974), no. 2, pp. 105-126.

[8], The basic algebraic structures in categories of derivations, Information and Control, 28

(1975), pp. 1-29.
[9] E. BERTSCH, An observation on relative parsing time, J. Assoc. Comput. Mach., 22 (1975), pp.

493-498.
10],Surjectivity offunctors on grammars, Math. Systems Theory, 9 (1976), no. 4, pp. 298-307.

[11 H. W. BUTTLEMANN, Semantic directed translation of context free languages, Amer. J. Compu-
tational Linguistics 1, Micro 7, 1974.

[12] J. A. GOGUEN, On homomorphisms, correctness, termination, unfoldments, and equivalence of
flow diagram programs, J. Comput. System Sci., 8 (1974), pp. 333-365.

[13] J. A. GOGUEN, J. W. THATCHER, E. G. WAGNER AND J. B. WRIGHT, Initial algebra

semantics, IBM Research Rep. RC 5701, Yorktown Heights, NY, 1976.

[14] J. N. GRAY AND M. A. HARRISON, On the covering and reduction problems]’or context-free
grammars, J. Assoc. Comput. Mach., 19 (1972), pp 675-698.

15] S.A. GREIBACH, A new normalform theoremfor contextfree phrase structure grammars, Ibid., 12

(1965), pp. 42-52.
[16] T. V. GRIFFITHS, Some remarks on derivations in general rewriting systems, Information and

Control, 12 (1968), pp. 27-54.

402 DAVID B. BENSON

[17] H. HERRLICH AND G. STRECKER, Category Theory, Allyn and Bacon, Boston, 1973.
18 G. HOTZ, EindeutigkeitundMehrdeutigkeitformalerSprachen, Elektron. Informationsverarbeit.

Kybernetik, 2 (1966), pp. 235-247.
[19], Strukturelle Verwandtschaften yon Semi-Thue-Systemen, Category Theory Applied to

Computation and Control, Lecture Notes in Computer Science No. 25, Springer-Verlag,
New York, 1975, pp. 174-179.

[20] G. HOTZ AND V. CLAUS, Automaten-Theorie und Formale Sprachen III. Formale Sprachen,
Bibliographisches Institut, Mannheim, West Germany, 1972.

[21] D. E. KNUTH, Semantics of context free languages, Math. Systems Theory, 2 (1968), pp.
127-145.

[22] S. MACLANE, Categories for the Working Mathematician, Springer-Verlag, New York, 1971.
[23] M. D. MICKUNAS,On the complete covering problem for LR(k) grammars, J. Assoc. Comput.

Mach., 23 (1976), pp. 17-30.
[24] P. S. PETERS, JR, AND R. W. RITCHIE, Context-sensitive immediate constituent analysis:

Context-free languages revisited, Math. Systems Theory, 6 (1973), pp. 324-333.
[25] W. J. SAVITCH, How to make arbitrary grammars look like context-free grammars, this Journal, 2

(1973), pp. 174-182.
[26] C.P. SCHNORR, Transformational classes ofgrammars, Information and Control, 14 (1969), pp.

252-277.
[27] C. P. SCHNORR AND H. WALTER, Pullback-Konstruktionen bei Semi-Thue-Systemen, Elek-

tron. Informationsverarbeit. Kybernetik, 5 (1969), pp. 27-36.
[28] D. F. STANAT, Approximation of weighted type 0 languages by formal power series, Information

and Control, 21 (1972), pp. 344-381.
[29] H. WALTER, Verallgemeinerter Pullback-Konstruktionen bei Semi-Thue-Systemen und Gram-

matiken, Elektron. Informationsverarbeit. Kybernetiik, 6 (1970), pp. 239-254.
[30] ., Grammafik-und-Sprachfamilien, Teil 1, Diagrammergiinzungssiitze und Abschluss-

eigenschaften, Tech. Rep. AFS-13 Informatik, Technische Hochschule Darmstadt, West
Germany, 1975.

[31] W. A. WOODS, Context-sensitive parsing, Comm. ACM, 13 (1970), pp. 437-455.

SIAM J. COMPUT.
Vol. 6, No. 3, September 1977

IMPLEMENTATION CORRECTNESS INVOLVING A LANGUAGE
WITH goto STATEMENTS*

BRUCE D. RUSSELL]

Abstract. Two languages, one a simple structured programming language, the other a simple goto
language, are defined. A denotational semantics is given for each language. An interpreter for the goto
language is given and is proved correct with respect to the denotational semantics. A compiler from the
structured to the goto language is defined and proved to be a semantically invariant translation of
programs. The proofs are by computational induction.

Key words, compiler, interpreter, semantics, denotational semantics, implementation correct-
ness, computational induction

1. Introduction. If a formal definition of the semantics of a programming
language is to be useful, it is essential that the implementation of the language is
consistent with the formal definition. It makes little sense to prove the correctness
of a program, or improve a program with semantically invariant transformations,
if the implementation of the language does not preserve the semantics. Further,
while we may program with high level, structured programming languages
these programs will probably be translated into the machine language of the
machine and the machine language will then be interpreted by the hardware. The
correctness of both the compiler into the machine language and the interpreter for
the machine language is essential.

To illustrate these problems and to give examples of the kinds of proofs
required we define a structured programming language and a goto language. A
denotational semantics is given for both languages. An interpreter is defined for
the goto language and its correctness is proved. A compiler from the structured to
the goto language is defined and its correctness is also proved. The example
languages are deliberately kept simple to facilitate understanding.

2. Method and notation. The denotational semantics for the two languages
are specified, following Scott [11], Scott and Strachey [13], Strachey and
Wadsworth [14], as a function from a set of syntactic objects called programs into
some set of "meanings" or denotations, appropriate for the particular language.
The compiler will be defined as a function from one syntactic set of programs, the
source language, into another syntactic set of programs, the target language. The
interpreter will be defined as a function from machine states into machine states.

In all these cases the following questions arise. Are there sets of objects with
the sorts of properties we require, to model things like syntax, machine states and
denotations? Are there functions that behave as the semantic, interpreter and
compiler functions should? Finally, can we prove things about these functions?
The affirmative answers to these questions are provided by using the domain
construction techniques of Scott [10], [12] and the least fixed point approach to
the solution of function equations.

* Received by the editors April 2, 1975, and in revised form March 25, 1976.
]" Computer Science Department, University College, Dublin, Ireland. Now at Department of

Computer and Information Science, Ohio State University, Columbus, Ohio 43210.

403

404 BRUCE D. RUSSELL

We assume that a domain is a set that has a partial ordering (denoted _-<), a
least element (denoted .1.) and in which every chain (totally ordered subset) has a
least upper bound (denoted U). The simplest way to form a domain is to extend
any set A with a single element 3.. The partial ordering is defined as 3. _<-a and
a <_- a for all a A. We call this the natural extension ofA. Some typical extensions
are ! the integers, T the truth values, ID the identifiers. We will also extend any
function f from A to B to the natural extensions of A and B. We call this the
natural extension of f and its value for a

_
A is f(a), and for 3. in the natural

extension of A its value is .t. in the natural extension of B. Relations will be
similarly extended.

We also form domains from existing domains using the operations of disjoint
union (denoted +), and Cartesian product (denoted). If we define a domain D
as

D=D+D2+ +D
we have the following function:

inspection-/" D - Ttrue, d D,

inspection-/(d) =.1., d +/-,

false otherwise.

We will write this as d’D.
We also have the function

projection-/" D D

projection_i(d)={d, deD,

.1. otherwise

where 3. is an element of D. We will write this as diDo.
If we define a domain D as

D=DxDax. xD,

we have the following functions:

constructor:D x Da x x D, D

constructor(d, d,..., d,)= the d D corresponding to (d, d,..., d)

destructor: D D x D, ,D
destructor(d) the {d, d,..., d} corresponding to d.

The final way of forming a domain from existing domains is to form the
function space from one domain into another. The functions we are interested in
are those that are continuous. Since we have required that domains be chain
closed we will insist that all functions over the domains are continuous in the sense
that they preserve the limits of chains. More formally a function f:D-,D is

IMPLEMENTATION CORRECTNESS 405

continuous iff for any chain X___ D U’f(X) =/(UX). We will denote the set of all
continuous functions from domain D to domain D’ by D D’. If we define a
partial ordering over D D’ by f =< g iff f(d) <-_ g(d) for all d 6 D, then D D’ is
also a domain.

We now turn our attention to continuous functions and a notation for writing
them. First note that we have a large supply of continuous functions from natural
extensions, all of which are continuous. Also the identity function and constant
functions are continuous as well as the functions associated with the domain
constructions + and . The composition of two continuous functions (f. g) is
continuous, as are any abstractions written in a lambda calculus notation, for
example, Ax.f(x, y), Ax.Ay.f(x, y), Af.f(x), etc. For a detailed development of
this sort of notation for continuous functions see Scott [10] or Reynolds [9].

A very important continuous function is the conditional function (called
cond). Its logical type is T D D D and its definition is

cond(t, dl, d2)= d2,..,
t true,

false,

We will write this as ff then dl else d2.

Another continuous function that we will make use of in what follows is the
update function. Its logical type is

update :((A B) A B) (A -*-B))

and its definition is

update(f, a, b) Aa’. if a a’ then b else f(a’).

The notation we will use for update(f, a, b) is fib/a].
Since most of the functions we use are defined by cases over a syntactic

domain we make use of the ease and let notation due to Burstall [2]. For example if
we define the domain PROGRAM as

PROGRAM ASSIGNMENT+COMPOUND
COMPOUND PROGRAM PROGRAM
ASSIGNMENT IDENTIFIER EXPRESSION

we may then write

cases p:
assignment(x, e) "some expression in x and e"
compound(p 1, p2) :"some expression in p 1 and p2"

for

if p :ASSIGNMENT then
let assignment(x, e)=p in "some expression in x and e"

else if p COMPOUND then
let compound(p 1, p2)=p in "some expression p 1 and p2".

406 BRUCE D. RUSSELL

As an example of these notations let us define a domain LIST of linear lists
over domain ATOM and define the usual functions of head, tail and cons.

LIST NIL+COMPOUND
COMPOUND ATOMx LIST

cons ATOM x LIST--> LIST
cons(a, e)= compound(a, e)

head: LIST--> ATOM
head(e)

cases e:
nil()’.i_

compound(a, e’) a

tail: LIST--> LIST
tail(e)

cases e:
nil(nil(

compound(a, e’) e’.

Finally if we define a function recursively it is the least fixed point of the
associated functional that is intended. For example, by the definition f(n)= if
n 0 then 1 else n f(n- 1) we mean the least fixed point of the functional

Af. An.if n 0 then 1 else n f(n 1).

To prove the equivalence of two expressions involving recursively defined
functions we may make use of Scott’s rule of computational induction. Suppose
F(f), G(g) are expressions in the recursively defined functions f i and g t2.
Then to show F(f)---G(g) it is sufficient to show

(i) F(.i.)= G(.I.)

(ii) F(f)G(g)F(tl)=G(t2)

so long as the F, G, f, g are continuous.
There are many detailed expositions of the least fixed point approach to the

solution of function equations such as de Bakker and de Roever [1], Manna, Ness
and Vuillemin [4], Reynolds [9], and Scott [12], among others.

We now have the tools we need to define domains, define functions over the
domains and then prove things about these functions.

3. Denotational semantics for the two languages. The first language might be
called an AtGOL-like, structured programming language. It consists of an
"assignment" statement, an "if" statement and a "while" statement. Two
programs may be put together (perhaps using ;) to form a compound program.

The semantics of such a language is given by specifying for each program in
the language what its effect on the values of identifiers is. The values of the
identifiers at any point in time is given by STORE ID--> VALUES and thus the
semantics of a program is some element of STORE--> STORE.

The formal definition follows"

IMPLEMENTATION CORRECTNESS 407

Syntax
p e STRUCPROGRAM ASSIGN

+ IF
+WHILE
+COMPOUND

ASSIGN ID x EXP
IF EXP x STRUCPROGRAM

x STRUCPROGRAM
WHILE EXP x STRUCPROGRAM

COMPOUND- STRUCPROGRAM
x STRUCPROGRAM

ex e EXP "usual expressions"
x e ID- "usual identifiers"

Semantics
s STORE ID VALUES
VALUES "set of language dependent values"

sem’ STRUCPROGRAM (STORE STORE)
eval: EXP x STORE VALUES

sem’(p)(s)
cases p

assign(x, ex):s[eval(ex, s)/x]
if(ex, pl, p2):i eval(ex, s) then sem’(p 1)(s) else sem’(p2)(s)
while(ex, pl):iI eval(ex, s) then (sem’(p). sem’(p 1))(s)else s

compound(p 1, p2): (sem’(p2) sem’(p 1))(s).

Let us examine sem’ clause by clause:
assign(x, ex): Evaluate the expression ex in the store s and make this the

new value of x in the store.
if (ex, p l, p2): Evaluate the expression ex in the store s. If its value is

true, then execute the then clause p 1, otherwise execute
the else clause p2.

while(ex, p 1): Evaluate the expression ex in the store s. If it is false then
do nothing to the store, otherwise execute the body of the
loop p 1 and then execute the entire loop p.

compound(p 1, p2): First execute p 1 and then p2.
The second language might be called a FortTlArq-like, "goto" language. It

consists of an "assignment" statement, an "ifnot" statement, a "goto" statement
and a "program" statement. A program is an n-tuple of labeled statements with
one extra terminating label at the end.

The "assignment" and "goto" statements are obvious enough. The "ifnot"
tests a condition and if it is false then branches. A program statement is an n-tuple
of labeled statements with a terminating label, where only branches within the
statement are allowed. The use of this last statement may easily be eliminated
from any program by making all labels in the program distinct. It is included for
convenience.

Programs in this language give a meaning to every label that occurs in the
program. The meaning, or semantics, of a label is the element of STORE

408 BRUCE D. RUSSELL

STORE associated with the execution of the program starting at that label. If we
let CONTINUATION STORE STORE and LABELENV LABEL
CONTINUATION, then the semantics for the labels will be given by an element
of LABELENV. The function sem will thus be of logical type PROGRAM
LABELENV. It will be defined by taking an everywhere undefined label environ-
ment and giving a value to each label that occurs in the program. The value given
to a label is the semantics of the statement prefixed by that label.

The semantics of an individual statement in this language is a little more
complicated. We cannot take the element of STORE-STORE that each
statement denotes and simply compose them, since we may never execute
the next statement if the first is a goto. To phrase it differently, once we have
executed a given statement we then continue with the following statement or
continue with a statement whose label is mentioned in a goto. Thus the type
of the function semstatement, giving the semantics of individual statements, is
STATEMENT (LABELENV - (CONTINUATION CONTINUATION))
where LABELENV=LABEL- CONTINUATION gives the semantics of the
labels and CONTINUATION is the semantics of the program starting at the next
sequential statement.

Syntax
p PROGRAM LABELEDSTATEMENT/ LABEL

LABELEDSTATMENT LABEL STATEMENT
STATEMENT ASSIGN

+IFNOT
+GOTO
+PROGRAM

ex EXP "usual expressions"
x ID "usual identifiers"

16 LABEL "usual labels"
ASSIGN ID EXP
IFNOT EXP LABEL
GOTO LABEL

Semantics
s STORE ID VALUES
VALUES "set of language dependent values"

c 6 CONTINUATION STORE STORE
e LABELENV LABEL CONTINUATION

sem: PROGRAM LABELENV
semstatement: STATEMENT

(LABELENV (CONTINUATION--> CONTINUATION))
eval: EXP STORE-VALUES.

We will occasionally wish to obtain the label on the first statement of a
program. The function "firstlabel" will do this.

firstlabel PROGRAM LABEL
firstlabel(p)

let (/1: tl;... ln: tn; ln+l)=p
in ll

IMPLEMENTATION CORRECTNESS 409

semstatement: STATEMENT
(LABELENV- (CONTINUATION CONTINUATION))

semstatement(t)(e)(c
cases t:

assign(x, ex):c As. s[eval(ex, s)/x]
ifnot(ex, 1):As. ig eval(ex, s) then c(s) else e(l)(s)

goto(l) e (1)
program(p) c sem(p) (firstlabel (p))

Let us examine semstatement clause by clause, where e is the labelenv
specifying the continuation associated with each label and c is the continuation
associated with the next sequential statement.

assign (x, ex):

ifnot(ex, e):

goto(1):

program(p):

Modify the store as usual for an assignment statement and
then go on to the next sequential instruction.
Evaluate the expression ex in the store and if true then go
on to the next sequential instruction else go to the state-
ment labeled l.
Do nothing to the store and carry on with the statement
labeled 1.
Take the semantics of p isolated from any of the labels
outside p. Apply the element of STORE--> STORE given
by the label on the first statement of p and then carry on
with the next sequential instruction.

sem: PROGRAM LABELENV
sem(p)
let (/1: tl;/2: t2;... ln: tn; ln+ 1)=p
in .k[semstatement(t l)(sem(p)(sem(p (12))/ l

[semstatement(t2)(sem(p))(sem(p)(13))/12

[semstatement(tn)(sem(p)(sem(p)(ln + 1))/In
[As. s/ ln + 1

Now the definition of sem says we are to create a labelenv sem(p) where the
value of a label li on a statement ti is given by taking the semantics of the
statement ti, semstatement(t/), with the labelenv of the entire program, sem(p),
and the continuation of the next sequential instruction sem(p)(li + 1). If it is the
last statement in the program then the continuation of the next sequential
instruction would be to do nothing or As. s.

4. An interpreter and its correctness. The first implementation model is an
interpreter, called "imp", for the goto language. It is a version of the 3 component
(program, instruction pointer, data) model so common in operational semantics.
Since every statement in our program is labeled we use a label as an instruction
pointer. The data component is just the same STORE we have been using so far.

The formal definition of imp is:

imp :PROGRAMx LABELx STORE STORE
imp((/l: tl;/2: t2;... ln: m; ln+l), li, s)=it li= ln+l then s

410 BRUCE D. RUSSELL

else cases ti"
assign(x, ex):imp((), li + 1, s[eval(ex, s)/x])
ifnot(ex,/):if eval(ex, s) then imp((.), li + 1, s)

else imp((..), 1, s)
goto(/)’imp((...), 1, s)

program(p’)’imp((), li + 1, imp(p’, firstlabel(p’), s)).

If the label of the next instruction is the terminating label, then return the data
component at this time as the result of the interpreter. Otherwise the definition
clause by clause is"

assign(x, ex)" Modify the store as usual and move the instruction
pointer to the next sequential instruction.

ifnot(ex, 1)" Evaluate ex and if true move the instruction pointer to the
next sequential instruction, else set the instruction pointer
to I.

goto(/)" Set the instruction pointer to 1.
program(p’)" Run the interpreter on program p’ with the label on the

first statement as the instruction pointer and the current
store. Then run the interpreter with the instruction
pointer at the next sequential instruction with the mod-
ified store.

We now prove our first correctness result showing that the interpreter imp
run with program component p, instruction pointer and data component s will
give the same final data component as taking the semantics of program p, looking
up the label and applying the value of to s.

THEOREM. For all p, s and in p, imp(p, 1, s)=-sem(p)(l)(s).
Proof. Proceed by computational induction on imp and sem. Clearly

.l.(p, 1, s)=-.l.(p)(l)(s). Let (/1" tl; 12" t2;. ;ln" tn; In+ 1)=p and li= I.
If In + 1, then"

R.H.S.
:-(Xs.s)(s)

L.H.S.
Otherwise, by cases of ti corresponding to li
assign(x, ex):

R.H.S.
=-(sem(p)(li + 1). As. s[eval(ex, s)/x])(s) (def. of semstatement)
=-sem(p)(li + 1)(s[eval(ex, s)/x])
--imp(p, li + 1, s[eval(ex, s)/x]) (induction hypothesis)
=- L.H.S.

ifnot(ex, 1)"
R.H.S
--(As.it eval(ex, s) then sem(p)(li + 1)(s) else sem(p)(l)(s))(s)

(def. of semstatement)
---if eval(ex, s) then sem(p)(li + 1)(s) else sem(p)(1)(s)
--if eval(ex, s) then imp(p, li + 1, s) else imp(p, l, s) (induction hypothesis)
L.H.S.

IMPLEMENTATION CORRECTNESS 411

goto(/):
R.H.S.
=-sem(p)(l)(s)
imp(p, l, s)
L.H.S.

program(p’):
R.H.S.

(def. of semstatement)
(induction hypothesis)

=--((sem(p)(li + 1)). sem(p’)(firstlabel(p’)))(s) (def. of semstatement)
=- sem(p)(li + 1)(sem(p’)(firstlabel(p’))(s))
=sem(p)(li + 1)(imp(p’, firstlabel(p’), s)) (induction hypothesis)
imp(p, li + 1, imp(p’, firstlabel(p’), s)) (induction hypothesis)

-= L.H.S.

5. A compiler and its correctness. The second implementation model is a
compiler, called "compiler", for the structured language. The target language is
the goto language. The compiler is straightforward and its formal definition
follows.

compiler: STRUCPROGRAM PROGRAM
compiler(p)

cases p"
assign(x, ex)" 11: assign(x, ex)

1: ifnot(ex, 14);
12: compiler(p 1);
/3: goto(/5);
/4: compiler(p2);
15

/1: ifnot(ex, 14);
/2: compiler(p 1);
13: goto(l 1);
14

1: compiler(p 1);
/2: compiler(p2)

if(ex, p 1, p2)"

while(ex, p 1)"

compound(p 1, p2)"

The compiler is simple enough that we need not describe it clause by clause.
Note that the labels ll, 12, 13, 14 and 15 are distinct. These are all the distinct labels
we need since the semantics of a statement like/2: compiler(p l) takes all the
labels in compiler(p 1) in isolation.

The correctness of the compiler, with respect to the semantics of the source
and target language, follows. We show the semantics of the source program to be
equivalent to the semantics of the target program applied to the first label in the
target program.

THEOREM. For allp’, sem’(p’) sem(compiler(p’))(firstlabel(compiler(p’))).
Proof. Proceed by computational induction over sem’ and compiler. Clearly

.I.(p’) --- sem(.L)(firstlabel(.L)). In what follows, let p compiler(p’).
Cases of p’:
assign(x, ex):

412 BRUCE D. RUSSELL

R.H.S.
-=sem(/1 "assign(x, ex))(/1) (def. of compiler)
=.l_[semstatement(assign(x, ex))(sem(p))(As.s)/ll](ll) (def. of sem)
-= (As. s). (As. s[eval(ex, s)/x]) (def. of semstatement and lookup ll)

As. s[eval(ex, s)/x]
L.H.S.

if(ex, p 1, p2)"
R.H.S.
-=sem(ll" ifnot(ex,/4);

12" compiler(p 1);
12" goto(/5);
14" compiler(p2);
/5)(/1) (def. of compiler)

-= (.I.[semstatement(ifnot(ex, 14))(sem(p))(sem(p)(12))/ 1
[semstatement(compiler(p 1))(sem(p))(sem(p)(13))/12]
[semstatement(goto(15))(sem(p))(sem(p)(14))/13]
[semstatement(compiler p2))(sem p))(sem(p)(15))/14]
[As. s/15])(/1) (def. of sem)

--(.I.[,ts.i[eval(ex, s) then sem(p)(12)(s) else sem(p)(14)(s)/ll]
[(sem(p)(/3)) sem(compiler(p 1))(firstlabel(compiler(p 1)))/12]
[sem(p)(15)/13]
[(sem(p)(15)). sem(compiler(p2))(firstlabel(compiler(p2)))/14]
[As. s/15])(I 1) (def. of semstatement)

-= (.I.[As.if eval(ex, s) then sem(p)(12)(s) else sem(p)(14)(s)/ll]
[(sem(p)(/3)) sem’(p 1)//2]
[sem(p)(15)/13]
[(sem(p)(15)). sem’(p2)/14]
[As. s/15])(11) (induction hypothesis)

-= As.it eval(ex, s) then sem(p)(12)(s) else sem(p)(14)(s) (lookup/i)
-= As.ii eval(ex, s) then ((sem(p)(/3)) sem’(p 1))(s)

eise((sem(p)(15)), sem’(p 2))(s) (def. of sem(p))
-= As. it eval(ex, s) then ((As. s). sem’(p 1))(s)

else ((sem(p)(/5)) sem’(p2))(s) (def. of sem(p))
=-)ts.it eval(ex, s) then sem’(pl)(s) else sem’(p2)(s)
L.H.S.

while(ex, p):
R.H.S.

sem(/1" ifnot(ex,/4);
/2: compiler(p 1);
13" goto(l 1);
/4)(/1) (def. of compiler)

=- (.I.[semstatement(ifnot(ex, 14))(sem(p))(sem(p)(12))/11]
[semstatement(compiler(p 1))(sem(p))(sem(p)(13))//2]
[semstatement(goto(/1))(sem(p))(sem(p)(14))/13]
[As.s/14])(ll) (def. of sem)

(.l.[A s. it eval(ex,s) then sem(p)(12)(s) else sem(p)(14)(s)/ll]

IMPLEMENTATION CORRECTNESS 413

[(sem(p)(/3)) sem(compiler(p 1))(firstlabel(compiler(p 1)))/12]
[sem(p)(ll)/13]
[As. s/14])(11) (def. of semstatement)

=-(_l.[As. ff eval(ex, s) then sem(p)(12)(s) else sem(p)(14)(s)/ll]
[(sem(p)(/3)) sem’(p 1)//2]
[sem’(p)/13]
[As. s/ 4])(11) (induction hypothesis)

As. ff eval(ex, s) then sem(p)(12)(s) else sem(p)(14)(s) (lookup/1)
Xs .ff eval(ex, s) then ((sem(p)(13)) sem’(p 1))(s)

else As. s(s) (def. of sem(p))
,s.ff eval(ex, s) then (sem’(p) sem’(p 1))(s)

else s (def. of sem(p))
-= L.H.S.

compound(p 1, p2)"
R.H.S.

sem(/l" compiler(p 1);
12" compiler(p2))(/1) (def. of compiler)

-= (.t.[semstatement(compiler p 1))(sem(p))(sem(p (/2))/ 1
[semstatement(compiler(p2))(sem(p)(As.s)/12])(ll) (def. of sem)

(.I.[(sem(p)(/2) sem(compiler(p 1))(firstlabel(compiler(p 1))/l 1
[(As. s) sem(compiler(p2))(firstlabel(compiler(p2)))/12])(11)

(def. of semstatement)
(.I.[(sem(p)(/2)) sem’(pl)/ll]

[(As.s). sem’(p2)/12])(ll)
(sem(p)(/2)) sem’(p 1)
((As.s). sem’(p2)) sem’(p 1)

---sem’(p2). sem’(p 1)
L.H.S.

(induction hypothesis)
(lookup 11)

(def. of sem(p))

6. Some related work. Work on the correctness of implementations, particu-
larly compilers, includes the early results of McCarthy and Painter [5]. Subse-
quent to this, more ambitious languages have been attempted by Morris [8] and
Milner and Weyhrauch [7], among others. The approach taken in all these cases is
to use some form of structural induction over the syntax of the languages involved.

In McCarthy and Painter the approach is straightforward structural induc-
tion. Morris imposes an algebraic structure on the .sets of source and target
language denotations. This structure mirrors the syntactic structure of the source
and target languages. He then uses a unique extension theorem of algebra to show
that equivalence on the primitive syntactic structures leads to equivalence over
the entire set of programs.

Milner and Weyhrauch follow the same path as Morris but they use a formal
system (LCF, based on the work of Scott) to express their theorem and to carry out
the proof. Because the formal system is quite primitive the proof is extremely long
(approximately 1600 proof steps).

The equivalence of alternative interpreters (operational models) for a given
language has also been studied. The approach taken by the Vienna group--see

414 BRUCE D. RUSSELL

Jones and Lucas [3]is the so-called twin machine technique. The two alternative
interpreters are combined into one, thus eliminating redundancy but maintaining
distinct state components for those aspects of the interpreters that differ. The
equivalence of the interpreters is then expressed as a property of the state of the
twin machine. This property is shown to be true of initial states and then
inductively for all states that arise in the execution of the interpreter.

A slightly different approach is that of McGowan and Wegner [6]. They give a
mapping from the states of each interpreter into some common set. It is then
shown that the image under these mappings of all initial states of both interpreters
are equal. Further, they show inductively that the images are equal at various
points in the computation and thus of the final states.

7. Conclusions. We have defined a denotational semantics for two simple
programming languages. One is a goto or machine-like language and the other a
structured or higher level language. An interpreter (an operational semantics) for
the goto language has been defined and formally proved to be equivalent to the
denotational semantics. A compiler from the structured to the goto language has
also been defined and proved to preserve the semantics of the program translated.

These proofs have shown the equivalence of the more familiar and, certainly
in the case of the goto, more intuitive implementation models to the denotational
models. We have thus strengthened the claim that the denotational models
provide the semantics they are intended to.

We have also shown that Scott’s theory provides a satisfactory framework to
pose these questions of equivalence and to carry through the proofs. With a
suitable choice of notation the definitions and proofs are readable and the proofs
shorter than in some of the related work.

Finally, this paper is another small step towards reliable implementations of
languages. This reliability is extremely important since the correctness of all
programs written in a language depends on the correctness of the implementation
of the language. Further, most machine languages use the goto statement. The
correctness of the implementations of all the various languages on such a machine
depends ultimately on the correctness of the hardware interpreter of the goto
language and the compilers that have the goto language as their target code.
Hence, the results about the goto statement are particularly relevant.

There are many problems raised by this work that remain to be solved. One of
the most interesting is the problem of generating implementation models from a
denotational model automatically, thus guaranteeing correctness.

REFERENCES

[1] J. W. DE BAKKER AND W. P. DE ROEVER, A calculus for recursive program schemes,
Mathematisch Centrum Rep. MR 131/72, Amsterdam, 1972.

[2] R. M. BURSTALL, Proving properties ofprograms by structural induction, Comput. J., 12 (1969),
pp. 41-48.

[3] C. B. JONES AND P. LUCAS, Proving correctness of implementation techniques, Symposium on
Semantics of Algorithmic Languages, E. Engler, ed., Lecture Notes in Mathematics 188,
Springer-Verlag, New York, 1971, pp. 178-211.

[4] Z. MANNA, S. NESS AND J. VUILLEMIN, Inductive methods for proving properties ofprograms,
Comm. ACM, 16 (1973), pp. 491-502.

IMPLEMENTATION CORRECTNESS 415

[5] J. MCCARTHYAND J. PAINTER, Correctness ofa compiler]or arithmetic expressions, Proc. Symp.
of Appl. Math., American Mathematics Society, Providence, RI, 1967, pp. 33-41.

[6] C. McGOwAN AND P. WEGNER, The equivalence of sequential and associative information
structure models, Proceedings of a Symposium on Data Structures in Programming Lan-
guages, SIGPLAN Notices 6, J. T. Tou and P. Wegner, eds., 1971, pp. 191-216.

[7] R. MILNER AND R. WEYHRAUCH, Proving compilercorrecmess in a mechanized logic, Machine
Intelligence 7, B. Meltzer and D. Mitchie, eds., Edinburgh Press, Edinburgh, 1972, pp.
51-70.

[8] F. L. MORRIS, Advice on structuring compilers and proving them correct, Conf. Rec. of ACM
Symp. on Principles of Programming Languages (Boston, 1973), pp. 144-152.

[9] J. C. REYNOLDS, Notes on a lattice-theoretic approach to the theory of computation, Dept. of
Systems and Information Sci., Syracuse Univ., Syracuse, NY, 1972.

[10] D. Scoaq’, Outline of a mathematical theory of computation, Proc. 4th Ann. Princeton Conf. on
Information Sci. and Systems (Princeton, NJ, 1970), pp. 169-176.

[11], Mathematical concepts in programming language semantics, AFIPS Conference Pro-
ceedings, Vol. 40, 1972, pp. 225-234.

[12] ., Data types as lattices, Lecture notes, unpublished, Amsterdam, 1972.
[13] D. SCOT-r AriD C. STRACHEY, Towards a mathematical semantics for computer languages,

Computers and Automata, J. Fox, ed., John Wiley, New York, 1972, pp. 19-46.
[14] C. STRACHEY AND C. P. WADSWORTH, Continuations, mathematical semantics for handling

full jumps, Oxford Univ. Tech. Monograph PRG-11, Oxford, England, 1974.

SIAM J. COMPUT.
Vol. 6, No. 3, September 1977

TWO-PROCESSOR SCHEDULING WITH START-TIMES
AND DEADLINES*

M. R. GAREY AND D. S. JOHNSON?

Abstract. Given a set 3-= {T1, T2, , T,} of tasks, each T/having execution time 1, an integer
start-time si -> 0 and a deadline di> 0, along with precedence constraints among the tasks, we examine
the problem of determining whether there exists a schedule on two identical processors that executes
each task in the time interval between its start-time and deadline. We present an O(n 3) algorithm that
constructs such a schedule whenever one exists. The algorithm may also be used in a binary search
mode to find the shortest such schedule or to find a schedule that minimizes maximum "tardiness". A
number of natural extensions of this problem are seen to be NP-complete and hence probably
intractable.

Key words, multiprocessing systems, scheduling algorithms, NP-complete problems

1. Introduction. Since publication of the book Theory of Scheduling [4] by
Conway, Maxwell, and Miller in 1967, considerable progress has been made in the
mathematical analysis of abstract multiprocessing systems. One combinatorial
model which is central to much of this work consists of a number m of identical,
independent processors, a finite set - {T1, T2, Tn } of tasks to be executed,
an execution time ’i > 0 for each T/ -, and a partial order < on -. The partial
order describes precedence constraints between the tasks, restricting allowable
schedules to those in which, whenever T/< T., the task T. does not begin executing
until T/has been completed. The primary goal of scheduling is usually to minimize
either the mean-time-in-system (mean flow time) or the maximum-time-in-
system (maximum finishing time). Unfortunately these goals can be quite difficult
to achieve and, in fact, most classes of scheduling problems appear to be
computationally intractable [8], [10], [12], [15]. A notable exception to this state
of affairs is the case of minimizing maximum finishing time when m 2 and each
7" 1, 1 =< =< n. Efficient scheduling algorithms for this case have been described
in [3], [6], [7], [13]. These results have been extended in [9], which presents an
efficient scheduling algorithm for the more complicated version of this problem in
which each task T/ - also has a deadline di > 0 by which time its execution must
be completed. In this paper we further extend these results to the situation in
which each task T - has not only a deadline di > 0 but also an integer start-time
si, 0 =< si -< di, such that T must be executed entirely in the time interval [si, di]. We
describe an O(n 3) algorithm which determines whether there exists a schedule
meeting all start-time, deadline, and precedence constraints and which constructs
such a schedule if one exists.

In 2 of this paper, we will describe the basic ideas behind the algorithm and
show why it works. In 3 we provide the details as to how it can be implemented to
run in time O(n3). In 4 we show how this basic feasibility algorithm can be used
in iterative procedures to find schedules that minimize maximum finishing time or
maximum tardiness. We also briefly examine the computational complexity of
some related problems.

* Received by the editors January 26, 1976, and in revised form June 9, 1976.
? Bell Laboratories, Murray Hill, New Jersey 07974.

416

TWO-PROCESSOR SCHEDULING 417

We conclude this section with a few preliminary definitions. For the sake of
generality, we state them in terms of arbitrary m, {ri}, and {si}.

A task T is called a predecessor of task T (and T. is a successor of T)
whenever there exists a sequence of tasks T, T,..., T, k-> 1, such that
T < T < T <... < T T.. Given m, -, {-g}, {Si {di}, and the partial order <, a
valid schedule is a total function r - [0, m) which satisfies the following three
properties:

(i) For all tel0, c), [{Te-:r(Ti)<=t<r(T)+-i}l<=m;
(ii) Whenever T < T, o,(T) + ’i -<- o-(T);
(iii) For each T e -, r(T/) -> s.

In plain language, the function r assigns a starting time for execution to each task
in , property (i) states that no more than m tasks are ever executed simultane-
ously, property (ii) ensures that the partial order is respected, and property (iii)
ensures that the start-time constraints are not violated (although the deadlines
may be). Note that the processing is assumed to be nonpreemptive in that once a
task is initiated it continues executing until its completion. A valid schedule o- is
said to meet all the deadlines if, for each T , o-(T/) + r -< d. The finishing time o
for a valid schedule o- is given by o max {r(T) + 7" T/ ’}.

Unless stated otherwise, we shall assume henceforth that m 2, each ri 1,
and each si is an integer. Notice that, when minimizing maximum finishing time
under these assumptions, there is no loss of generality in restricting consideration
to schedules cr which map - into the nonnegative integers. Thus we may assume
also that each deadline de is a positive integer.

2. The basic scheduling algorithm. In this section we describe the basic
ideas behind our algorithm, which finds a valid schedule meeting all deadlines
whenever one exists. The algorithm is similar to that of [9] in that it may be
thought of as finding a priority list for directing the scheduling process. A priority
listL is a permutation of the tasks in -which is used to define a valid schedule f in
the following intuitive manner" Initially, all processors are idle. At any time at
which a processor is idle, the processor instantaneously scans L from the begin-
ning and selects the first task Tk (if any) which may validly be executed, i.e., sk -< t,
all predecessors of T have been completed, and T itself has not yet been started.
In case of a tie, T is assigned to the idle processor with lowest index and the
remaining processors continue scanning the list. In our formal notation r(T) is
set equal to that time at which Tk is selected for execution by one of the
processors. The reader should have no difficulty in specifying an O(n 2) algorithm
for computing cr from the list L.

Our algorithm will determine a specific priority list L for scheduling the tasks
by this method. As in [9] the key idea involves a special modification of the task
deadlines, having the property that a valid schedule meets all the modified
deadlines if and only if it meets all the original deadlines. However the addition of
task start-time constraints considerably complicates the necessary deadline mod-
ifications.

In order to state the lemma on which our deadline modifications are based,
we require a few preliminary definitions. For any task T and integers s, d

418 M.R. GAREY AND D. S. JOHNSON

satisfying S Sd <=d, we define S(i, s, d) to be the set of all tasks T. (] i)
which have di <=d and either are successors of T or have sj =>s. Let N(i, s, d)
denote the number of tasks in S(i, s, d). We use [x] to denote the least integer no
less than x.

LEMMA 1. For any task and integers s, d satisfying si <=s <=di <=d, if
N(i,s, d)>-2(d-s), then T must be completed by time d- [N(i,s, d)/2] in any
valid schedule that meets all task deadlines.

Proof. Suppose N(i, s, d) >= 2(d s) and let o- be any valid schedule that meets
all task deadlines. We divide the proof into two cases, depending on whether
N(i, s, d) equals or exceeds 2(d-s).

First suppose N(i, s, d)> 2(d-s). Since all tasks in S(i, s, d) must be com-
pleted by time d and there are only two processors, operating nonpreemptively,
there must be some task T.S(i,s, d) for which cr(T.)-<d [N(i,s, d)/2] <s.
Since o’(T/) < s, the definition of S(i, s, d) implies that T. must be a successor of T/.
Hence T must be completed when T/starts at time o-(T/) and the desired result
follows.

Now suppose N(i,s,d)=2(d-s). Then we have [(N(i,s,d)+l)/2]=
[N(i,s,d)/2] +1. We parallel the previous argument using the set S=
S(i, s, d) LI {T/} instead of S(i, s, d). Since all tasks in S must be completed by.time
d and there are only two processors, operating nonpreemptively, there must be
some task T/6 S for which o-(T.) -< d [(N(i, s, d)+ 1)/2] s- 1. Since o-(T/) < s,
the definition of S(i, s, d) implies that either T/= T or T. is a successor of T/. In
either case we have

o’(Ti)+ 1 <-o-(Ti)+ 1 <-s d- IN(i, s, d)/2]
as desired.

The significance of Lemma 1 is that, when the described conditions are met, it
gives an additional constraint on the latest possible finishing time for T/. Thus, if
N(i, s, d) >- 2(d s) and d-[N(i,s,d)/2]<d, we may set d equal to
d- IN(i, s, d)/2] without foreclosing any possible valid schedules that meet all
task deadlines. That is, a valid schedule meets all the original task deadlines if and
only if it meets the new set of deadlines obtained by making this single change to
d. In fact, such modifications may be performed repeatedly until either no further
modifications are possible or we have some d <s + 1, in which case no valid
schedule can possibly meet all the deadlines. In a later section we shall describe an
algorithm for performing these successive modifications in an organized and
efficient manner.

Motivated by the preceding discussion, we will call the deadlines internally
consistent whenever the following conditions hold for every task T :

1) di si + 1"
2) For every pair of integers s, d satisfying si <=s <-di <-_d, if N(i, s, d)>-_

2(d- s), then di <= d- IN(i, s, d)/2].
Two basic facts which follow from internal consistency will prove useful.

FAc’r 1. If the deadlines are internally consistent, then Ti < T. implies di < dj.
Proof. Suppose we had both T/< T. and di -> di. Then T. belongs to S(i, di, di)

and hence N(i, di, di)>2(di-di)=O. Property 2) of internal consistency then
requires that we have di <= di- IN(i, di, di)/2] <= di 1, a contradiction. 71

TVv’O-PROCESSOR SCHEDULING 419

FACT 2. If the deadlines are internally consistent, then s <-_ d implies

I{T 3-" s <- si and di <- d}l <- 2(d s).

Proof. Suppose for some s _<-d the set S ={T 3"s-<si and di <-d} had
ISI > 2(d- s). Let Tk be a task in S having the earliest start-time. Then S-{Tk}_
S(k, sk, d) and hence N(k, sk, d)>=2(d-s)>=2(d-Sk). Property 2) of internal
consistency then requires that

dk <---- d IN(k, Sk, d)/2] --<_ s.

But since Sk >- S, this implies that Sk dk, contradicting property 1) of internal
consistency.

We now are prepared to state our main result.
THEOREM 1. Let L =(T1, T2, , Tn) be any priority list such that di <-di+x

for 1 <-i <-_ n 1. If the deadlines are internally consistent, then the valid schedule
defined by L meets all task deadlines.

Proof. Suppose that the valid schedule o- constructed from L fails to meet the
task deadlines. Since each ti 1 and all start-times and deadlines are integers, tr

assigns an integer starting time to each task. Let T/be a task with minimum tr(T.)
which fails to meet its deadline, i.e., tr(T/)+ 1 > dj and hence by integrality
r(T.) _->dj. Let s be the greatest integer time, 0-<_s-<or(T/), for which the set
P(s)= {T/s 3-: (r(T/)= s- 1 and di <-- di} satisfies }P(s)l<2. Defining S
{T s -: s _-< (r(T/) <tr(T)} [.J{T.}, we observe that IS]= 2((r(T.)-s) + 1 and each
T s S has di <-_di. We divide the proof into two cases depending on whether
IP(s)[0 or IP(s)l 1.

First, suppose IP(s)l 0. By the definition of S, any tasks scheduled to begin
execution at time s- 1 must have followed all the tasks in S on the priority list L.
Thus none of the tasks in S were ready to begin execution at time s- 1, and any
tasks that were executed at that time could not have been predecessors of any task
in S (by Fact 1 about internally consistent deadlines). Therefore every task in S
must have start-time exceeding s 1 and hence, byintegrality, has start-time s or
greater. (All these observations hold trivially if s 0). This implies that

S {T r’: S <- Si and di <- di},

from which it follows that

[{T/ ff: s <- si and di <- di}l >= IS[
2(tr(T.)- s) + 1 ->_ 2(di- s) + 1

> 2(di-s).

This last inequality contradicts Fact 2, proving the desired result when]P(s)l 0.
Now suppose]P(s)l 1. Let Tk be the single task in P(s). Again, any other

task scheduled to begin execution at time s 1 must have followed all tasks in S on
the priority list L, and hence was not a predecessor of any task in S, while no task in
S was ready to begin executing at time s 1. Therefore every task in S either has
start-time at least s or is a successor of Tk. This implies that S

_
S(k, s, dj), from

420 M. R. GAREY AND D. S. JOHNSON

which it follows that

N(k, s, d)>=lSI 2(r(T.)- s) + 1

>=2(di-s)+ l > 2(di-s).
From property (2) of internal consistency we then must have

d, <--di- IN(k, s, di)/2] <=di-(di-s + 1)= s- 1.
Therefore T failed to meet its deadline, contradicting the choice of T as the
earliest such task. This proves the desired result when IP(s)l 1, completing the
proof.

We now summarize our basic algorithm, which determines whether a valid
schedule meeting all deadlines exists and, if so, constructs one.

Step 1. Successively modify the deadlines using Lemma I until either (a) the
deadlines are internally consistent or (b) some s >-d. In case (b), report that no
schedule exists and halt.

Step 2. Form the priority list L by sorting the tasks in order of nondecreasing
modified deadlines.

Step 3. Compute the valid schedule defined by priority list L. By Theorem 1 it
meets all the task deadlines. E

By our previous comments on the complexity of Step 3, and the fact that all
Step 2 involves is a simple sorting process, we see that the number of operations
required by this algorithm is O(n) plus the number of operations required for
Step 1. In the next section we describe a method for performing Step 1 using
O(n3) operations.

3. A deadline modification algorithm. In this section we describe an
algorithm for successively modifying the task deadlines using Lemma 1. A
straightforward approach to doing this would repeatedly examine N(i, s, d) for all
appropriate values of i, s, and d, modifying deadlines when required, until either
the deadlines are internally consistent or some task deadline no longer exceeds the
corresponding start-time. Though this algorithm will certainly terminate with the
correct result, its computation time is potentially rather large. One reason for this
is that the same N(i, s, d) may have to be considered many times, since modifying
task deadlines can change previously examined N(i, s, d) values. A second reason
is that the number of integer values for s and d which must be considered may be
quite large. We now describe how a more careful approach avoids these difficul-
ties.

Our algorithm is structured as three nested loops, each selecting successive
values of one of the three parameters i, s, and d. The outer loop selects values of d
in decreasing order. For each d, the next loop selects values of in increasing
order, skipping those values of for which di> d. Finally, for fixed and d, the
inner loop selects appropriate values of s in increasing order and modifies di if
required by the value of N(i, s, d).

We first observe that this loop structure for choosing i, s, and d allows each
triple to be considered only once. This is, of course, desirable, but can be justified
only if it insures that no possible deadline modification is missed. To see that this is
the case, we first observe that the value of N(i, s, d) and the new deadline that may

TWO-PROCESSOR SCHEDULING 421

be imposed on task T if N(i, s, d) >= 2(d s) do not depend on the value of di itself.
Thus as long as the value of N(i, s, d) remains unchanged, extra considerations of
the triple (i, s, d) cannot lead to modifications that were not made the first time
that triple was considered. Next, we observe that the value of N(i, s, d) changes
only when a task T. with deadline d. > d has its deadline modified to be less than or
equal to d. However, dj can be so modified only when examining N(/’, s’, d’) for
some d’=> d. > d. Considering values of d in decreasing order insures that all such
modifications affecting the value of N(i, s, d) have been made before N(i, s, d) is
examined. Thus we never need to consider a triple (i, s, d) more than once when
using our loop structure.

Our next step is to bound the number of triples considered. If our algorithm is
to be O(n 3), we clearly can consider only O(n 3) such triples, but at present we only
have a bound of (number of d’s considered) (number of i’s considered for each
d). (number of s’s considered for each and d). The middle factor is at most n,
since there are only n tasks, but the remaining factors might be considerably
larger, since individual tasks might originally have start-times and/or deadlines
which are much larger than n.

We first examine the parameter s, and show that, for fixed and d, the inner
loop need never consider more than n + 1 possible values for s. In particular, we
show that the only values for s that need to be considered are those integers s,
si _<- s _-< d, which are task start-times or d itself. Suppose there is some s not of this
form for which N(i, s, d) requires that d be modified. Letting s’ be the minimum
of di and the least start-time exceeding s, we have N(i, s’, d)=N(i, s, d)>=
2(d- s) > 2(d-s’). Thus the same modification forced by N(i, s, d) will be forced
by N(i, s’, d) and s’ belongs to our more restricted set of choices. Furthermore,
once di has been modified, no more choices for s need be considered for these
fixed values of and d. To see this, let s* denote the least value of s such that
N(i, s*, d) forces d to be modified. Since the modified value of d must be less
than or equal to s* and since values for s were selected in increasing order, it
follows that all values for s which remain relevant (s such that s-< s-< s*) have
already been considered. Thus, for fixed and d, at most n + 1 values for s need be
considered and (a remark for future reference) at most one deadline modification
Occurs.

To show that at most n values of d need be considered in the outer loop
involves a more complicated argument. The basic idea is that essentially every
value of d considered will be guaranteed to be a final deadline for some one of the
n tasks. In order to insure this, however, we need to be a bit more careful in the
algorithm than we have indicated so far.

First, it will be useful to have the property that whenever T. is a predecessor
of T, d <-di. Note that reducing di so that this is the case will never preclude any
possible valid schedules that meet the original deadlines. (In fact we could even
reduce d to di- 1, but the weaker condition is sufficient for our purposes and is
easier to maintain.) Some preprocessing is required to make this property hold
initially; we postpone a detailed explanation of how this is done. Then, whenever a
deadline d is modified in the algorithm, we merely need to examine each
predecessor T. of T and set d. equal to the smaller of its current value and the new

422 M. R. GAREY AND D. S. JOHNSON

value for di. This ensures that the desired property will hold throughout execu-
tion of the algorithm. (Note also that these extra modifications do not affect the
property that permitted us to consider each N(i, s, d) at most once, namely, that
no. deadline is ever modified when considering a value of d less than that
deadline.)

Having the abovementioned property, we always select the next value of d to
be the largest current task deadline which is less than all previously selected values
of d. This immediately insures that no required modifications will be overlooked,
since if d’ is any integer between d and the previous value for d, we have
N(i, s, d) N(i, s, d’) for all appropriate and s. Now suppose that, after consider-
ing all values of and s for some d, no task remains with deadline d. We show that
this implies no valid schedule can possibly meet all the deadlines. Let f be the
largest task index such that, when d was selected, T had deadline d and had no
successors with deadline d (at least one such task must exist). By our property for
deadlines, Ti also has no successor with deadline less than d. Thus $(j, s, d)
contains no successors of T, si-< s-< d. Since d was modified, there must have
been some s such that N(j, s, d)>=2(d-s). By our choice of T. and the above
remark, when N(j, s, d) was examined, every task in $(f, s, d) had start-time s or
larger and either had deadline less than or equal to d- 1 or else was a predecessor
of T. with deadline d. Thus all tasks in $(f, s, d) must in fact be executed in the
time interval Is, d 1] in any valid schedule that meets all the deadlines. However,
by choice of s, we have N(j, s, d) >- 2(d s) > 2(d 1 s), and so S(j, s, d) con-
tains more tasks than can possibly be executed in the time interval Is, d-1].
Hence no valid schedule can meet all the deadlines. Therefore, if we finish
processing a deadline d and have no task left with that deadline, we know that no
such valid schedule can exist. Hence, if we terminate whenever this situation
arises, we will not be overlooking any modification which can lead to a set of
internally consistent deadlines. Moreover, by terminating in this fashion, we
insure that at most n values of d need be considered.

The above arguments show that at most O(n 3) triples (i, s, d) need be
considered. It remains to be shown that the various costs associated with prepro-
cessing and with updating the values of i, s, d and N(i, s, d) are also O(n3). In
order to do this, we must provide more specific details on how the algorithm is to
be implemented.

First we describe and discuss the preprocessing that must be done. The first
step is to sort and re-index the tasks so that s <-s2 <-". <-s,,. This takes time
O(n. log n). Next we compute the transitive closure of the partial order so that, in
constant time, we can determine whether or not T precedes T., 1-< i,/"-< n. This
can be accomplished with O(n 2.81) operations using [5] or O(n 3) operations using
any of [2], [14], [16]. Then we perform the preliminary deadline modifications to
ensure that di -< dj whenever T precedes T.. This can be done in O(n 2) operations
by working "backwards" in the partial order, examining a task T only after
examining all its successors and then setting d to the minimum value in {d}t.l
{dj: T is a successor of T}. Finally we initialize the variable d to a value that
exceeds the largest task deadline. The algorithm then proceeds as follows:

Step 1. If any task T has di _-< s, halt (no schedule is possible). If no task has a
deadline less than d, halt (the current deadlines are internally consistent). Other-

TWO-PROCESSOR SCHEDULING 423

wise set d to the largest task deadline less than d and set to the least task index for
which di is less than or equal to the new value of d.

Step 2. Scan the task list to compute N(i, si, d). Set COUNT#N(i, si, d),
s - si, and set k least/" such that sj si.

Step 3. If COUNT->_2(d-s) and di>d-[COUNT/2], set d
d- [COUNT/2] and, for each predecessor T of T whose deadline exceeds the
new di, set dj di.

Step 4. If s _-> d, go to Step 5. Otherwise increment k by 1 until either k > n or
sk > s. During this scan, subtract 1 from COUNT for each T. (original k-</" <
new k) which is not a successor of T and which satisfies d. -< d, s s, and/" i. If
k n + 1 or sk > d, set s di and go to Step 3. Otherwise set s # s and go to Step
3.

Step 5. Find the least/" > such that d =< d. If such a/" exists, set /" and go to
Step 2. If no such/" exists and some task has current deadline d, go to Step 1.
Otherwise halt (no schedule is possible).

Step 1 checks two termination conditions, both of which can be verified in
O(n) operations by a simple scan through all the tasks. If both conditions fail, it
then selects the next value for d and the first relevant value of for d, again
accomplished easily by simple scans in O(n) operations. Since, by our previous
comments, at most n values of d will be selected, this step will be entered at most
n + 1 times, for a total contribution of at most O(n) operations.

Step 2 computes N(i, si, d), stores it in COUNT, initializes s to s, and
initializes the variable k which will be used in updating COUNT as s changes. All
of these can again be accomplished by simply scanning through all n tasks, with a
constant number of operations for each task (for instance, to determine whether it
meets the membership conditions for S(i, s, d)). Thus each entry of this step uses
O(n) operations. Because it is entered at most n times for each d, always with a
new value for i, the total contribution to the algorithm is at most O(n 3) operations.

Step 3 checks the internal consistency conditions for N(i, s, d)= COUNT
and, if necessary, modifies the appropriate deadlines. This step is entered at most
O(n 3) times, once for each choice of the three parameters i, s, and d. It requires
only constant time unless deadline modification is necessary, in which case O(n)
operations may be required. However, since d is modified at most once for a

2particular value of d, those O(n) modification operations are required at most n
times. Thus this step contributes a total of at most O(n 3) operations.

Step 4 first checks whether all relevant values of s have been considered for
the current (i.e., either di has been modified or the last s was equal to di). If not, it
continues scanning the task list from T to find the next relevant s. During this scan
it continually updates COUNT, subtracting 1 for each task which belonged to the
previous S(i, s, d) but not the new $(i, s, d). After resetting s, it returns to Step 3.
This step is entered at most O(n 3) times since it is entered only through Step 3.
However, by using the variable k to resume scanning the task list from where it left
off, it only scans the task list once for each choice of and d. It follows that Step 4
contributes a total of at most O(n 3) operations to the algorithm.

Finally, Step 5 selects the next relevant value of i, if any, and returns to Step 2.
If all values of for this d have been checked and some task deadline remained
equal to d, it goes to Step 1 to determine the next d. Otherwise, by our previous

424 M.R. GAREY AND D. S. JOHNSON

discussion, we know that no valid schedule can possibly meet all the deadlines and
the algorithm halts. Since Step 5 is entered at most once for each choice of and d,
it is entered a total of at most O(n :z) times. The scanning of the tasks is a process
which occurs only once for each d, although it is interrupted each time is updated.
Thus this step contributes a total of at most O(n :) operations.

From our discussion preceding the algorithm, the reader should have little
difficulty in verifying that the algorithm works properly. It terminates either with a
set of internally consistent deadlines equivalent to the original deadlines, or with
the conclusion that no valid schedule can meet all the deadlines. Furthermore,
since each step contributes at most O(n 3) operations to the total procedure, and
all required preprocessing can be done in at most O(n 3) operations, the algorithm
takes total time O(n 3) as claimed. Although we know of no method for doing this
faster than proportional to n3, we note that the algorithm as described could
probably be improved by a constant factor in a careful implementation. We chose
not to incorporate such details into the description of our algorithm since that
would have served primarily to further complicate an already complicated
algorithm, without substantially improving its performance.

4. Conclusion. The algorithm described in 2 and 3 is designed only to
test for feasible schedules and to generate such a schedule whenever one exists.
Given that feasible schedules exist, however, one might wish to find such
schedules that, for example, minimize maximum finishing time. This can be done
using our algorithm in a simple iterative procedure as follows.

First observe that, for any integer D, we can decide whether there exists a
valid schedule that meets all deadlines and has maximum finishing time at most D,
by applying our algorithm after setting equal toD all deadlines that exceed D. The
least possible maximum finishing time can then be found using a binary search on
D. Since the only values of D that need be considered are those integers that
exceed the largest start-time by no more than n, this involves only O(log n)
applications of our basic algorithm, and the complete procedure requires
O(n 3 log n) operations. In case all start-times or all deadlines are the same, the
simpler procedure described in [9] can be used.

A similar approach, using binary search, can be used to find a valid schedule
that minimizes maximum tardiness (the tardiness of a task in a schedule is the
maximum of zero and its finishing time minus its deadline), in case no valid
schedule meeting all the deadlines is possible. To check whether a valid schedule
exists with maximum tardiness D or less, merely replace each deadline dg by
D +d and apply our basic algorithm.

Unfortunately, the problem of minimizing the number of tardy tasks, even if
we have only one processor and all start-times (or all deadlines) are the same, is
NP-complete [9] and hence probably computationally intractable (see [1], [11],
[12] for comprehensive treatments of "NP-completeness"). A number of other
simple generalizations of our scheduling problem are also NP-complete.

First let us consider relaxing the constraint that all - 1 by allowing
r {1, 2}. In this case, with all s 0 and all d D, Ullman [15] has shown that the
problem of deciding whether there exists a valid schedule meeting all deadlines is

TWO-PROCESSOR SCHEDULING 425

NP-complete. If we further relax the constraint on task times to allow them to be
arbitrary integers, then the problem of deciding whether there exists a valid
schedule meeting all deadlines is NP-complete even for one processor and no
precedence constraints. This result has not appeared previously but can be proved
easily from the NP-complete 3-PARTITION problem [8], [10]. The 3-
PARTITION problem is, given 3n integers a 1, a2, , a3n and an integer B such
that each ai satisfies B/4<ai<B/2, to determine whether the {ai} can be
partitioned into n 3-element sets which each sum exactly to B. It follows, as in
10], that this scheduling problem is NP-complete even if input size is measured by
the sum of the task execution times, rather than the number of bits required to
encode them. This means that any algorithm that always finds the desired
schedule, if it exists, will probably require time exponential in the sum of
execution times rather than just exponential in the number of tasks, a significant
difference when tasks with large execution times are present.

Returning now to our original problem, suppose we relax the constraint that
all start-times must be integers. (Allowing arbitrary rational start-times is equival-
ent to allowing all tasks to have arbitrary, but identical, integer execution times).
In this case little is yet known. In fact, the complexity of determining the existence
of valid schedules meeting all deadlines for the case of one processor, unit
execution times, no precedence constraints, and arbitrary start-times and dead-
lines is still open. (In the very special case with all s multiples of 1/2, we can give a
polynomial-time algorithm).

Returning again to our original problem with integer start-times (and hence
integer deadlines), consider the effect of increasing the number of processors. If
the number of processors is arbitrary, the problem is NP-complete even with all
si 0 and all di D 15]. It is not known whether this problem is NP-complete for
any fixed number m of processors, although m 2 is the largest value for which a
polynomial time algorithm is known. Our algorithm can be used to solve a
significant special case of the 3-processor problem (with all s; 0 and all d; D) in
which we ask whether there exists a valid schedule with maximum finishing time
D, where D is the length of the longest chain ("critical path") in the partial order.
Choosing one such chain, there is no loss of generality in assigning all tasks in the
chain, in order, to the third processor. Then all remaining tasks must be executed
on the remaining two processors, with the precedence constraints between these
tasks and the tasks on the third processor serving merely to impose individual
integer start-times and deadlines on the remaining tasks. Hence we are reduced to
precisely the problem our algorithm was designed to solve. The solvability of this
special case is particularly interesting because the authors (and others) have made
numerous attempts to prove the general 3-processor problem NP-complete by
proving that this special case was NP-complete. If, as is generally believed, the
NP-complete problems are intractable, this particular approach was doomed to
fail.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974, Chap. 10.

426 M. R. GAREY AND D. S. JOHNSON

[2] V. L. ARLAZAROV, E. A. DINIC, M. A. KRONOD AND I. A. FARADZEV, On economical
construction ofthe transitive closure ofan oriented graph, Dokl. Akad. Nauk SSSR, 11 (1970),
pp. 1209-1210.

[3] E. G. COFFMAN AND R. L. GRAHAM, Optimal scheduling for two-processor systems, Acta.
Informatica, (1972), pp. 200-213.

[4] R. W. CONWAY, W. L. MAXWELL AND L. W. MILLER, Theory of Scheduling, Addison-
Wesley, Reading, MA, 1967.

[5] M. J. FISCHER AND A. R. MEYER, Boolean matrix multiplication and transitive closure, 12th
Ann. IEEE Syrup. on Switching and Automata Theory, East Lansing, MI, 1971, pp.
129-131.

[6] M. FuJII, T. KASAMI AND K. NINOMIYA, Optimal sequencing on two equivalent processors,
SIAM J. Appl. Math., 17 (1969), pp. 784-789.

[7],Erratum, Ibid., 20 (1971), p. 141.
[8] M. R. GAREY AND D. S. JOHNSON, Complexity results for multiprocessor scheduling under

resource constraints, this Journal, 4 (1975), pp. 397-411.
[9],Scheduling tasks with nonuniform deadlines on two processors, J. Assoc. Comput. Mach.,

23 (1976), pp. 461-467.
10] M. R. GAREY, D. S. JOHNSON AND R. SETHI, Complexity offlowshop andjobshop scheduling,

Math. Operations Res., (1976), pp. 117-129.
11] R. M. KARP, Reducibility among combinatorial problems, Complexity of Computer Computa-

tions, R. E. Miller and J. M. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.
[12] On the complexity of combinatorial problems, Networks, 5 (1975), pp. 45-68.
13] Y. MURAOKA, Parallelism, exposure and exploitation in programs, Ph.D. thesis, Computer Sci.

Dept., Univ. of Illinois, 1971.
[14] P. PURDOM, A transitive closure algorithm, BIT, 10 (1970), pp. 76-94.
[15] J. D. ULLMAN, NP-complete scheduling problems, J. Comput. System Sci., 10 (1975), pp.

384-393.
[16] S. WARSHALL, A theoremon Boolean matrices, J. Assoc. Comput. Mach., 9 (1962), pp. 11-12.

SIAM J. COMPUT.
Vol. 6, No. 3, September 1977

A 2.5n-LOWER BOUND ON THE
COMBINATIONAL COMPLEXITY OF BOOLEAN FUNCTIONS*

WOLFGANG J. PAUL?

Abstract. Consider the combinational complexity L(f) of Boolean functions over the basis
fl={]’l]’: {0, 1}2-->{0, 1}}. A new method for proving linear lower bounds of size 2n is presented.
Combining it with methods presented in Savage 13, (1974)] and Schnorr 18, (1974)], we establish for
a special sequence of functions [: {0, 1}"+2 g(n)+x --> {0, 1}: 2.5n <=L(f)<-6n. Also a trade-off result
between circuit complexity and formula size is derived.

Key words, combinational complexity, circuit size

1. Introduction. The interest in lower bounds for the combinafonal com-
plexity of Boolean functions stems from two facts:

(i) practical interest: the hardware of a computer consists largely of switch-
ing networks;

(ii) theory of algorithms: proving lower bounds for the run time of algorithms
has been reduced to the problem of proving lower bounds for the combinational
complexity of Boolean functions [2], [15], 1-17]. However, for this purpose lower
bounds of size greater than O(n log(n)) would be needed.

Several functions with exponential combinational complexity are known [8],
[20]. If one measures the complexity of the definition of a sequence of functions
f,,: {0, 1} -->{0, 1} by the complexity of a Turing machine which accepts
{Xlflength(x)(X)--1}, then all functions which can presently be shown to have
exponential complexity are defined by Turing machines of exponential tape
complexity.

The proof relies on the fact that (for reasonable functions s" ->) a Turing
machine with tape complexity s(n) log s(n)or a formal system with equivalent
descriptive powercan construct an optimal circuit with complexity s(n).

There is however a great interest in nonlinear lower bounds for functions
which are definable by Turing machines with polynomial time complexity or even
with complexity around n log n (e.g., multiplication). Also, if by proving a lower
bound on circuit size one wishes, say, to settle the P NP? question [1], [4] in a
negative sense, one has to prove a lower bound which grows faster than any
polynomial for a sequence of functions definable in NP. The best lower bounds
known for sequences of functions definable in NP and relative to the full basis of
2-input 1-output gates are of size 2n [18].

We first list some basic notations and facts. In Theorem 1, with known
techniques a 2n-lower bound is derived for a function which describes reading in a
storage of n cells of 1 bit each.

To prove a lower bound better than 2n, new methods are needed which
unlike the known onesassert the existence of gates which are not necessarily
near the inputs of the circuit. Theorem 2 is proven with such a method. Applied
alone, the method yields 2n-lower bounds.

* Received by the editors April 28, 1975, and in final revised form June 1976.

" Department of Computer Science, Cornell University, Ithaca, New York 14853, and
Universitit Saarbrficken, Saarbriicken, West Germany. This research was supported by DAAD
(German Academic Exchange Service) under Grant 430/402/563/5.

427

428 WOLFGANG J. PAUL

In Theorem 3, extension of the known techniques together with the new
method are applied to prove a 2.5n-lower bound. This proof turns out to be
considerably more difficult than proofs of 2n-lower bounds.

In the last section we point out a relation to Neciporuk’s test [9] and prove a
trade-off result between formula size and circuit complexity.

2. Basic notations and acts. Let K {0, 1}.
’=.{f[f: K2-> K} is the set of basic operations. A switching circuit N is a

directed, acyclic graph, each node having indegree 0 or 2. A node with indegree 0
is an input node. A node with outdegree 0 is an output node. X, {x, , x,} is
the set of input nodes of N.

Each node with indegree 2 is labeled by an f e . Associate with each node C
of N a function resu(C): K" --> K in the obvious way. In the same way associate
functions resu(e) with the edges e of N. If it is clear, which circuit is meant, the
subscript N in resv(is dropped.

For f: K --> K, N computes f if there is a node n in N such that res(n) f.
Define the combinational complexity of f by L(f)= min{# nodes in N which are
no input nodes N computes

Assigning values 0 or 1 to the variables of a subset S X, allows us to
concentrate on subfunctions as well as on the subcircuit of N, which consists only
of paths from an xi S to a terminal node.

A partial assignment (P.A.) is a set of assignments a=
{Xi:--CilCi K, 6J_ [1 n]}.

Givenf: K" --> K, a P.A. a implies in a natural way a subfunctionfA K"-# -->
K of f. Functions res (C) will be of special interest.

A path (n :ff n’) is a path from node n to node n’. Let p be a path (n :ff n’).
Denote by In, n’]p the set of nodes of p. If there is only one path (n n’), the
subscript p is dropped. Define

In, n’)p [n, n’]p-{n’},
(n, n’]p In, n’]p {n },

(n, n’). [n, n’}.
For sets of nodes S, S’ define

::! path (S :ff S’): :In 6 S, n’ 6 S’::I path (n :ff n’).

Example. In Fig. 1, ::! path (A : C); :1 path ([A, C]:ff [D, F]).

A D

C F

FIG. 1

COMBINATORIAL COMPLEXITY OF BOOLEAN FUNCTIONS 429

Denote by /, V, 3 and -q logical AND, OR, +mod 2, and negation,
respectively.

For Boolean variables or funcVons x and a K, denote by

xa=(X_n ifa= 1,
x if a=0.

We sum up some simple facts which will be used later, often without being
mentioned explicitly.

LElViMA 1.
(i) (--aa)b a(-nb) -q(a)b).
(ii) In an optimal circuit all labelings of nodes are of the form

(yfi,y)C (AND-type gate)
or

(YlY2)d (-type gate) (a, b, c, d K).
(All other gates compute trivial functions and can be "absorbed" into
adjacent nontrivial gates.)

So one can consider an optimal circuit as consisting of/, @) and --n, where L
counts only the number of/’s and ’s. A function of two variables, which can be
computed by an AND-type gate (-type gate) we call an AND-like function
(-like function).

(iii) No AND-like function is -like and vice versa.
(iv) An opdmal circuitfor a singlefunctionfhas exactly one output node t with

res (t) f.
From now on the letter t stands always for the output node of the circuit

under consideration.
(v) If one output of a gate is constant, independent of the assignments of

values to the input nodes, this gate can be eliminated.
(vi) In an optimal circuit no two edges, startingfrom one node, go into the same

node.
(vii) If two functions f and g are equal, then f, g, for all P.A.’s a.
In the various upcoming figures the symbolism of Fig. 2 will be used.

Occasionally branching points of splitting paths will be treated like nodes without
cost. Negations will not be drawn in figures.

3. 1o 2n-iower aouads. The first theorem has a practical aspect. It gives an
answer to the question: how much does it cost to read from storage.9 On the other
hand, its proof introduces some techniques, which will be used later.

For a a a K* denote by

(a) binary number represented by a + 1.

THEOREM 1. Define f,,: Kn+lg(n) K by:

fn(al, alog(n), Xl, Xn) X(a).

7hen 2n 2 <-_L(f,) <- 3n 3.
Proof. We first prove the lower bound. Define for 1 _-< s _-< n the statement E:
E: For any function f: K"+g" K with the property [=IS _[1 :n], # S s

430 WOLFGANG J, FAUL

X th input node

AND-type gate

-type gate

any gate

path

splitting path,
branching point

FIG. 2

edge

such that for all a with (a) s S: f(a, Xl,. Xn) X(a>] holds" 2s 2 <-

L(f).
E is trivially true. We show that E holds if E_ holds.
Consider an optimal realization N of a function f as defined in E"
Case 1. =li S: outdegree(input node x)_-> 2. Thus setting x :=const. elimi-

nates at least two gates. The new circuit N obtained by elimination of the gates
computes a function f’ for which E_ applies with S’= S\{i}. If N was cheaper
than 2s- 2, then N’ is cheaper than 2(s- 1)- 2, thus contradicting E_.

Case 2. Bi S" outdegree(input node x) 1 and the edge from x goes into an
AND-type gate C, i.e., res (C) (X/yb) with a, b, c K and y some function of
the other input variables. Claim: C (recall that was defined to be the terminal
node). As s _-> 2, B/" S such that j i. Fix the variables in a such that (a) j. Call
this P.A.a. By definition of f, f =res () x. But setting x := (-a) yields
(res (C)),,:-_(.)= (-c) independent of x. Hence C t. Fix x := (-a). This
eliminates C and its successor.

Case 3. :li S: outdegree(input node x) 1 and the edge from x goes into a
-type gate C. For the P.A. a of Case 2, res () is independent of x. But res (C)
depends on x, hence C .

Consider Fig. 3. Identify x with y. In the new circuit N’, rest, (C)= const.
This eliminates C and its successor, resN, (t) is again a function in the sense of E_
with S’= s\{i}.

This completes Case 3 and the proof of the lower bound.
In order to obtain the upper bound first observe that if n is not a power of two,

f, is not completely specified. We give a realization of a function which takes the
same values as f, where f is specified.

COMBINATORIAL COMPLEXITY OF BOOLEAN FUNCTIONS 431

c

FIG. 3

Let n n + n2 where n is a power of two and 2nl-> n. Let k [log (n2)].
Then
],(a, ,aog(,,),x, ,x,,)

((-a)/,(az,’", aog (,), x,..., x,))
V(aa/,(alog(,)-+, , a,og (,), x,+l,’’’, x,)).

Thus L(fn) -<- L (f,1) +L(fn2) + 3. Also L(fa) 0. By induction follows L(f,) -<
3n-. 3 + 3n2- 3 + 3 3n 3. El

While the argument in the proof of Theorem i was limited to the top of the
circuit (i.e., near the input nodes), the next proof establishes the existence of
branching points, which may be deep in the circuit.

THEOREM 2. Ifforf K" K :IS [1" n] such that [Vi, j
2

ce/ which fix all variables except x and xi such that

),f(x, x;)= (xAx

L,](xi, xi)= (xixi)d (a, b, c, d K)],

then L(f) >-_ 2(# S)- 2.
We first prove two lemmas.
LEMMA 2. Let G be a directed acyclic graph such that"

(i) G has n input nodes;
(ii) G has rn output nodes;
(iii) Any interior node (i.e., which is not an input node) has indegree -<_2;
(iv) G contains p nodes with outdegree >-2.

Then G has at least n rn +p interior nodes.

432 WOLFGANG J. PAUL

Xi

el

xi

")
e2

FIG. 4

Proof. Begin to construct G from the input nodes by inserting node after
node. In the beginning one has n "wires hanging down" from the input nodes.
One interior node decreases the "number of down hanging wi.res" ooly by one.
The number is increased during the construction by at least p. In the end it is m.
Hence G contains at least n +p-m interior nodes.

Lemma 2 will be applied several times to certain subgraphs of circuits. The
next lemma helps to esta.blJ.sh the existence of branching points in circuits for
functions of, to which the hypothesis of Theorem 2 a..oplies:

LEMI.A 3. Vi,] S,]: before a path (xi t) meets a path (xj t), one of
these paths splits.

Proof. Suppose the lemma is false for and/’. Consider Fig. 4. Let C be the
node wbere the paths meet. Let el, e2 be the input wires of C. Let res (t) be the
function comouted by the circuit. We show: if C is an AND-type gate, then all
subfunctions of res (t), which depend only on xi and xj are AND-like or constant.
If C is a @-type gate, all such subfunctions are (-like or coostant. But f has
subfunctions of both types. More precisely:

Take any P.A. a which fixes all inputs except xi, x. Asmby assumption--
neither path (x =) C) nor path (x =:) C) splits:

res (el) x or 0 or 1,

res (e2) x] or 0 or 1,

res (t) res (c)a or 0 or 1.

Suppose C is an AND-type gate. Then

res (t) (., a4^ as\a6/\x or0orlCf
by Lemma 1.3.

In the same way one excludes" C is a @-type gate.

COMBINATORIAL COMPLEXITY OF BOOLEAN FUNCTIONS 433

Proofof Theorem 2. There are # S- 1 input nodes xi, S, such that any path
(xi t) splits. Suppose that this is false. Then there are i0,]0 6 S such that there is
only one path (Xio t) and one path (Xjo t). This contradicts Lemma 3. Hence on
S-1 paths (xi = t) there are first nodes Di with outdegree (Di)->2. Again by
Lemma 3 these are mutually distioct. Now the theorem follows from Lemma
2.

That the branching points need not be directly under the input nodes is shown
in Fig. 5.

Example. For any c 6 [1 n 1] and any

L’K"-->K such that L(xa,"’,x.)=lifxi=c,

the following is true"

L(f)-> 2n 2.

4. A 2.5n.lower bound. Notation:

al al, alog(n),

a2=aog(n)+l" a2log(,) (ai6K).

THEOREM 3. For f: K"+2 og(,,)+ ._.> K,

f(al,"’, a2og<,,),q, xl,"’,x,)={ X(al)AX(a2) 1,

x(.1)@x(.2) if q 0,

2.5n-2<-L(f)<-6n +C (CNindependentofn).

Proof. Note that each of Theorem I and Theorem 2 implies 2n-lower bounds
for f. The upper bound is an easy consequence of Theorem 1. As in the proof of
Theorem 1, we first make f independent of all inputs xi, which allows us to

Xl X2 X3 X4

FIG. 5

434 WOLFGANG J. PAUL

eliminate 3 gates (see Cases I-IV). When that is no longer possible, we will know
quite exactly how the "top" of the circuit looks. For the remaing s inputs, we
prove the existence of 5s/2-2 gates without an inductive argument. Define for
1 _<- s =< n the statement E:

E: For any function [: Kn+zlg(n)+l’’) K with the property

c__ [1" n], # s 11, I12 (11),S such that for with $.

lX(.1,/X(,.2) if q 1,]f(al, 112, q, XI," Xn)’-
LX(I1)X(Ii2) if q 0

holds, 2.5s 2 <-_L(f).
E1 is trivially true. To see that E_a implies Es, consider an optimal realiza-

tion N of a function f as defined in Es"
Case I: ::li S such that outdegree(input node xi) -> 3. This is similar to Case 1

in the proof of Theorem 1.
Case II: =li S such that outdegree(input node x) 2 and one of the edges

e a, e2 going out from x goes into an AND-type gate. This is almost like Case 2 in
the proof of Theorem 1. A small difficulty occurs in the case of Fig. 6.

If the edge (ga g2) does not split, N is not optimal. Hence it splits. Now the
method of Case 2 of the proof of Theorem 1 work, no matter if gl or g2 is the
AND-type gate.

Case III. S: outdegree(input node x)= 2 and both edges from x go into
-type gates A and Az. Consider Fig. 7. Let B (C) be the first place on a path
(A t) (on a path (A2 t)) which is an AND-type gate or a branching point. The
existence of B or C will be shown in a moment. Denote by
the functions associated with the other input wires to this path. By definition of B

gl e2

//
/

FIG. 6

COMBINATORIAL COMPLEXITY OF BOOLEAN FUNCTIONS 435

and C, there is only one path (AlZff B) and only one path (A2 C). Because of
Lemma 1 (part (i)) one can assume that all gates in [A1, B’] and in [A2, C’] are
0)-gates (all occurring negations can be removed by possibly negating [1 or gl or
both).

LEMMA 4. [A 1, B’] CI [a2, C’] .
Proof. Suppose not. Then the situation is like that in Fig. 8. Hence

res (D f @ @gq @X@X f @ @gq.

As no other path goes out of [A 1, D) and [A2, D), fl, ", gq are independent of
xi. Hence res (D) is independent of xi. By the same reasoning, res (t) depends on x
only via res (D). Hence res (t) is independent of x. But as S, f depends on x.

COROLLARY 1. B’ and C’ are different.
COROLLARY 2. B or C exists.

Proof. Suppose not; then B’ C’ t, contradicting Lemma 4.
LEMMA 5. IfB and C exist:

C’ B’path (B:ff[A2,])) / --n ::l path (C[A1,]))

if without loss of generality only C exists"

-path (B’zff[A2, C’]).

Xi

gl

A1 A2

FIG. 7

436 WOLFGANG J. PAUL

xi

f g

FIG. 8

Proof. If B and C and both paths exist, the graph N contains a cycle.
If only C exists, the existence of a path (B’=> [A2, C’]) implies the existence

orB.
From now on without loss of generality C exists and if B exists, then path

(B =)> [A, C’]).
LEMMA 6. C# t.

Proof. Suppose C t. Then C is an AND-type gate and ::! path (A C). This
implies the existence of B. Hence if B does not exist, the lemma is true. If B exists,
proceed as follows: Since # S => 2, ::1 S, # i. Fix al, a2 such that (al) (a) ,
q 1. Fix all other variables except xi and xj arbitrarily. Call this P.A.a. Then
]’ (xi, xj) xj independent of x. We prove that the output res (t) still depends on
x and that, by fixing x to the right constant, one can produce a false output:

path (B [A2, C’]) implies gl, gt do not depend on x.
Hence

res C’) xi @ h (xj

where h is some Boolean function of one variable. Furmermore because C is an

AND-type gate:

res (C)= (res (C’)/y(x, x))
for some constants a, b, c K and some Boolean function y. Fix x := c and then

COMB!NATORIAL COMPLEXITY OF BOOLEAN FUNCTIONS 437

xi :=d such that (Xi(h(C)) "-0. Then

res (C)(d, c)= (0/y(d, C)b) =W (--nC)Cf(d, c).

Elimination step. Change the circuit N. Compute (gl 0)gt) for some
a 6 K and connect the result with xi. This increases the costs by t- 1. The new
graph N’ is cycle free because -EI path (B : [A2, C’]). But now resv (C’) --qa.

Hence delete [A2, C’], decreasing the costs by t. If C is a branching point, this
eliminates at least two more gates. If C is an AND-type gate, choose a such that
resw (C) const. This elimiv.ates C and a successor which must exist by Lemma 6.

Case IV. :li S: outdegree(input node xi) 1 and the edge from x goes into
a 0)-type gate g. This case is slightly easier than Case III" treat g and the
immediately fol!.owing it like [A2, C’] and don’t worry about [Aa, B’].

If none of the Cases I-IV are applicable, we cannot eliminate enough gates by
decreasing S. But we know: ’qi 6 S: input node x has exactly one outgoing edge.
This goes into an AND-type gate. Call this gate G. Defipe G {G[i S}.

LEMMA 7. Vi, j, j" Gi Gj.
Proof. The proof follows immediately from Lemma 3.
DEFINITION. A path n -> n --> -> nt --> n is free if ’qi: ni G. A superscript

f in expressions like [n, n’] will denote that the path, which defines this set of
nodes, is free.

LEMMA 8. V S ::i free path (Gi ::)> t).
Proof. Suppose for i S: :! free path (Gi::)’t). Then all paths (Gi ::> t) go

through a Gj,/" (Fig. 9).

FIG. 9

438 WOLFGANG J. PAUL

Fix all variables except xi such that (al) (a2) i, q 1 and such that by the
induced P.A. a, res (Gj) const, for all] i. Thenf xi but, as there is no free
path (Gi t): res (t) independent of xi. [-1

DEFNn:ION. Let p be a free path (n n’). p splits into a free path to n" if
=ICe[n, n’]p, De:In, l’]p I,.J:G, such that there is an edge from C to D and a free
path (D n").

DEFINITION. E {e [::li such that e is node on a free path (G t), e G}.
Clearly E f-I G . If we would show that there are # S- 1 nodes in E

where a free path (G t) splits into another free path to t, an application of
Lemma 2 to determine the size of E would yield a 3n-lower bound. But Fig. 10
shows that it might be the case that no free path (G (C) t) splits into another free
path to t.

By placing gates on places like a, whose other input is an appropriate function
of the a’s and q, one would still be able to compute xi/xj as well as xi 0)xi for all
and]. But such gates contribute to the costs. Though we are not able to locate
these gates exactly in the circuit, we can find a certain number, say n, of distinct
places, where paths to such gates start. Then, we will conclude, there must be at
least n/2 such gates (as one gate has only two inputs).

The following lemma is the counterpart to Lemma 3.
LEMMA 9. Let x, x (i,] S) be such that a free path (x => t) and a free path

(xi : t) meet before any of them splits into another free path to t. Let C be the node
where these paths meet; then

(i) either =l free path (Gi =: G) or =1 free path (Gi Gi);
(ii) each such path goes through a gate g, g [Gi, -C]fU Gi, C].
Proof. Consider Fig. 11. First note that by the hypothesis -n z! free path

([Gi, c)f (G, C)) or vice versa.

Xl X2 X3

FIG. I0

x4

COMBINATORIAL COMPLEXITY OF BOOLEAN FUNCTIONS 439

xi

Gi e G

//\
/

/

Xk,
D Xk2 I"

c

FIG. 11

Fix all variables except Xi, Xj and q such that (al) i, (a2) --J" and such that by
the induced P.A. a: res (Gk) const, for all k e {i, j}.

(i) Both types of paths cannot be present, because then the graph would
contain a cycle. Suppose no path (Gi ::> Gj) and no path (Gj ::> Gi) is present or all
such paths are not free. Then exclude, as in the proof of Lemma 3, the cases
C AND-type gate and C -type gate.

(ii) Without loss of generality :1 free paths (Gi ::> Gj). Suppose one such path
contains no gate ge [Gi, c]fu [G, C]f. Denote by D the last node this path has in
common with the free path (Gi ::> C) (the first candidate for D is Gi). Then there is
an edge e from D to G. Fix q :=0.

As (res(t))q ..=0 depends only on xi and xi,

(res(D))q :=O X or0or 1.

If (res(D))q::o 0 or 1, then

(res(t),)q :=0 is independent of xi.

Hence (res(D))q :_0 X NOW fiX X :-’C such that

(res(Gj)){q :=o, x, c)

is independent of xi. Hence (res(t)){q:=O,x:=c} is independent of x. But
(L):=0,,:= x(R)c.

DZrINITION. For i, j S: iRj" :>free path (Gi :ff t) and free path (G :ff t)
meet before any of them splits into another free path to t.

440 WOLFGANG J. PAUL

LEMMA 10. R is an equivalence relation.
R partitions S into, say, k groups: S S (.J (_J Sk. The free paths (Gi =)’ t)

of the group r meet in a point tr before splitting into other free paths to t. So the
free paths (Gi : t) for Sr form a tree with root tr. Call this tree the free tree of
group r.

If S {i}, then we consider the node Gi as the free tree as well as Gi tr.
Let A {gig is a node in the circuit and -::1 free path (g=)t)}. Clearly by

Lemtna 8 and by the definition of E:

Let T {i SlUr such tiaat Sr and # Sr 2}, k # {r[# S _-> 2}.
LEMMA 11. gila --> # T- k)/2.
Proof. We claitn: on any free tree with n leaves (n _-> 2), there are at least n 1

nodes D such that a free path (D =)A) leaves the free tree in D. As for different
trees such sets of nodes D are disjoint, summing over all free trees one finds at
least # T- k paths going into A: hence #A _-> (# T- k)/2.

To prove the claim, observe that in the free tree of group r there is a node F
such that a free path (G => t) and free path (Gj => t) rneet in F; i,] Sr but --n =ll S
such that a free path (GI t) goes through F. Apply to and] Lemma 9. This
implies the existence of one node D--without loss of generality, D (G, F)f--a
gate gC:[G, F]eU[Gj, Fir and a path (D=), g). If there was afree path (g=), t), then

--hi Rj. Hence g A.
Now mark [Gi, F) in the free tree and repeat the above argument. As the

umnarked paths are disjoint from the marked ones, all new nodes D are disjoint
from the old ones.

Repeating this argarnent n- 1 times proves the claim. [3

Proof of Theorem 3. Consider free paths (t t) and suppose there is a free
path (t ff t) and a free path (t,ff t) which both don’t split into another free path to
t. Then there are two cases:

(i) The free path (t =), t) meets the free path (t,:ff t). Then by definition of R
and as none of the paths splits into another free path to t, neither tr nor t, is root of
a free tree.

(ii) There is a free path (t t/) or a free path (t, tr). Then tr or tr’ is not a
root of a free tree.

Hence all but one of the free paths (t t) must split into another free path
to t.

This implies the existence of a set B’ of nodes, in which free paths (tr =), t) split
into other free paths to t. Observe that there are s # T+ k roots t of free trees.

As in the proof of Theorem 2 oae concludes that these must be s # T+ k
1 first such nodes on free paths (t t).

Apply Lemma 2 to the graph which consists of input nodes G, interior nodes
E, and the free paths between them. By Lemma 7 it has s input nodes, t is the
output node. Hence

#E=>2s # T+k-2.

COMBINATORIAL COMPLEXITY OF BOOLEAN FUNCTIONS 441

Finally by Lemma 7 and 11:

L(f) ->- #G+ #E+ #A>-3s-

As # T<_- s the theorem follows.

#T-k

5. A traue-off result.
DEFINITION. A tree ne,wori is a circuit with the property that all interior

nodes (i.e., which are not input nodes) have outdegree 1.
Tree networks are isomorphic to Boolean formulas. For a switching function

f define

T(f) min { # interior nodes in a tree network NINcomputes f}.

T is called the (minimal) formula size. if one allows only AND-like connectives in
circuits and tree networks, the minimal formula size of the parity function
Xl xn is n2- 1 [5] and the circuit complexity is 3n-3 [18]. We prove a
similar result for the case in which (-like connectives are also allowed in
formulas.

Notation. Let Nbe a crcuit, X the set of input variables and S X. A node C
in N is called S-node if there are nodes C1, C in N, C1 C (possibly C1, Ca S)
such that there is an edge (C1 = C), an edge (Ca= C), a path (S= C1) if C1 S and
a path (S :ff C2) if Ca S.

The following lemma is proved by a method very similar to the proof of
Lemma 3.

LErVMA 12. Letf: K --> K Oe a swttching function, X the set ofinput variables,
S Xand P.A.’s al,"’", aM which fix all variables in PS such that

f, fj fori j (l<-i,j<--_M).

LetN be a circuit for fi Then
(i) P := #{C[Cis an S-node in N}>-(log(M))/4 1.
(ii) (Neciporuk) IfN is a tree network, then

Y, outdegree x >log(M____2) 1
is 4

Proof. (ii) follows trom (1) and tlae clefimtion of a tree network.
(i) Let N’ be the subcircuit ofNwhich consists only of the paths (S (C) t). In N’

the nocles with imlegree 2 aIe exactly the S-nodes of hr.
Let a be a P.A. which fixes all variables in X\S. Then res (n) const, for all

nodes not in N’.
Let A be an S node or A e S, let B be an S-node or B t, and suppose :1 path

(A B) which contains no other S-node. Let e be the edge on this path which
goes into B. We call such a path (A :ff B) a programmable edge of N’. Why this
name?

Consider how res (e) depends on res (A) for different P.A.’s a. No matter
how many gates are on this path, one can "program"ruby choice of a--this

442 WOLFGANG J. PAUL

dependence in at most 4 ways:

res (e)- res (A) or - res (A) or 0 or 1.

(Compare with the proof of Lemma 3.)
N’ contains at most 2Ps + 1 programmable edges. Hence there are at most

42es+ different subfunctionsf which can be "programmed" by different P.A.’s
By the hypothesis: 42es+a -> M. This proves the lemma.
We apply Lemma 11 to the function f: Kn- K, defined as follows: let

n log (s) log log (s) + 2s (s 22", 7" E N).
Partition the input variables into

{aa, alog(s)-loglog(s)}, {X1, Xs}, {Ya, Ys}.
Denote by a the string

Denote by b the string

al, alog(s)-loglog(s).

X(a) log(s)+l X((a)+l) log(s).

Define f(al," ", Ys)= Yb-
THEOREM 4. (i) T(f) >-- O(n2/log (n)). (ii) L(f) O(n).
Proof. (i) For 0-<i -< s/log (s)- 1 define

Si {xi. log(s)+1, x(i+l)log(s)}.

Fix a such that (a) and fix the x, j S, arbitrarily. Now each of the 2 different
assignments for the variables in Y 1," ", Y produces a different subfunction of f
which depends only on the variables in S.

Applying Lemma 12 (ii) yields

Vi Y outdegree(xj) >
s

x,s, =-1.
As Si f’lSj for #j"

T(f)>--E 2 [outdegree(xi)]
xjSi

>-(1/4-1)(s/log(s))=O(n2/(log(n)).
(ii) Realize f in a circuit as follows: for 1 -< k -_< log (s) realize the functions

fk gs/lg (s)+lg (s)-lglg (s) -’> K

fk (I1, Xk, Xlog (s)+k, X 2 log (s)+k, Xs_log (s)+k) X (a) log (s)+k"

By Theorem 1 each fk can be realized with cost 3 s/log (s).
Let {ca,"’, clog(s)} be a set of new variables. Denote by e the string

cl clog(s). Construct a circuit for

f" KS+lg(s)--> K: f’(c, Yl,’" ", Ys)=

COMBINATORIAL COMPLEXITY OF BOOLEAN FUNCTIONS 443

By Theorem 1 f’ has cost -<_ 3s. For 1 -< k _-< log (s) connect the terminal node of the
circuit fk with the input Ck Of f’. This gives a realization of [with cost 6s and the
theorem is proven. 71

Acknowledgments. I want to thank Professor John Hopcroft, Dr. Peter van
Emde Boas, and Dany Paul for encouragement, help and discussion. Zvi Galil
pointed out to me how to improve the original 2.25n-lower bound of Theorem 3
[11] into 2.5n.

REFERENCES

[1] S. A. Cooi, The complexity of theorem proving procedures, Proc. 3rd ACM-STOC, 1971, pp.
151-158.

[2] M.J. FISCHER, Lectures on network complexity, presented at the University of Frankfort, 1974.
[3] G. HOTZ, Schaltkreistheorie, de Gruyter, Berlin, 1974.
[4] R. M. KARP, Reducibility among combinatorial problems, Complexity of Computer Computa-

tions, R. E. Miller and J. W. Thatchers, eds., Plenum Press, New York, 1972, pp. 85-104.
[5] KHRAPCHENKO, On the complexity of the linear function in the class of H-circuits, Mat.

Zamertki, 9 (1971), no. 1, pp. 35-40. (In Russian.)
[6] O. B. LUPANOV, Ueber den $chaltau’wand bei der Realisierung logischer Funktionen, Probleme

der Kybernetik, 3 (1957).
[7] K. MELHORN AND Z. GALIL, Monotone switching circuits and Boolean matrix product,

preprint, 1974.
[8] A. MEYER, 6.853 Lecture notes, Dept. of Electrical Engineering, Mass. Inst. of Tech., Cam-

bridge, MA, 1974.
[9] E. I. NECIPORUK, A Boolean]’unction, Soviet Math. Probl., 7 (1966), pp. 999-1000.

[10] M. S. PATERSON, Complexity of monotone networks]’or Boolean matrix product, Tech. Rep.,
Univ. of Warwick, England, 1974.

11] W. PAUL, 2.25N-lower bound on the combinatorial complexity ofBoolean functions, Tech. Rep.
TR 74-222, Cornell Univ, Ithaca, NY, 1974.

[12] V. PRATI’, The power of negative thinking in multiplying Boolean matrices, 6th Ann. Symp. on
Theory of Computing (SIGACT), 1974.

[13] J. E. SAVAGE, The complexity of computing, draft, 1974.
[14] J. E. SAVAGE AND E. A. LAMAGNA, Combinational complexity o] some monotone]:unctions,

15th Ann. Symp. on Switching and Automata Theory (SWAT), 1974.
[15] J. E. SAVAGE, Computational work and time on finite machines, J. Assoc. Comp. Mach., 19

(1974), pp. 660-674.
[16] C. E. SHANNON, Bell System Tech. J., 28 (1949), no. 1.
[17] C. P. SCHNORR, Lower bounds]’or the product o.f time and space requirements o] Turing machine

computations, Proc. MFCS, High Tatras, Poland, Sept. 3-8, 1973, pp. 153-163.
18] ., Zwei lineare untere Schrankenfuer die KomplexitaetBoolescherFunktionen, Computing,

13 (1974), pp. 155-171.
[19] The combinational complexity of equivalence, GI.Fachtagung Automatentheorie und

Formale Sprachen, Kaiserslautern, Springer Lecture Notes, Springer-Verlag, Berlin, 1974.
[20] L.J. STOCKMEYER, The complexity o]decision problems in Automata theory and Logic, Project

MAC TR 133, Mass. Inst. of Tech, Cambridge, MA, 1974.
[21] V. STRASSEN, Berechnung und Programm 1, Acta Informatica (1972), pp. 320-335.

SIAM. J. COMPUT.
Vol. 6, No. 3, September 1977

ON RESOLUTION WITH CLAUSES OF BOUNDED SIZE*

ZVI GALIL-

Abslret, Several procedures based on (not necessarily regular) resolution for checking whether
a formula in CF3 is contradictory are considered. The procedures use various methods of bounding the
size of the clauses which are generated. The following results are obtained:

1. A!I of the proposed procedures which are forced to run in polynomial time do not always
work--i.e., they do not identify all contradictory formulas.

2. Those which always work must run in exponential time. The exponential lower bounds for
these procedures do not follow directly from Ts,ifin’s lower bound for regular resolu6on since these

.procedures also allow nonregular resolution trees.

Key werds, resolution proofs, regular resolution, bounded resolution

1. Introd-cfion. We assume that there is an uo_bounded set
{xa, x2, , y, "} of variables. A literal is either a variable or the complement of
a variable, denoted x and respectively (or x and x 0). A clause is a finite set of
literls (ll, , lk) such that no wriable appears more than once, and is denoted
by la\/12\/" /lk. A formula (in conjunctive form (CF)) is a finite set of clauses.
A valuation (or assignment) i.s a function v from the set of literals to {0, 1}. (Zero is
to be thought of as meaning false and one as meaning true.) The value (relative to
v) of the literal x () is v(x) (1-v(x)). The value of the clause 11/12/’" /l is
maximu of the yalues of the l’s. (By convention if k =0 we denote the clause by
A, and define its value to be 0.) The value of a formula is 1 if the values of all its
clauses are 1, and 0 otherwise.

A formula is satisfiable is there is some valuation for which the value of the
formula is 1, and unsatisable (contradictory) otherwise. It is well known that any
0, 1 valued function of k arguments may be represented by a formula in CF with
variab!es {Xl, , x}. Cook [-2] has observed that any formula (not necessarily in
CF) of length n can be transformed, using additional variables, into another
formula of length O(n) in CF with at most three literals per clause, and that the
second formula is satisfiable if and only if the original formula is satisfiable. (This
also ap0ears irn01icitly in [8] and explicitly in 1].) We denote the latter by CF3.

In ths paper we are interested in the following problem: given a formula in
CF (i.e. a set of clauses), it is contradictory? The dual problem is the well-known
"tautology problem". The existence of a good algorithm for either problem is
closely related to the "P =NP?" problem [2].

Two clauses Ca and C2 are said to conflict if there are literals in Ca which
appear complemented J.n C2. If C and C2 do o.ot conflict, then we denote by
Ca/C2 the clause which contains all literals in C1 and C2. The clauses C1 and C2
are said to clash if there is exactly one literal in C1 which appears complemented
in C2. If Cl/X and C2/ clash, then their resolvent is the clause Ca/C2. We shall
say that C1/C2 is obtained from Cl/X and C2/ by applying the resolution rule,
or by annihilating x.

Received by the editors October 6, 1975, and in revised form April 15, 1976.
? Computer Sciences Department, IBM Thomas J. Watson Research Center, Yorktown Heights,

New York 10598. This paper is based on parts of the author’s Ph.D. thesis at Cornell University [3].
This work was supported in part by the Office of Naval Research under Grant N00014-67-A-0077-
0021.

444

,RESOLUTION 445

A resolution proof of unsatisfiability of a set of clauses S is a sequence of
clauses Ca, , C sch that Ck A av.d for 0 _-< -< k 1, C+ is the resolvent of
some pair from S U {C," ., C/}.

Robinson [6] introduced tb.e resolution prindple and showed that a set of
clauses is unsatisfiable if and only if there is a resolution proof of its
unsatisfiability.

A (resolution) proof tree]’or a clause C (using S) is a bioary tree T wb_ose

vertices contain clauses in such a way that (i) C appears at the root of T; (ii) every
leaf of T contal.ns one of tb.e clauses in S, and (iii) the clause at ny vertex which is
not a leaf is the resolvent of the clauses at its sons.

A resolution proof tree (using S) is a proof tree for the empty clause using S.
The complexity of a proof tree T, N(T), is tb.e number of distinct clmses wMch
appear on vertices of T. Note that a proof tree Tusing S is just a way to represent a
resolution proof of the unsatisfiebility of S, and that N(T) is actually the length of
the resolution (straight line) proof defined bove.

The (unrestricted) resoluqon procedure is the procedure that nondeterministi-
cally constructs a resolution proof tree using the given set of clauses S. It can be
viewed as representing the class of deterministic procedures which use various
heuristics for choosing the clauses to be resolved. The cornpIexity of the resolution
procedure is not known at present.

For a proof tree T using S and vertex in T let. C/be the clause at and T/the
subtree with root i. Obviously T is a proof tree for C using S. The root of a proof
tree (for A) will always be denoted by 1. The height of T is the length of the longest
path in T (i.e. between its root and one of the leaves).

Let T be a proof tree for some clause C. T is regular [8] if there is no vertex
in T such that C contains some literal which is annihilated in T. Note that a proof
tree T is regular if and only if no path from a leaf to the root of T contains the
annihilation of any variable more than once. Regular resolution is the procedure
which nondeterministically constructs a regular resoluticn Freof tre using S.

One should note that a set of clauses is un_satisfiable if and only if it has a
regular proof tree. The "if" p,rt is obviols. The "only if" part holds beca.se the
inductive proof of the completeness of resobtion happens to construct a regular
tree.

In [8], Tseitin introduced regular resolution. He described a method of
associating contradictory sets of clauses with graphs. Tseitin investigated what
happens in the graph wb.en we walk along a regular proof tree using a set of clauses
which correspoods to it. This enabled him to show, after choosing specific set of
graphs, that regular resolution is exponential. Unfortunately his proof is formal,
unintuitive, and does not contain most of the details. In [3] we give a simplified,
hopefully intuitive, and detailed proof for a slightly improved vers;on of Tseitin’s
mein result.

We shall use Tseitin’s method to generate contradictory sets of clauses. We
shall apply it to a different set of graphs. Similarly to Tseitin we shall investigate
what happens in the graph when we walk along a (not necessarily regular) proof
tree using a set of clauses which corresponds to it. To that end, (i) we shall prove a
correspondence between clauses on a regular tree and connected subgraphs of the
given graph; aod (ii) we shall prove an assertion made by Tseifin b’t without

446 zvI GALIL

proof. These will enable us to prove our main resultma cn lower bound on the size
of clauses in resolution trees. (n is the number o variables.)

We shall extensively use sets of clauses corresponding to graphs. We present
below the notation which we use for dealing with graphs. All graphs will be
connected, undirected, and without self loops. Thus a graph is a pair (’,/),
where Vis its set of vertices (u, v, w .) andE its set of edges (where an edge is an
unordered pair (u, v), u, v V, u v). A graph G (V, U) is a subgraph of G if
V_ V and E

_
E. (In the literature G is sometimes called a partial subgraph of

G.)
Let G (V, E) be a subgraph of G. The boundary of G, F (or F when G is

not clear from the context) is the set of edges of G which are incident with at least
one vertex of G and do not belong to E. The exterior boundary (interior boundary)
of G Fext (Fint), consists of those edges in the boundary of G which are incident
with exactly one vertex (two vertices) of G. A graph G (V, E) is bipartite if
g-- V .J g2, V 0 V2 t and E

_
{(u, v) u V1, v V2}. V1 and V2 will be

called the two sides of G. A vertex is of degree k if there are exactly k edges
incident with it. A graph is of degree k if all its vertices are of degree at most k.

The outline of the paper is as follows" In 2 we introduce several versions of
bounded resolution and iterated bounded resolution. We ask several questions
about them and prove that all the versions of bounded resolution are equivalent.
In 3 we describe Tseitin’s ingenious construction of sets of clauses associated
with graphs. In 4 we prove two general lemmas which will be used in the sequel.
Although we have not been able to show that the unrestricted resolution proce-
dure has an exponential lower bound, we believe that such lemmas as those in 4
might be used to prove this result. In 5 we describe a specific set of graphs and
prove some of its properties. We shall use all these in 6, where we prove the main
theorem. Some easy corollaries of the main theorem settle the questions asked in
2.

2. Bounded resolntion. One way to force resolution procedure to run in
polynomial time is to generate clauses only up to size k, where k is a given

constant. (Note that there are at most 3()-< 5n distinct clauses of size up to k

over n variables.) This approach was suggested to us by J. Hopcroft and this paper
investigates the validity and complexity of several procedures which use this
approach. We assume that the inputs are formulas in CF3. Otherwise, if one
allows all formulas in CF, one cannot restrict attention to clauses of size -<_k. For
example, consider S {x1Vx2V" .VXm, 1, 2, Y,,,}m > k. S is contradictory,
but if we delete the first clause from S we get a satisfiable set of clauses.

We consider three versions of bounded resolution (BR)" we assume that there
is an integer k such that the size of each clause generated is bounded by k. All
three versions use an operation RESOLVE(k) which adds to the current set of
clauses a all those clauses of size =<k obtained from two of the clauses in a by the
resolution rule. Two of the versions use the operation EXPAND(k) which
replaces each clause C of size less than k by all terms C of size k such that C t
(i.e. Csubsumes t). Let ALL(k) be a predicate which is true if and only if all terms
of size k are present. The three routines are"

The numbers 1, 2, 3 denote positions in the programs. We shall refer to them below.

ESOUTO 447

BRI(k): repeat
begin
EXPAND(k)
RESOLVE(k)

end
until no new clauses are generated;

it ALL(k) then output "unsatisfiable"
else output "satisfiable"

BR2(k): repeat
RESOLVE(k)

until no new clauses are generated;

EXPAND(k);

if ALL(k) then output "unsatisfiable"
else output "satisfiable"

BR2(k): repeat
RESOLVE(k)

until no new clauses are generated;
if the empty clause is present
then output "unsatisfiable"
else output "satisfiable"

The three procedures discard clauses of size >k. BRI(k) was suggested by J.
Hopcroft. It uses only clauses of size k exactly: Whenever a shorter clause is
generated it is immediately replaced by all clauses of size k which are subsumed by
it. BR2(k) is obtained from BRI(k) by a small modification. It allows also clauses
shorter than k and the expansion to size k is executed only once--at the end. The
third alternative (BR3(k)) is not to expand at all. Note that the empty clause is
generated if and only if there exists a resolution proof tree with clauses of size _-<k.

Note also that the number of clauses generated by the three procedures is not
uniform. But they all generate O(nk) distinct clauses, where n is the number of
variables. Hence they all run in polynomial time. We shall say that a procedure
works correctly if it outputs "satisfiable" iff the input is satisfiable. For each of
these procedures we would like to know:

(I) Does the procedure work correctly for some constant integer k ? and if
not,

(II) Does it work correctly for k k (m), some slowly growing function of m,
where m is the size of the input? (Obviously k n will do.)

A positive answer to (I) would imply P NP. A positive answer to (II) would
yield a subexponential algorithm for the tautology problem (and hence to all
P-complete problems) provided k(m) grows asymptotically slower than m for
every e.

If k is not large enough, these procedures might give a wrong answer--they
might decide that the input is satisfiable while it actually is unsatisfiable. The
possibility of such an error can be detected. Obviously, if upon termination of

448 zw GALIL

BR1 (BR2, BR3) all terms of size k are pxesent (the empty clause is present), the
inp-ut is unsatistiable. Otherwise, if a nev term can be generated (by the resolution
rule) wtficil is la ger than k and does not contain any of the present clauses, one
canxot conciucle that the input is satisfiable, but rather that the bound k is too
small. This leads to the iterated bounded resolution (IBR): IBR1 (IBR2, IBR3) is
simply iterating BRI(k) (BR2(k), BR3(k)) with increasing k if the case men-
tioned algove occurs.

These iterated bouncted ’esolution procedures always give the correct
answer. The qtesnon at)out them is:

(Iil) What is the time bound for tiae iterated bounded resolution procedures?
Example 2.1. Consicler

’5,3--" {X1VX2VX3), (X1VX2VX4),""", (x3’Vx4Vx5),

()lV)2V.3), (.lV)2V.4), (33V34V.5)}.

One ca see immecfiateiy that/35,3 is unsatisfiable, that BR(3) would not work
and tlat BR(4) will work (where BR is any oe of the versions).

Ot attempts to answer questions (I)-(IiI) by first considering simple
examples have failed. The seemingly simple question, "Is the bound k =4
sufficient [or n 6? (where n is the number of variables) was answered by J.
Simon [7]. However, the pxoof is conplicated and does not generalize.

Example 2.2. Let ,,l be a foxnula in CF over n variables which contains all
clauses of size such that the variables in any term are either all complemented or
all noncomplemented. For every n > 0 and _<- In/2] ,2/3,,t is unsatisfiable since
every assignment has either zeros or ones, and thus at least one of the clauses
must have the value 0. Consider [n,l, <-_ In/2]. Obviously a bound k >= 21-2 is
necessary for BR(k) to work for/3,,1. However, after using the usual trick of
converting/3,,i to CF3 it is no longer clear that a smaller bound would not suffice.
Even if this method worked it would have settled question (I), but not questions

(n) and the number of distinct(II) and (IiI), since the input is of length m --1
clauses generated is </22/(n__)< m4 since one can show that the bound

21 2
k 21- 2 suffices.

In q’heoem 2.1, we pove the equivalence of BR1, BR2, and BR3. This will
enabie us to speak about BR which will stand for any one of them.

TIaor<iM 2.1. For afixed k, allproposed bounded resolution versions give the
same answer to any given input.

Proof. First we show that BR1 and BR2 ae equivalent. Let terma, term2 and
term3 be the clauses present at points 1, 2 and 3 in BR1 and BR2. One shows that
(i) for very 7 in terma there is C term2 such that C__ 7; and (ii) for every C in
tennz every 7 of size k such that C___ 7 is in terms. This will imply (by definition of
EXPAND(k)) that terma term3 and will complete the proof. Parts (i) and (ii)
may be proved by induction on the depth of the resolution.

In/2] is the smallest integer greater than or equal to n/2.

RESOLUTION 449

Now we show that BR2 and BR3 are equivalent. We prove that A e term2 if
and only if ALL(k) is true for term3. Since up to point 2 BR2 and BR3 are the
same, this completes the proof.

If A 6 term2, then ALL(k) is true for tertn3 by definition of EXPAND(k). To
pove the converse we need the following definition: A set of terms satisfies
ALL’(/) if, for every clause (of size l, there is a term C in the set such that C_
If ALL(k) is true for term3, than ALL’(k) is true for term2. One then shows that if
ALL’(/), >0, is true for a set of clauses, then ALL’(/-1) is true for the set
obtained by applying RESOLVE(k). But RESOLVE(k) does not change term2.
Thus ALL’(0) must be true for term2, i.e. A term2. For details see [3].

In our tnain theorem we shall prove a cn lower bound on the size of clauses
generated by resolution proofs. An immediate corollary will settle questions (I)
and (II) above in the negative. Another corollary will show that the time bound for
IBR_-> 2 (answering question (III)). Note that all known procedures that check
whether a given set of clauses is contradictory are exponential. We do not know
how IBR performs in comparison to the other procedures. Note also that BR(k)
can still be used as a heuristic for showing that a set of clauses is contradictory (but
not for showing that it is satisfiable). Thus, our main theorem gives examples
where using this heuristic fails. We do not know how BR(k) compares with other
heuristics for the same problem.

3. Sets of dauses corresponding to graphs. In this section we describe
Tseitin’s metlaod of associating contradictory sets of clauses with graphs. The
definitions and results ae due to Tseitin.

Let G (V, E) be a given undirected graph without loops (i.e. there is no
edge (v, v)). Let be a lat)eling which assigns to every vertex v a label ev {0, 1},
the parity of v, and each edge a literal in such a way that no two edges are labeled
by a literal corresponding to the same variable. G(I) will stand for the labeled
graph.

Consider a vertex v in V. Assume that v has degree k and Zl, z2, , Zk are
trJe lkerais which label the edges incident with v. A clause C corresponds to the
vertex v if and only if

C Z alV Vzc
and the number of complemented zi’s is of parity opposite to the parity of v i.e.

k

Z (l--ai)ev
i=1

which will be referred to as the parity condition with respect to 19.
3 Note that there

are exactly 2k-1 distinct clauses which correspond to v.
LEMMA 3.1. The assignment 6 given by z 61, , Zk 6k satisfies all the

k
clauses correspo.nding to v if and only if i=

Proof. If i= ti By, then C z /. /z k corresponds to v and is not
satisfied by the assignment a.

Throughout this paper, Y and + denote sum modulo 2.

450 zw GALIL

Assume i=1 3i eo and let C=zV "Vz be an arbitrary clause corres-
ponding to v. The only assignment which does not satisfy C is Zx-
1 a1," , zk 1 ak. Since Y.i (1 ai) e it must differ from the assignment
6. Thus 6 must satisfy C.

We denote by a(G(l)) the set of all clauses which correspond to all vertices in
G (l is the labeling).

Claim. a(G(l)) is unchanged if we apply the following transformations to the
labeling:

Transformation 1. Change exactly one edge label (from z to z?) and simul-
taneously change the vertex labels of its endpoints.

Transformation 2. Change all edge labels along a path from vertex u to
vertex v and simultaneously change e and

Transformation 2 is a sequence of applications of Transformation 1. The
latter does not affect a(G(1)) since if a clause C corresponds to a vertex w under
the old labeling it does so under the new labeling: for w {u, v} this is obvious
since nothing has changed; for w u (w v) the change of
implies a double change in parity. Hence C satisfies the parity condition with
respect to u (v) under the new labeling.

Let e(G(l))=
LEMMA 3.2. For a connected graph Gand a labeling l, a(G(1)) is satisfiable if

and only if e(G(l)) O.
Proof. Assume e(G(1)) is satisfiable. Using Lemma 3.1 and summing (mod 2)

all e’s we get e(G(l)) 0, since every 6 appears twice (once for each endpoint of
the edge labeled by z).

Assume e(G(l)) 0. Using Transformation 2 we can set all vertex labels to 0.
0 for 1 < < n satisfiesIf the new edge labels are z,..., z’ the assignment z

a(G(l)) (by Lemma 3.1). El
From now on we consider a fixed connected graph (I7", j) with a fixed

labeling such that e((/)) 1. Thus a((/)) is unsatisfiable. We will refer to
a(G(1)) as the original set of clauses. We will identify the edges and their labeling
if no confusion will arise.

4. Two general iemmas. In this section we prove two general lemmas" (i) the
correspondence_ lemma, which states the correspondence between operations on a
graph G and a regular derivation using the clauses corresponding to , (ii) the
regularity lemma, which states that if we can prove a given clause Cby a resolution
tree, then we can prove a clause C’, C’

_
C, by a regular tree. The latter was stated

without proof by Tseitin. These two lemmas will be used below for proving the
main theorem. We still hope that by using these lemmas one will be able to prove
an exponential lower bounds for the unrestricted resolution procedure.

Let G (V, E) be a connected subgraph of . A clause C is associated with G
if its variables are all the labels of the edges in the boundary of G. If C is associated
with G, then the parity of C, 8(C), is the parity of the number of complemented
variables in C which correspond to the exterior boundary of G, i.e. if C=
zIIV .VZat, then 6(C)= ’.z,FXt(1 ai). The parity of G, e(G), is defined to be
the sum modulo 2 of the vertex labels of G. C is a regular clause associated with G
if C is associated with G and the parity of C is opposite the parity of G, i.e.

RESOLUTION 451

6(C) e(G). C is a regular clause if there is a connected subgraph G of G such
that C is a regular clause associated with G.

Example. Consider the subgraph G (V, E) of G in Fig. 4.1. V consists of
the circles and E consists of the dotted lines. Assume that all vertex labels are 0;
thus e(G)= 0, Fint-- {a} and Fext-- {X, y, z}. Let C1 a/x/y/z, C2
aVxVyVz and C3 a/x/y/f. All three clauses are associated with G, but only
C3 is a regular clause since 8(C3) 1 while 8(C1) 8(C:)= 0.

One can immediately make the following observation" If C is one of the
original clauses which corresponds to a vertex v in G, then C is a regular clause
associated with the subgraph G (v, b) consisting of an isolated vertex. (We
identify the vertex v and the singleton {v}.)

The next lemma proves that if T is a regular proof tree for a clause C, then C
is a regular clause. The lemma specifies exactly the connected subgraph G with
which C is associated.

LEMMA 4.1 (the correspondence lemma). If T is a regular proof tree for a
clause C, then C is a regular clause associated with some connected subgraph
G (V, E) of where V= {v Iv and a clause corresponding to v appears on a
leaf of T} and E {x x is annihilated in T}.

Proof. Proof is by induction on the height h of T. The basis of the induction
(h 0) follows immediately from the observation preceding the lemma.

Induction step. Let T be the tree in Fig. 4.2 and assume x/CI(/C2) is a
regular clause associated with Ga(G) which satisfies the hypothesis of the lemma.

Without loss of generality there are four cases. (For 1, 2 Gi V/, Ei), F/xt,
are defined in the obvious way.)
1. G G (the subgraphs are identical).
2. V V2 4 (they are vertex disjoint).
3. Vx V2 and there is z E-E2.

4. V f V: 4 and there is u
Claim. Cases 3 and 4 are not possible.
Proof. We show that in both cases E1 F2 t, i.e. there is a variable z

annihilated in T such that either z or g appears in C./acontradiction since T
is regular. For case 3 it is obvious that z E F2. For case 4 let v V f V2. GI is
connected; thus there is a path in G1 from u to v. There must be an edge z on this
path such that one of its endpoints is in
E f F.

_, a
X

/
/

FIG. 4.1. A subgraph G of G and all edges o]’ G which are incident with its vertices

452 zvi GALIL

C

CIVX C2V

FIG. 4.2

To complete the proof of the lemma we now consider cases 1 and 2.
Case 1. G1 (2 and thus F1 =F2. x/C and /C2 consist of the same

variables and have exactly one conflict (x vs.); thus C C2 C. Since the parity
of CaVx and C2VX both differ from the parity of G1 G2, they must be the same.

KTint]u,intHence x .2 Let G (V1, E1U x). It is easy to check that the pair (C, G)
satisfies the induction hypothesis. The parity of G differs from the parity of C
since e(G)= e(G) and 8(C) (C1 /x).

Case 2. V1 f-) V2 b. Let G (VA t,J V2, E1 [,.J E2 J x). Obviously, G is con-
nected, C is associated with G, E E1 [3 E21,3 x consists exactly of the variables
annihilated in T and V V tO V2 consists exactly of those vertices which corres-
pond to the clauses on the leaves of T. To complete the proof that the pair (C, G)
satisfies the induction hypothesis we now show that G has parity opposite to that
of C. Since (CI/X)F,(G1) and 6(C2/x)#e(G2), 6(C/x)+6(C2/)=
e(G)+ e(G2) e(G). We show below that

(1) (C,Vx)+(cVx) (c)

which will imply that B(C)# e(G) and will complete the proof of the lemma.
To prove (1), recall that if C= z’/ /z’, then 6(C)= z,FeX,(1--ai). But

FlXtll-2Xtxl.JF12 and F12_Fint. (See Fig. 4.3.) In 8(CVx)+6(C2V) the
terms corresponding to Fxt appear exactly once, the terms for F12 appear exactly
twice (hence they can be dropped) and since x appears once as x and once as ,
6(CIVX)+6(C2/2)=6(C)+0+ 1 and (1) fo!lows. [3

x

FIG. 4.3

RESOLUTION 453

We now show that every clause in every proof tree contains a regular clause.
LEMIvA 4.2 (the regularity lemma). Let T’ be a proof tree]’or the clause C’.

Tlen ttee is a C C’ and a reguiar proof tree Tfor C.
Proof. Proof is by induction on the height of T’. The basis of tiae induction is

trivially true.
Induction step: Let T’ be the tree shown in Fig. 4.4. Apply the induction

hypotiaesis to T (T&) to obtain a regular tree T (T{) which proves dl(d2)
with

If xC (YC2) then T= T (T T) and C= C1 (C= C2) satisfy the
hypothesis of the lemma. Otherwise, let dX dVx and t2 C/Y and let T" be
the tree shown in Fig. 4.5. T" need not be regular because a literal which appears
in C/x (C/) might be annihilated in T (T). So let

P {z[z C’’, z is annihilated in T}

U {zlz C, z is annihilated in T}.

If P b then T" is regular and T T" and C C" will do. Otherwise, we eliminate
in T" all annihilations of z’s in P by deleting corresponding subtrees. T" decom-
poses into a collection of separate subtrees and we construct from them a new tree
T by performing all possible annilations.

More precisely, we construct T by the following inductive process: If T;’
consists of a single vertex, then T T’. If T’ is the tree shown in Fig. 4.6, then

(i) If z. P(P), then T T/1 (T T2), i.e., the other subtree is deleted to

xVcl

FIG. 4.4

FIG. 4.5

454 zw GALIL

FIG. 4.6

prevent annihilation; otherwise
(ii) If z C., (i G2), then T T, (T T_), i.e., the other subtree is deleted

since we do not need to annihilate z in the new tree; otherwise
(iii) T is obtained by combining T, and T (i.e., by resolving Ci and C).
Let T Ta (where 1 is the root) and C Ca. For in T, an easy induction on

the height of T proves that
(a) T is regular,
(b) G c__ c’VP. (Recall that a clause is a set of literals.)

Thus T is regular and C c_ C"c_ C’, since P
_

C". Hence T and C satisfy the
required properties.

Example 4.1. Figure 4.7 illustrates the induction step in the proof of Lemma
4.3. Although the two main subtrees of T’ are regular T’ itself it not regular

xVaVz

Vf /’,\
aVV

FIG. 4.7

RESOLUTION 455

(P b). The circled subtrees are eliminated to prevent annihilation of literals in P
((i) above). The third subtree is eliminated because y does not appear in the
corresponding clause ((ii) above). As expected (a) and (b) above hold. Note that
yVtiVz is longer than its corresponding clause in T’($VtT).

Tseitin used the regularity lemma to show that every nonregular proof tree T
can be transformed to a smaller regular tree T’. However T’ might have many
more distinct clauses than T. Hence, the regularity lemma and the fact that regular
resolution is exponential do not imply that resolution is exponential.

5. The specific collection of graphs. We consider a graph G (V, E) which
depends on a parameter m and hence it actually represents a collection of graphs.
When speaking on constants (like c, d below) we shall mean constants with respect
to m. t is defined by a transformation on a graph Hm (I7,/) which was
introduced by Margulis [5]. We do not describe Hm below. We only mention some
of its properties. H,, is a bipartite graph of degree 5, such that each of its sides
contains m 2 vertices. Theorem 5.1 below is a rewording of a special case of
Margulis’ main theorem. (Namely, taking a 1/2 in Theorem 2.3 in [5].)

THEOREM 5.1. There is a constant d > 1, such that if V is contained in one
side of Hm 11 <= m2/2, and 2 consists of all the vertices in the other side of t-I,
which are connected to vertices of / by an edge, then Q21-> dl fql.

COROLLARY 5.1. There is a constant c >0, such that if G (V, E) is a
subgraph ofH, and m2/4 <- VI < m2/2, then IFedtl _-> cm2.

Proof. Assume V= VI V2 and VI(V2) consists of vertices in the first
(second) side of H,. Without loss of generalit^X Ivl[[V21" Let r V and 1’2
be as in Theorem 5.1. It follows that [V2[>-d[VI[. Hence,

Using a trick which was introduced by Kirkpatrick [4], we transform Hm to a
graph of degree 3 to obtain t: if v is a vertex in H,, of degree (3 _-< _-< 5) it is
represented in t by a cycle of vertices v(l, , v (l. If (u, v) is the ith (jth) edge
emerging from u (v) in H,,, it is represented by the edge (ui, vj) in t. (See Fig.
5.1.)

Let G be a connected subgraph of . is the projection of G in H. if its

vertices and edges correspond to those of G. ((is obtained from G by shri.nking
the cycles which were introduced in the definition of G.) Obviously G is a

connected subgraph of Hm.

FIG. 5.1. The transformationfrom H,,, to

456 zvI GALIL

We take a labeling such that e(G(l)) 1, and a(G(l)) is our set of clauses. (It
is contradictory by Lemma 3.2). Obviously n O(m2), and a(t) contains O(n)
clauses of size 3.

LEMMA 5.1. Let T be a tree such that each vertex in T is labeled by
G (Vi, E), a connected subgraph o]’ r. Assume that (i) G 1, (ii)IVI 1 if] is
a leafand (iii) V/- V/ U V/ i]’i and i2 are the sons o[i. Then, there is a vertex in T,
such that I Ztl >- cn for some c > O.

eroo. Let ((Q/,//) be the projection of G in H,. By (iii) we can go along
a path from the root 1 to a leaf, choosing the son of with I/2. So
decreases from 2m to 1 and never decreases by more than half in any one step.
Thus, there must be an on the path with m/4_-< ff/I < m2/2. By Corollary 5.1,

-> cm2>- c’n. But if any one of the edges which is incident with v is in Fdx,t,
then at least one edge which is incident with some v(is in b-a]t. Hence

xt c"n.If/Xtl > Ifeo, I/5 >

6. The main theorem.
THEOREM 6.1. For infinitely many n >= 1, there are unsatisliable formulas

in CF3 over n variables which contain O(n) clauses such that every resolution tree
using an contains clauses of size >cn for some c > O.

Note that a theorem similar to Theorem 6.1 concerning regular resolution
follows from Lemma 5.1 and the correspondence lemma. By applying the
regularity lemma to a given proof tree we obtain a regular proof tree. But the
latter can contain longer clauses (as in Example 4.1) and thus Theorem 6.1 does
not follow immediately from the regularity lemma. Yet, the theorem does follow
from careful application of the regularity lemma and its proof.

Proof. Let an be the set of clauses which corresponds to the graph G, and let
T’ be an arbitrary resolution proof tree using an. By the regularity lemma we can
associate with each vertex in T’ a regular clause C _c C. Let Gi (V, Ei) be the
subgraph of t which correspond to C by the correspondence lemma. (V {v a
clause corresponding to v appears on a leaf of T/, the regular tree for C}:)
Consider T’ and the subgraphs {Gi}. By the proof of the regularity lemma, the
conditions for Lemma 5.1 hold. By the conclusion of Leroma 5.1, there is a vertex
with [F /xt[cn. Hence, Icll--> Ic, cn.

Theorem 6.1 aoswers 0uestioos (I) and (II) about the bounded resolution
procedures"

COrOllaRY 6.1. BR(k) works for an only if k >= cn.
It also answers question (III) about that iterated bounded resolution proce-

dures:
COrOLlARY 6.2. The run-times of IBR1, IBR2 and IBR3 are all greater

than 2.
Proof. Corollary 6.1 for BR3 follows from Theorem 6.1. But by Theorem

2.1, the same holds for BR1 and BR2. Corollary 6.2 is obvious for IBR1 and IBR2
since 2 is a lower bound for the number of distinct clauses of size cn. Also, it is
easy to see that if IBR3 generates a regular clause associated with som.e subgraph
G, it must generate all regular clauses associated with G. Si.nce a G with
must exist, at least 2 distinct clauses are generated by IBR3.

RESOLUTION 457

7. Concluding remarks. For three literals x, y, z and a Boolean function f
over 2 variables, let a(f, z, x, y) be the set of clauses over x, y, and z which is
equivalent to z f(x, y). One can verify that a (f, z, x, y) exists for all 16 possible
choices of f.

Example.

z, x, y)= {xVz), (eVxVy)}

z, x, y)= {(xVyVz), (xV Vz), (xVyVe),

a(U1, z, x, y)= {(Vx), (yVz)} where U(x, y)= x.

The extension rule [8] is applied by choosing f, x and y, creating a new variable z,
and adding a (f, z, x, y).

We saw that allowing only clauses of size up to a certain constant may
prevent the procedure from working correctly. The question which na.turally
arises is" What happens if we consi.der bounded resobtion with exteo.son. The
following theorem answers this question. Its proof appears in the Aopeodix.

THEOREM 7.1. Let Tbe a resolution proof tree (with or witho,,t extension). Let
N N(T) be the number of distinct clauses, and m the number of distinct variables
in T. Suppose the original set of clauses has at most limrals per clause. Then, u,ing
extension, we can transform Tinto a prooftree T’ with clauses qfsize =l, T’ contains
at most O(Nm) distinct clauses.

Hence if the input S is in CF3, then every resohtion proof tree sing S can be
transformed into ao.otber tree which ses exteosion aqd with cla.ses of size .-<_3.

The latter, however, does not necessarily contain a nom.ber of clal..ses which is
bounded by a polynomial in tb.e number of tbe variables in S, siqce the n,mber of
variables which are introduced by the extension role may be very large.

We conclude by considering Fig. 7.1 wbich coqsiders four related problems:
Problem 1--showing a cn lower bo,nd on the size of clases in regular resolution.
It follows directly from the corresooodence lema aod Lernrna 5.1. Problem
2--the analogous problem for unrestricted resolution was the subject of this
paper. Problem 3--showing exponential lower-bovnd for regular’ resobtion was
settled by Tsei.tin. Problem 4--getting a lower-bovod o,a the number of distinct
clauses in resobtion is still open. We hope that the tecbniq.es sed to solve
Problems 2 and 3 will he!o to settle Problem a.

A number of distinctsize of clauses
B clauses

regular resolution

unrestricted resolution

FIG. 7.1. Lowerbounds onA usingB

458 ZVI GALIL

Appendix.
Proofof Theorem 7.1. Without loss of generality >- 3. For every clause C in T

we have a new variable zc such that zc=- C. Using additional variables, we
show that if E is derived from C and D in T, then given trees for zc and z, we
can derive ze. We also indicate how to derive zc for every input clause C. If the
top of T looks like

A
/’,,_

then it follows by induction from the claim above that we can derive z and z(.
But z-- y and z f 7, and using the available clauses expressing these facts we
get the top of T"

A

z ’Vy z zVf
Since we shall use only clauses of size <_-I this will complete the construction of T’.

Let x, x2,’" ", Xm be the variables used in ,T. Assume C= yV""" Vy,
where 1 i <. < i, m. Let yV Yo (G C). us,
(A. 1a) z (c,

yi,

and

(A. lb) z(CP z(c-’ Vy, 1 <j r.
As in the example in } 7, we add the clauses corresponding to (A. 1) and call them
the additional clauses.

We now show how to obtain z () from z (c and z (D). Let C uiV" .u,,
D vV’" .Vv, x is u,, is v. Assume SVz’, is an additional clause. CVz
CVz’ will stand for deriving CVz’ from fVz’ and CVz, and let be the
transitive closure of . Note that if w E, then wVC’ z(ZVC’: If w is the]th
literal in E then,

wVCt " Z (Ii)V c’ ._), Z (Ji+I)VC!
_

.- z(E)VC,"

(The clauses Vz(O, f(OVz(i/’, are additional clauses.)

z(O
",,,/,

z(Cr-1) Vur --> z(Cr-1) Vz (E) 5(cr-1) VUr_lVZ(C’-2)

z(C,-)Vz(.)Vu,_ .. z(C,-2)Vz()

since Ur, Ur- E.

RESOLUTION 459

Thus, by repeating the above we derive z(Cp-1)Vz()Vx and
We resolve them to get z(cp-l)Vz(D.-)Vz(). If we continued as before we would
get clauses of size 4. So, we define a new variable z* =- z (D.-’)Vz(. We use the new
additional clauses to derive z(C.-’)Vz(D.-’)Vz() z(C.-)V. Then as before we
continue the decomposition to get z(C.-2)Vz()V.; then "substituting" back . we
get

This process (using new ’s) is repeated. The reader can easily see that z
obtained at the end.

For an input clause C one can easily verify that z (c) can be derived using C
and the additional clauses (C z(C)).

Obviously, all the clauses on the tree T’ are of size <-l and N(T’)=
O(m N). [3

Acknowledgments. I wish to thank my thesis advisor Professor J. Hopcroft
and Professor J. Hartmanis for their encouragement, advice and suggestions.
Professor Hopcroft has also suggested BR1 of 2. Thanks also to J. Simon and
W. Paul for many discussions, and to P. van Emde Boas and M. Solomon for help
with the presentation. I am grateful to N. Pippenger for advising me on Margulis’
paper, which helped me to obtain a higher bound in Theorem 6.1. Finally, I would
like to thank an anonymous referee for many suggestions and for simplifying
considerably a previous version of the proof of the main theorem.

REFERENCES
[1] M. BAUER, D. BRAND, M. J. FISCHER, A. R. MEYER AND M. S. PATERSON, A note on

disjunctive form tautologies, SIGACT News, 5 (1973), April, pp. 17-20.
[2] S.A. COOK, The complexity o[theorem proving procedures, Proc. 3rd ACM Symposium on Theory

of Computing, Association for Computing Machinery, New York, 1971, pp. 151-158.
[3] Z. GALIL, The complexity ofresolution procedures]’or theorem proving in the propositional calculus,

Ph.D. thesis, Tech. Rep. 75-239, Cornell University, Ithaca, NY, May 1975.
[4] D. G. KIRKPATRICK, Topics in the complexity ofcombinatorial algorithms, Ph.D. thesis, Dept. of

Computer Sci., Tech. Rep. 74, Univ. of Toronto, December 1974.
[5] G. A. MARGULIS, Explicit construction o[concentrators, Problems of Information Transmission 9,

1973, pp. 325-332.
[6] J. A. ROBINSON, A machine oriented logic based on the resolution principle, J. Assoc. Comput.

Mach., 12 (1965), pp. 23-41.
[7] J. SIMON, personal communication.
[8] G. S. TSEITIN, On the complexity of derivations in the propositional calculus, Structures in

Constructive Mathematics and Mathematical Logic, Part II, A. O. Slisenko, ed., Consultants
Bureau, New York, 1970, pp. 115-125.

SIAM J. COMPUT.
Vol. 6, No. 3, September 1977

ThE TAPE COMPLEXITY OF SOME CLASSES OF SZILARD
LANGUAGES*

Y. IGARASHI

Ais,rcz. In tnis paper we cliscuss lower and upper bounds for the tape complexity of Turing
macnmes wnicla recogmze some classes of Szilard languages. The main results are as follows: log n is
the opniai tape tout for oa-iine deterministic Turing machines which recognize Sziiara languages of
context-tree granacars, and it is also tiae optimal tape bounO for off-line deterministic Turing machines
which recognize leftrnost Szilard languages of phrase structure grammars. The Szilard language of an
arbitrary phrase structure grammar is a deterministic context-sensitive language.

Key woa-as, associate language, computational complexity, context-free grammar, derivation
language, label language, phrase structure grammar, Szilard language, tape-complexity, Turing
machine

Introaucdon. There seems to be no agreement on tlae precise name of tiae
concept which is discussed in this paper. The term "Sziiard language" is used in i-6]
and [14], and in [3], [10] and [12] the terms "label language", "associate
language" and "6erivafion language" are respectively used as synonyms for
"Szilard language".

There are several inteesting otgservadons to make about Szilard languages.
For exampie, tie study of grammars with control sets [4] can be considered as a
study of Sz(G) f3 C, where G is a grammar, Sz(G) is the Szilard language of G and
C is a control set. Another interesting example, which is relevant to many areas in
theoxedcai con,purer science, is the reachability probiern for vector-addition
sysems. Par’tlal soladoas to this pobiem have been obtained [2], [8], btt the
gehei ai p-otlem which was proposed by Kap and Miller [7] is still unsolved. The
reacnabiiity probtem can be reduced to the decision problem of the emptiness for
Sz(G) R, where G is a context-free graramer and R is a regular set. We can also
conskier Sziiard languages to be useful tools in the study of extensions of
context-free grammars such as matrix grammars [1], [6], [14] and programmed
grammars [13], [14]. Sozne properties of Szilard languages have been already
studied [3], [6], [10], [12], [14]. However, no references on their computational
compiexity seem to exist. It would therefore seem that further investigation of
Szilad languages ro,n a computational cohapiexity viewpoint is required.

In this paper we describe the following results:
1) log n is the optmiat tape boun0 for on-line aeerrmnisdc Turing machines

which ecogaize Szilard languages of co,atext-free grammars, and it is also
the optmal tape bound for off-line deterministic Turing machines which
recognize leftmost Szilard languages of phrase stracture grammars.

2)n is the optimal tape bound for on-line deterministic Turing machines
which recoghize leftmost Szilard languages of context-free grammars, and
it is aiso tiae optimai tape bound for on-line deterministic Turing machines
which recognize lettmost Szilard languages of phrase structure grammars.

(’Ihe above n and log n ae also the optimal bounds for the corresponding
pl obienas for nondeterministic Turing machines.)

*Received by the editors June 16, 1975, and in revised form July 22, 1976.
Centre for Computer Studies, University of Leeds, Leeds, LS2 9JT, England.

460

TAPE COMPLEXITY 461

3)The Szilard language of an arbitrary phrase structure grammar is a
deterministic context-sensitive language.

1. Preliminaries. In this section, we shall describe the basic definitions and
terminology necessary for an understanding of this paper. It is assumed that the
reader is familiar with the fundamental concepts of formal languages, automata
theory and computational complexity [5], [14].

Let S* be the set of all finite sequences of elements from the set S including
the empty word A, and S+= S*-{A}. If u and v are strings, then uv denotes the
concatenation of u and v, and denotes the empty set.

DEFINITION 1. A phrase structure grammar (abbreviated PSG) is a quad-
ruple G (VN, Vr, P, tr), where

1. VN is a finite set of nonterminals,
2. Vr is a finite set of terminals,
3. P is a finite set of productions whose forms are u - V, with u in ls and v

in (VN k.J Vr)*, and
4. r VN is the initial symbol.
DEFINITION 2. Let G (VN, Vr, P, r) be a PSG. For w and y in (VN Vr)*,

write w => ()y (or w => y when G is understood) if there exist zl, z2, u and v such
that w z uz2, y z vz2 and u - v P. If either w y or there exist Wo, , Wr
such that Wo w, Wr =y and wi =)’ Wi+l for each i, the sequence Wo,’", Wr is
called a derivation from w to y, and is denoted by Woql"" "qrWr (or

Wo=)’" =)’ wr) or Wo,Wr (or Wo=), wr), where qi (1 -<_i _-<r) is a production
applied to derive wi from wi-1, and ce ql qr. O is called the associate word of

the derivation. A string/3 is called a sententialform (abbreviated SF) if r =),/. The

subset of V’r, L(G)={x6 V*rltrx} is called a phrase structure language

(abbreviated PSL). The subset of P*, Sz(G)= {a P*lo’=>w, w Wr} is called
the Szilard language of G.

DEFINITION 3. Let G (VN, Vr, P, r) be a PSG, and let q be a production
(’L)xvy (or xuy qxvy when G is understood, or xuy Lxvyu v. Then xuy

*Lwhen G and q are understood) if x is in V*r. The relation => ff’) (or =), when G is

understood, or when G and a are understood) is defined in the same manner

as =),, and is called a leftmost derivation. SZleft(G)= {altr =),w, w V’r} is called
the leftmost Szilard language of G. xuy (G,R) (or xuy Rxl)y when G isq IVy q

understood, or xuy R when G and q are understood) if y is in V*r. The relation
*a(G’R) (or aR when G is understood, or => g when G and a are understood) is

defined in the same manner as =>, and is called a rightmost derivation. Szright(G)

{a Itr =), Rw, W V}} is called the rightmost Szilard language of G.
In the following, rightmost Szilard languages will not be described because

each result on leftmost Szilard languages can be restated for right most Szilard
languages.

We do not describe the definition of a Turing machine (abbreviated TM) in
this paper. The reader is refered to [5] for formal definitions and detailed

462 . IGARASHI

descriptions of several types of Turing machines. We use the following abbrevia-
tions:

OFF-DSPACE(f)= {L[L is a language accepted by an off-line deterministic
TM which operates within tape bound f}.

OFF-NSPACE(f)= {L]L is a language accepted by an off-line nondeter-
ministic TM which operates within tape bound f}.

ON-DSPACE (f) {LIL is a language accepted by an on-line deterministic
TM which operates within tape bound f}.

ON-NSPACE (f)= {LIL is a language accepted by an on-line nondeter-
ministic TM which operates within tape bound f}.

The base of the logarithm is immaterial to our discussion. It is convenient to
define log n flog2 n l, where [r] is the least positive integer not less than r. If
sup_ (n)/n)>0, ON-DSPACE(f)= OFF-DSPACE and ON-NSPACE(f)=
OFF-SPACE(f). Therefore if sup,_o (f(n)/n)>0, we shall write DSPACE(f)
instead of OFF-DSPACE(f) or ON-DSPACE(f) and NSPACE(f) instead of
OFF-NSPACE(f) or ON-NSPACE(f).

2. Tape requirements o[on-line TM’s. Interesting observations on Szilard
languages have been made in several papers [3], [6], [10], [12]. The reader is
refered to Salomaa [14] which contains a comprehensive description of known
facts about Szilard languages [14, pp. 185-186]. For example, it is known that
there is a context-free language (abbreviated CFL) L such that no grammar for L
has a context-free Szilard language [14]. Stearns, Hartmanis and Lewis [15]
showed that if supn_o (f(n)/(log n)) =0, any member of ON-DSPACE(f) is a
regular set. Therefore log n is a lower bound on f such that ON-DSPACE(f)
includes the set of all Szilard languages of context-free grammars (abbreviated
CFG’s), because there is a CFG G such that Sz(G) is not a CFL [10] [14]. We shall
shown that log n is the optimal bound on such functions.

THEOREM 1. The class of Szilard languages of CFG’s is included in ON-
DSPACE(log n).

Proof. Let G (VN, VT, P, r) be an arbitrary CFG, where VN {X, ", Xk}
and o" x. LetM be a TM which operates in the following way. Let/3 b bn
be an input string to M, and let bi =(xtiyi) and m(j) be the number of
occurrences of x. in yi (i 1, , n; j 1, , k). The construction ofMis based
on keeping track of the number of nonterminals in SF’s, i.e. the Parikh-vector (in
binary form) of SF’s. Before starting the simulation of a derivation associated with
/3, M constructs k registers. X. is used to store the number of occurrences of xi in
the SF at each stage of the derivation in binary form (j 1, , k). Moperates as
follows:

1. Set i, Xa to 1, and X2, X3," , X, to 0.
2. Read b. If X,- 0, then go to 7.
3. For each j such that X. #Xt), set X. to X. +mi(j), and set X,) to

X,) + m(t(i))- l.
4. If # n, then set to + 1 and go to 2.
5. If there exists j such that X/# 0, then go to 7.
6. M halts and accepts ft.
7. M halts and rejects/3.

TAPE COMPLEXITY 463

The entire operation of M described above is deterministic and M recog-
nizes Sz(G). Since the range of numbers stored in the registers Xa, , Xk is from
0 to n, the working tape capacity used byMis at most c log n, where c is a constant
independent of n Therefore Sz(G) is in ON-DSPACE(log n). Q.E.D.

The result given by Stearns, Hartmanis and Lewis [15] also holds for the
nondeterministic case, i.e. any member of ON-NSPACE(f) is regular if
sup,_oo (f(n)/log n)= 0 (the proof is essentially the same as the proof for the
deterministic case.). Therefore log n is also the optimal tape bound for on-line
nondeterministic TM’s which recognize Szilard languages of CFG’s.

The result in Theorem 1 also holds for Szilard languages of A-free context-
free programmed grammars under the free interpretation. The same construction
asMin the proof of Theorem 1, together with a checking facility in the application
of the productions, does not require more than log n working tape capacity.

We shall now look at leftmost Szilard languages. Let Ga (Vu, V-, P, tr),
where VN={O’,Xl, X2}, gT=(d, P={aa=(trtrxa), a2=(trXz), C=(trA),
1 (Xl/), 2 (X2 -’))}. Let ha be a homomorphism such that ha(aa) 1 and
h(a) t/2. Then Szft(Ga) {xcha(xR)lx {aa, a:}+}, where xR is the reversal of x.
SZlft(G1) is essentially a palindrome language. It is well known that the palin-
dromes take at least linear space to be recognized by on-line TM’s [5]. It is
apparent that for any PSG G, SZleft(G) is in ON-DSPACE(n). We therefore have
the next theorem.

THEOREM 2. The class of all leftmost Szilard languages ofPSG’s is included
in ON-DSPACE(n), but is not included in ON-NSPACE(f) if sup,_oo(f(n)/n)
O.

Since G is a CFG, n is also the optimal tape bound for both on-line
deterministic and on-line nondeterministic TM’s which recognize leftmost Szilard
languages of CFG’s.

3. Tape requirements of off-line TM’s. We shall devote this section to a proof
of the following theorem:

THEOREM 3. Let G be an arbitrary PSG. Then Szett(G) /s in OFF-
DSPACE(log n).

It is well known that the palindromes take at least log n space to be
recognized by off-line TM’s. Szeft(G1) which was given in 2 is essentially a
palindrome language. Therefore the above theorem implies that log n is the
optimal tape bound for off-line deterministic TM’s which recognize leftmost
Szilard languages of PSG’s. It is known that any Szft(G) is a CFL [10], [14]. The
best upper bound on off-line deterministic tape-complexity of arbitrary CFL’s
presently known is (log n)2 [15]. However we suspect that large subclasses of
CFL’s are recognizable in less than (log n)2 tape bound. In fact, some subclasses of
CFL’s have been shown to be recognized in log n tape bound [9], [16]. The
tape-complexity of off-line deterministic TM’s for the class of leftmost Szilard
languages of PSG’s is now here improved to log n also.

Proofof Theorem 3. Let G be an arbitrary PSG, and let M be an off-line TM
which simulates derivations of G in the following manner: Let fl bl b, be an
input sequence to M, where each b (1 _-< i-< n) is a production of G. There is at
most one leftmost derivation associated with ft. Let bk (O(k)-a(k)). If 3’ is a

464 . IOARASHI

string,]3/I is the length of 3/and 113/[I is the number of nonterminals in 3/. Suppose
that O(m)=Al’"Aio(,nl, where each Ai (l <-i <-[O(m)l) is a nonterminal. In
order to check whether the left side of the production b, (1 < m _-< n) is the
leftmost nonterminal substring of the SF associated with bl’" bin-I, M counts
the following numbers (the test for b can be easily done by using only internal
memory of M):

(i) The number of nonterminals to the left of AR (which should be R 1 for
each R (1 =R _-< [0(m)[) if b, can be the mth production of the leftmost
derivation).

(ii) The number of symbols to the right of An (which should be one smaller
than the number of such symbols to the right of the same number for
AR- (2--<R _-<[0(m)l) if bm can be the mth production of the leftmost
derivation).

For each R (1 -<R -< 10(m)l) M counts the number indicated in (i) above, and
successively determines whether the first, second, third,.., occurrence of AR
generated satisfied the condition in (i). For each R (1 <-.R <--IO(m)l), if the condi-
tion indicated in (i) is satisfied, then M counts the number indicated in (ii) and
determines whether the condition indicated in (ii) is satisfied. If both the condi-
tions indicated in (i) and (ii) are satisfied for allR (1 <-R <-[0(re)l), then O(m) is the
leftmost substring of the SF associated with b b,,_ and b, can be applied as
the mth production of the leftmost derivation.

We shall simply describe an algorithm to count the number indicated in (i) for
the first, second, third,.., occurrences of AR generated for an arbitrary R (1-<
R <-[0(m)l). Then an algorithm to count the number indicated in (ii) will be
informally described. The reader can then easily construct a complete algorithm
by using the algorithms indicated below sequentially. In the followng algorithm,
naR (k) denotes the number of occurrences of the nonterminal AR in a(k), I keeps
track of which occurrence of AR generated is checked, J counts the number of
nonterminals to the left of the Ith occurrence of AR generated, L counts the
number of occurrences of AR generated, k counts the index of the production
considered in the input sequence b b,,, and rn is the index of the production
that we want to check.

1. Set I to 0.
2. Set!to!+l, JandLto0, andktol.
3. If !>L +na (k), then go to 6; else if !_-< L, then go to 5.
4. Set J to the number of nonterminals in a(k) to the left of the (I-L)th

occurrence of AR in a(k), and go to 6.
5, If J<lo(k)l, then go to 2; else set J to J/llo (k)l-lo(k)l,
6. Set L to L + nA, (k), and k to k + 1. If k < m, then go to 3.
7. If I>L, then go to 9; else if J=R- 1, then go to 8; else go to 2.
8. The Ith occurrence AR is the Rth leftmost nonterminal in the SF

associated with bl b,,_.
9. AR is not the Rth leftmost nonterminal in the SF associated with

bx... b,_a (i.e./3 is rejected).

All the above operations are deterministic, and the range numbers stored in
the registers is from 0 to cn, where c is a constant independent of n. Therefore the

TAPE COMPLEXITY 465

tape bound for counting the number indicated in (i) is log n. We now show that the
number indicated in (ii) can also be counted in log n tape bound. The argument is
an induction on m. When m 1, the number should be 0 if 0(1) is the initial
symbol. Suppose that for each k (1 =< k < m) there exists the leftmost derivation
associated with b bk, and that M can count each number indicated in (ii) for
each bk (1 --< k < m) in log n tape bound. From the above algorithm for counting
the number indicated in (i), M can compute I in log n tape bound such that the Ith
occurrence of An is the R th nonterminal from the leftmost of the SF associated
with bl" b,-i (we suppose that for m and each R (1 <= R <-IO(m)l) the condition
indicated in (i) is satisfied). Then by checking bl b,-i of the input sequence,M
knows which production has produced the Ith occurrences of An. Say that bj has
produced the Ith occurrence of An, and that the number of symbols to the right of
the An in a (/’) is O1. From the induction hypothesis, M can count the number of
symbols to the right of the O(j) rewritten in the SF associated with bl bj-1 in
log n tape bound. Say the number is 2. Then the number of symbols to the right
of the Ith occurrence of An in the SF associated with bl b,-i is O1 + 02. All
these operations are deterministic, and can be performed in log n tape bound.

If there exists the leftmost derivation associated with J, M checks whether
the final SF is a terminal string. The algorithm for this computation is essentially
the same as the algorithm in the proof of Theorem 1. This completes the
proof. Q.E.D.

In this paper we employ a specific form of leftmost derivability which we
defined in Definition 3. The definition seems to be most commonly used. The
method of counting numbers recursively which we used in the above proof plays
an essential role to derive the result of log n tape bound. This method seems to be
widely applicable to similar problems. One may show that the above result holds
for any interpretation of leftmost derivability by using this counting method with
minor modification.

4. A tape bound on Szilard languages of PSG’s. In this section, we shall show
that the Szilard language of an arbitrary PSG is a deterministic context-sensitive
language. Let G (VN, VT, P, r) be an arbitrary PSG. We can construct a single
tape nondeterministic TM M which recognizes Sz(G) in time-complexity n 2 as
follows" Let a a be an input sequence to M, where each ai (1 <= <= n) is in P.
M simulates nondeterministically a derivation associated with al... a, in the
following manner" Suppose thatM has simulated the derivation up to the (i 1)st
step and the ith SF of the derivation is on the tape of M. Then M guesses the
position in which the ith production a is applied to the SF by moving its head to
the position, and replaces the substring which corresponds to the right side of a
by the left side of a. The rewritten part may be shortened, or may be lengthened.
If so, M shifts appropriately the nonrewritten part of the SF so that the SF is
written on the tape without overlaps or gaps of any parts of it. It is obvious that all
these operations can be performed in at most cn steps, where c is a constant
independent of n. If M cannot rewrite at the position which M guessed, M halts
and rejects the input sequence. IfMcould perform the rewriting and < n, thenM
starts the simulation of the next production a+1. IfM could perform the rewriting
and n, and if the SF of the derivation is a terminal string, then M halts and

466 . IGARASHI

accepts the input sequence. Otherwise, the input sequence is rejected. From the
above explanation, the total computation time to decide whether al... an is a
member of Sz(G) is nondeterministically at most cn 2 steps. Therefore from
Paterson’s result [11, Thm. 1], there exists a deterministic TM which recognizes
Sz(G) in tape-complexity n. Then we have the next theorem.

THEOREM 4. The Szilard language o an arbitrary PSG is a deterministic
context-sensitive language.

It is well known that the Szilard language of an arbitrary PSG is a context-
sensitive language [10], [14]. However, it seems that no published literature
includes the above result. In this view, it may be well that the above theorem is
described here.

Acknowledgments. The author would like to thank Dr. Leslie G. Valiant for
his helpful discussions. He is also grateful to the referees for their useful
suggestions in preparing this revision. Theorem 4 was suggested by one of the
referees.

REFERENCES

S. ABRAHAM, Some questions ofphrase structure grammars L Comput. Linguistics, 4 (1965), pp.
61-70.

[2] S. CRESr’I-REGHIZZI AND D. MANDRIOLI, A decidability theorem for a class ofvector-addition
systems, Information Processing Lett. 3 (1975), pp. 78-80.

[3] A. C. FLECK, An analysis of grammars by their derivation sets, Information and Control, 24
(1974), pp. 389-398.

[4] S. GINSBURG AND E. H. SPANIER, Control sets on grammars, Math. Systems Theory, 2 (1968),
pp. 159-177.

[5] J. E. HOPCROFT AND J. D. ULLMAN, Formal Languages and their Relation to Automata,
Addison-Wesley, Reading, MA, 1969.

[6] M. H3r,r,rqER, Ueber den Zusammenhang yon Szilard Sprachen und Matrixgrammatiken,
Institut fiir Informatik, Hamburg, W. Germany, 1974.

[7] R. M. KARl’ AND R. E. MILLER, Parallel program schemata, J. Comput. System Sci., 3 (1969),
pp. 147-195.

[8] J. VAN LEEUWErq, A partial solution to the reachability-problem, Conf. Record of 6th Ann. ACM
Symp. on Theory of Computing, 1974, pp. 303-309.

[9] K. MEHLHORN, Bracket-languages are recognizable in logarithmic space, Fachbereich
Angewandte Mathematik und Informatik, Universitat des Saarlandes, Saarbrucken, W.
Germany, 1975.

[10] E. MORIYA, Associate languages and derivational complexity of formal grammars and lan-
guages, Information and Control, 22 (1973), pp. 139-162.

[11] M. S. PATERSON, Tape-bounds for time-bounded Turning machines, J. Comput. System Sci., 6
(1972), pp. 116-124.

[12] M. PENTTONEN, On derivation language corresponding to context-free grammars, Acta Infor-
matica, 3 (1974), pp. 285-291.

[13] D. J. ROSENKRANTZ, Programmed grammars and classes of formal languages, J. Assoc.
Comput. Mach., 16 (1969), pp. 107-131.

[14] A. SALOMAA, Formal Language, Academic Press, London-New York, 1973.
15] R. E. STEARNS, J. HARTMANIS AND P. M. LEWIS II, Hierarchies of memory limited computa-

tions, Proc. 6th Ann. Symp. on Switching Circuit Theory and Logical Design, IEEE, New
York, 1965, pp. 179-190.

16] I. H. SUDBOROUGH, On tape-bounded complexity classes and multi-headfinite automata, Conf.
Record 14th Ann. Symp. on Switching and Automata Theory, IEEE, Iowa, 1973, pp.
138-144.

SIAM J. COMPUT.
Vol. 6, No. 3, September 1977

THE COMPUTATIONAL COMPLEXITY OF PROVABILITY
IN SYSTEMS OF MODAL PROPOSITIONAL LOGIC*

RICHARD E. LADNER"

Abstract. The computational complexity of the provability problem in systems of modal proposi-
tional logic is investigated. Every problem computable in polynomial space is log space reducible to the
provability problem in any modal system between K and $4. In particular, the provability problem in
K, T, and $4 are log space complete in polynomial space. The nonprovability problem in $5 is log space
complete in nondeterministic polynomial time.

Key words, modal logic, computational complexity

Introduction. We investigate the computational complexity of deciding
whether or not a modal propositional formula is provable in certain systems of
modal propositional logic, including K, T, $4, and $5. In terms to be defined later
we show (using a suggestion of S. K. Thomason) that if S is a modal system
between K and $4, then every problem computable in polynomial space is log
space reducible to the provability problem in S. We then show that there are
polynomial space bounded algorithms for deciding if a formula is provable in any
one of K, T, and $4. This implies that the provability problem for each of systems
K, T, and $4 is log space complete in polynomial space. We also obtain upper and
lower bounds on the space complexity of the provability problem in each of the
systems K, T, and $4.

We show that the nonprovability problem for $5 is log space complete in
nondeterministic polynomial time. Hence the provability problem in $5 and the
provability problem in the classical propositional calculus have the same complex-
ity modulo polynomial time.

All our proofs depend heavily on the semantic models for modal systems
developed by Kripke [6].

As evidence that modal logic has some applications in Computer Science, we
point to the work of V. R. Pratt and R. Moore [8], who have developed a system of
modal logic as a basis for proving correctness and termination of programs. We
briefly explain their application. Assume we have some underlying programming
language and some underlying assertion language. For each program p define a
new syntactic object [p] which is understood to be a modal operator. We can now
form new assertions of the form [p]A where A is an arbitrary assertion. The
intuitive meaning of [p]A is that "if p terminates, then A holds." The fact that p
alvays terminates can be expressed by the assertion (p)true (where
(p)A de--[p]--A). The Hoare formula A {p} B is equivalent to the formula
A D [p]B. An advantage of this modal system over the Hoare system is that more
complicated assertions about programs are possible. For instance one can express
the fact that "if a program p terminates with A true, then subsequently the

* Received by the editors August 21, 1975, and in revised form July 21, 1976.
? Department of Computer Science, University of Washington, Seattle, Washington 98195. This

research was supported by the National Science Foundation under Grant GJ-43264.

467

468 RICHARD E. LADNER

program q can terminate with B being true" by the assertion "[p](A (q}B)".
If is a finite alphabet, then define * to be the set of all finite words from

letters in E and A to be the empty word and E+= E*-{A}. If x, y E*, then Ixl
denotes the length of x, xy denotes x concatenated to y/and x denotes x
concatenated to itself n times (x=A, xk=x X

k-1 for k_->l). Let N=
{0, 1, 2, .}. If n -> 1, then log n is defined to be [log2 n] and log 0 0.

1. Modal logic. We define formulas so that they are words in a finite
alphabet. A variable is a member ofVAR- {0, 1}*$. A Booleanformula is either
a variable or has the form (A ^ B) or ---A where A and B are Boolean formulas.
The set of Boolean formulas, denoted by BF, is a subset of AB*F where AaF--
{, $, 0, 1, ^, ---, (,)}. A modalformula is either a variable or has the form (A ^ B),---A, or i-]A where A and B are modal formulas. The set of modal formulas,
denoted by MF, is a subset of A*F where AaF- ABFU {[-1}. A formula of the form
[-IA is read "necessarily A". Another modal operator, , is defined by A
---fi---A and can be read as "possibly". Technically and the standard logical
operators ^, , do not appear in modal formulas, but for convenience they do
appear in modal text. We also may drop parentheses from formulas to improve
readability.

We will systematically use ^, v, as both logical symbols and as the Boolean
operations on { T, F} they represent.

Let PC (for propositional calculus) be some complete set of axioms for the
valid Boolean formulas where the rules of inference are substitution and modus
ponens. A modal system is a set of modal formulas. If S is a modal system, then
define the provability relation, -s, inductively as follows.

(i) sa if a PCU S,
(ii) b-sA’ if sA and A’ is the result of substituting uniformly in A a modal

formula for a propositional variable (Rule of Substitution),
(iii) sB if b-sA and -sA B (Modus Ponens),
(iv) -s[A if b-sA (Rule of Necessity),
(v) k-s is the smallest relation satisfying (i)-(iv).

If -sA, then we say that A is provable in S and we define S-PROVABLE
{A MF" t-sA}.

There are at least four important modal systems, K, T, $4, and $5 which are
defined by

K {a(x = = z Y)},

T= KU {FIX X},
$4 TU {IX [IV1X},
$5 $4 O {OX 0OX},

(X and Y are specific members of VAR.)
The reader unfamiliar with modal logic can appeal to Hughes and

Cresswell [4].
Very useful semantic models for many modal systems were discovered by

Kripke [6]. In particular, there are such semantics for the four systems K, T, $4,
and $5. In the remainder of this section the facts we state are either due to Kripke
[6] or are attributed to him.

MODAL PROPOSITIONAL LOGIC 469

A model structure is a triple (W, R, V) where W is a set, R is a binary relation
on W, and V is a mapping from VAR W into {T, F}. The set W is a set of
"possible worlds", R determines which worlds are "accessible" from other
worlds, and V determines what is true in each of the worlds. Given a model
structure (W, R, V) the mapping V can be extended to MF W inductively as
follows:

V(A ^B, w)= T iff V(A, w)= T and V(B, w)= T,

V(--.A, w)= T iff V(A, w)= F,

V([-1A, w)= T iff for all w’ W, if wRw’, then V(A, w’)= T.

Define (W, R, V) to be a K-model if it is a model structure and to be a (i)
T-model, (ii) S4-model, (iii) S5-model if R is respectively (i) reflexive, (ii)
reflexive and transitive, (iii) reflexive, transitive and symmetric.

Let S {K, T, $4, $5}. Define a modal formula A to be S-satisfiable if there
is an S-model (W, R, V) and a world w e W such that V(A, w)= T. Let S-
SATISFIABLE {A MF:A is S-satisfiable}. Define A to be S-valid if -A is
not S-satisfiable. Let S-VALID {A MF :A is S-valid}. The crucial fact we use
later is:

FACT 1.1 (Kripke). For all S {K, T, $4, $5} S-VALID S-PROVABLE.
The modal degree of a formula is defined inductively: the modal degee of a

variable is 0; degree of ---A degree of A; degree of A ^ B max{degree of A,
degree of B}; and degree of V1A 1 + degree of A.

2. Computational complexity. We adopt the Turing machine model of
computation to measure time and space complexity. The reader may refer to
Hopcroft and Ullman [3, Chap. 10] for background.

To be specific, our Turing machines will have three tapes" a two-way
read-only input tape, one-way write-only output tape, and a two-way read-write
work tape. Associated with such a machine are finite alphabets" (input
alphabet), A (output alphabet), and F (work tape alphabet); also a finite set of
states O, a start state q0 and a transition function

t" O X F- 2r(AU{x})x{R’L}.

Given a state, a symbol being read on the input tape, a symbol being read on the
work tape, the machine does one of a finite number of "moves" each of which
consists of going to a new state, writing a symbol on the work tape, outputting
either a symbol or A and moving the input tape and work tape heads. As defined,
our Turing machines are nondeterministic. A Turing machine is deterministic if the
cardinality of 6 (q, r, -) =< 1 for each triple (q, tr, -) O x E F.

Given an input x E*,a computation of T on input x is a finite sequence of
configurations of the Turing machine which begins in the starting configuration
(the machine is in state q0, input tape contains x with the input head on the first
letter of x, and the other tapes empty), each other configuration follows from the
previous one via the transition rule, and ends in a configuration from which no
configuration can follow. A Turing machine Truns in time t N N if for each n
and each x Z* such that Ix[n every computation of T on input x has length
<-t(n). A Turing machine Truns inspace s: N- Nif for each n and eachx Z* of

470 RICHARD E. LADNER

length n at most s(n) distinct tape cells on the work tape are scanned in each
computation of T on input x.

A set L
_
* is computable in nondeterministic time (space) r if there is a

Turing machine T that runs in time (space) r such that for all x *, x L iff there
is a computation of T on input x such that T outputs some symbol during that
computation. A set L is computable in time (space) r if in the above definition the
Turing machine is deterministic. A function f:Z*- A* is computable in time
(space) r if there is a deterministic Turing machine T that runs in time (space) r
such that for all x E*, when T halts on input x the machine has outputted the
string f(x).

We define NP-TIME (NP-SPACE) to be the class of sets L such that there is
a polynomial p such that L is computable in nondeterministic time (space) p.
Similarly P-TIME (P-SPACE) is the class of sets L such that there is a polynomial
p such that L is computable in time (space) p. A result of Savitch [9] implies P-
SPACE =NP-SPACE. There is the obvious containment relationship P-
TIME

_
NP-TIME

P-SPACE. It is open whether or not either containment is

proper.
If s: N-,N, then define (N)SPACE(s(n)) the class of sets computable in

(nondeterministic) space s. We don’t define the analogous time complexity classes
for the same reason that we don’t bother with multiple work tapes; the methods
we use cannot be used to distinguish polynomial time complexity up to the degree
of the polynomial.

Given sets L* and MA* we say that L is log space reducible to M
(L <-og M) if there is a function f: *- A* such that f is computable in space log
and for all x 6E*, x eL ifff(x)M. We sometimes say L--<ogM via f. The
relation -<log is reflexive and transitive (cf. Stockmeyer and Meyer [12] or Jones
[5]).

Let 6e be a class of sets. A set L is log space complete in 5 if L oW and for all
M 6, M <--og L. Cook [2] implicitly showed the existence of log space complete
sets in NP-TIME while Stockmeyer and Meyer [12] showed the existence of log
space complete sets in P-SPACE.

There is a well known relationship between complete problems and open
problems concerning P-TIME, NP-TIME, and P-SPACE.

FACT 2.1. If L is log space complete in NP-TIME,then L P-TIME if and
only if P-TIME NP-TIME.

FACT 2.2. IfL is log space complete in P-SPACE, then
(i) L 6 P-TIME if and only ifP-TIME P-SPACE,
(ii) L 6 NP-TIME if and only ifNP-TIME P-SPACE.
If l:NN and f: Z*A* then f is length l(n) bounded if for all xZ*,

If(x)l <--/(Ix I). The following fact due to Stockmeyer and Meyer [12] and Jones [5]
is helpful later in establishing lower bounds.

FACT 2.3 (Stockmeyer and Meyer, and Jones). If A ----<logB via f where f is
length l(n) bounded, then A is in (N)SPACE(s(l(n))+logn) should B be in
(N)SPACE(s(n)).

Let Aov Av I_J {/, ::1}. A quantified Booleanformula (QBF) is a member of
Av of the form OXO_zXz" Q,X,A(X,..., X,) where O {’, q}, X
VAR for 1 =< =< n and A (Xa, , X,) BF whose variables are contained in

MODAL PROPOSITIONAL LOGIC 471

Xl, ., X The propositional variables range over { T, F} so that if A QBF, then
the value of A is either T or F.

Define
B,,, {A QBF’A T},

B1 {A QBF f3 (EIVAR)*BF"A T}.
The set B, is the set of all valid quantified Boolean formulas, while B1 is

essentially the set of all satisfiable Boolean formulas.
Stockmeyer and Meyer [12] have shown
FACT 2.4 (Stockmeyer and Meyer). B,, is log space complete in P-SPACE.
A more precise delineation of B, is given in Stockmeyer 11].
FACT 2.5 (Stockmeyer). Let d be an integer >-1. If A NSPACE(nU), then

there is a function f and a constant a > 0 such that A <-log B, via f and f is length
an2 log n bounded.

Whenwe investigate the complexity of $5 we will need a result of Cook [2].
FACT 2.6 (Cook). B is log space complete in NP-TIME.
Because of the transitivity of <-log we can show that every problem comput-

able in polynomial space is log space reducible to, say, L if we can show that B,, is
log space reducible to L. In what follows we use B,, as a cornerstone in analyzing
the space complexity of modal systems between K and $4.

One useful fact that we use later is:
FACT 2.7. If Bo, <-log A viaa length l(n) boundedfunction, then B,o <-log A via

a length l(n + 5) bounded function.
Proof Letf be such that B., <-log A via]’ andf is length l(n) bounded. There

is a g such that B., <-log [,, via g and g is length n + 5 bounded. Let x e ACBF and let
n Ix[. It can be determined in space log n whether or not x QBF. If x QBF,
then define g(x)= (=1$)$. If x QBF then define g(x)= QIXI"’"
where x QIX1 Q,,X,,A, A BF, V =1 and =! ’V’. Clearly, x e B,, if and only
if g(x)B.,. Now, B., is log space reducible via f.g which is length l(n +5)
bounded. Q.E.D.

3. Log space reduction of Bo, to modal systems between K and $4. We say
that a modal system S is between Sa and $2 if SI-PROVABLE_cS-
PROVABLE

_
S2-PROVABLE. In this section we prove the following.

THEOREM 3.1. If S is between K and $4, then B,, is log space reducible to
S-PROVABLE.

Proof. The crux of the proof is to show that given any quantified Boolean
formula A, a modal formula B can be constructed (using only logarithmic space)
with the properties: (i) A B,, implies B S4-SATISFIABLE and (ii) B K-
SATISFIABLE implies A B,o.

In light of Fact 2.7, the following claim yields the theorem.
CLAIM. A B., if and only ifBS-PROVABLE.
If A e B.,, then by (i) B e S4-SATISFIABLE and hence ------B e S4-

SATISFIABLE. By the definition of S4-VALID, ---B S4-VALID. By Fact 1.1,
---B S4-PROVABLE. Since S-PROVABLE

__
S4-PROVABLE, then B S-

PROVABLE. On the other hand if ---B S-PROVABLE, then because K-
PROVABLE c_ S-PROVABLE, then ---B K-PROVABLE. Again using Fact
1.1, B K-SATISFIABLE, which in turn implies by (ii) that A B,,.

472 RICHARD E. LADNER

Let A (IX1 O,,X,,A’(X1, ", X,,) QBF where Oi {V, ::!} and X/
VAR for l<=i<-m, and A’(Xa,...,X,,)6BF. Let Yo,’",Y,, and
Z1, , Zl+og,, be new variables an for 0 <- <= mand 1 <_- <= 1 + log m define
/3ij if the]th bit of written as a binary number of length 1 + log rn is 1 and

fl a otherwise.
Define B to be the conjunction of the following formulas"

(1)

(2)

(3)

(4)

(5) [](m)(y/z) (O(y/+1AX/+I) A O(Y/+1A -’--X/+l)))

(6) [-](m)(Y = A’),

for 0 <_- <_-- m,

for 0 < --< m,

if Oi+ and 0 --<_ < m,

where [-I(")D D ^ VID ^ [-]2D ^. ^
The intuitive meaning of (")D is that in any model structure (W, R, V),

V([’](mD, w) T if and only if D is true in any world reachable from w in steps
where 0 =< =< m.

The idea behind the formula B is to "simulate" the quantifiers of A. The
variables Y are used to set up levels corresponding to the levels of quantification
in A. The formula Y is true in each world on level i. If the ith quantifier of A is
universal, then (5) guarantees a splitting for each of the two possibilities for X. At
the final level, m, A’ must be true. We begin by showing (i) mentioned earlier.

A B, implies B S4-SATISFIABLE. Suppose A B,,; then B is satisfied
in the S4-model, (WA, RA, VA). The set of worlds is a finite subset of {0, 1}*
defined inductively by

(a) a
(b) if w WA and wl < m, then

(bl) w0 and w i WA if and only if O+l V,
(b2) wOe Wa if and only if

(e) WA is the smallest set satisfying (a) and (b).
The members of WA form a tree with respect to extension. The tree is binary

branching at level if O+1 V and is unary branching if O+1 =1. The accessibility
relation RA is defined by

X Ra y itt X is a prefix of y.

Clearly RA is reflexive and transitive. Finally we define VA inductively on the
length of w in such a way that

(a’) if [w[i, then VA (’Yb W)--- T
(b’) if Iw01 [w 11 and Qi V, then VA (X, wO) VA (X, w 1),
(c’) if [wl >], then VA (X, w) VA (X., w’) where w’ is the prefix of w of

length i- 1,
(d’) if [w I=i, then Oi+lX+" Q,,,X,,A’(VA(X1, w),. .., VA(X, W),

Xi+l, ,Xm)-- T.

MODAL PROPOSITIONAL LOGIC 473

Assume (a’)-(d’) hold for all numbers <i. Let Iwl i. Set VA (Z., w)= T if
/3q=A, VA(Z’, w)=F if /3q =’, VA(Y’, w)=F if]i, and VA(Y, w)= T. If
1 _<-f < i, then set VA (X., w)= VA (X., w’) where w’ is the prefix of w of length
i-1. If j > i, then set VA (Xi, w)= T.

If i=0, then (a’)-(c’) hold by definition and (d’) holds because A 6B,.
Assume then that >0; then all that remains is the value of VA (X, w).

If Qi=’, then set VA(X, W)= T if the last letter of w is 1 and set
Va (Xi, w) F otherwise.

If Q El, then set VA(X, W)= V where Q+IX//I QmXmA’(VA(X1, w),
", VA (Xi- 1, w), V, Xi/l," ", Xm T. Such a V {T, F} exists because of the

induction hypothesis.
It is straightforward to check that the induction hypothesis holds at i.
To establish that B S4-SATISFIABLE, we show that VA(B,A) T.

Clauses (1) through (5) in the definition of B hold by the construction of VA.
Clause (6) holds because by (a’) if [w < m, then VA(Ym, w)--F and by (d’) if

Iwl- m, then VA (A’, w)= T.
As an example of the preceding proof consider the formula ’qXI::IX2(X1

X2). This formula is true and its modal companion B is satisfied in the S4-model
graphically displayed in Fig. 1.

A
Yo(2) Z,(1) X,

Z2(1) X2
Y,(I)
Y2(1)I

II

T F

Z2(1) ZI(1) X2
Y,(5) Y,(5) Yo(1)

X(5) Y2(1)
IX1(511

00 10

T F E T F

Z1(1)1Z:(1) Z,(1) Z2(1)
Y2(3)1 Yo(1) Y2(3) Yo(1)

Y(1) X1(4) Y(1)
X,(4) X2(6)
X2(6)

T--variables that must be true.
F--variables that must be false.
E--variables that can have either value.
The number in parentheses indicates the clause orb thatforces the value
of the variable.
The arrows represent the Hasse diagram of the accessibility relation.

FIG 1. S4-modelsatisfyingB associated with VXI:]X2(X 22)

474 RICHARD E. LADNER

B e K-SATISFIABLE implies A e B,,. Suppose that B is K-satisfiable in a
model structure (W, R, V). We define a mapping, o-, of Wa into W inductively as
follows.

(a") Choose or(A) such that V(B, r(A))= T,
(b") if Iw{ > 0 then choose o-(w) W such that r(w’) R or(w) where w’ is

the prefix of w of length i- 1 and
1. v(n(m-i)(gl.-]lZ A’’" A j(l+logm)Zl+logm), o-(w)) T for 0 <

j _-< rn (by clause (1) of B),
2. V(Y, tr(w)) r (by clause (3) of B),
3. v(n(m-i)(Y (C)Y+l),o’(w)) rfor0<_-j <m (byclause (3)orB),
4. g(O(m-i)(g] D((X/. D0(m)x]) ^ (--.X/. D0(m)"X/-))), O’(W)) r for

0 </" <-rn (by clause (4) of B),
5. V(0(’-’)(Y D((Y.+I AN+I)^ O(Y+I ^ --’X+I))), tr(w))= T if

Qj+I =V and O<-_.i<m (by clause (5) of B),
6. V(0("-i(Y,, D A’), tr(w)) T (by clause (6) of B),
7.-either V(0(’-i)X, tr(w))= r or V(0("-i)---X, tr(w))= T for] <_-i

(by the induction hypothesis for/" < and by 2 and 4 above for/" i),
8. V(X., tr(w)) V(X., tr(w’)) if] < and w’ is the prefix of w of length

i-1 (by 7 above),
9. V(X/, tr(w))= T if Qi V and w ends in 1 (by 2 and 5 above),

10. V(X/, tr(w))= F if Qi V and w ends in 0 (by 2 and 5 above).
We leave it to the reader to convince himself that such a mapping exists

because B is K-satisfiable.
We may show by induction on rn- that if [w i, then

li+lX/+l O,,X,,A’(V(X1, o’(w)), V(X, or(w)), X+, X,) T.

If Iwl=m then V(Y,,o’(w))= T and V(Y,,A’,o(w))= T. Thus
V(A’, o-(w))= T, which implies the equality for m- 0.

Let]w[i-1. It is straightforward to show that 8, 9, 10 above and the
induction hypothesis imply the equality for w.

It remains to be shown that B can be constructed in logarithmic space given
A. Technically speaking, we should be considering a mapping from ABF to A*F,
but it takes only space log n to check that a member of ABv is a member of QBF,
so that we can essentially ignore non-well formed formulas. The ability to count
the number of quantifiers in A is really all that is necessary in order to construct B.
This amounts to a log n space bound. We leave the details to the reader. Q.E.D.

We originally just showed that B,, was log space reducible to each of T and
$4. Subsequently S. K. Thomason showed us how to extend the proof to obtain
the result for all systems between K and $4.

4. Space lower bounds for provability in K, T, and $4. We begin by trying to
find the most efficient log space reductions of g,, to each of K, T, and $4.

LEMMA 4.1. For each S {K, T, $4} there is a function fs such that B., --<log S-
PROVABLE via where fs is length l(n) bounded and

(i) S K implies/(n)= O(n/log2 n),
(ii) $ T implies/(n)= O(n/log n),
(iii) $ $4 implies l(n)= O(n log n).

MODAL PROPOSITIONAL LOGIC 475

Proof. Let A Q1X1 Q,X,A’ where A’ BF and let n [A 1. Without
loss of generality we can assume that X # iS where # is the ith binary string
in the ordering h, 0, 1, 00, 01, 10, 11,000,. . It is important to notice that
Ixl_-<2 +log i. If the Z’s and Y’s are chosen as follows, Y =#(m + i)$ for
1 _-< _-< m, and Z # (2m + i)$ where 1 -<_ -<_ 1 + log m then [YI -<- 1 + log m and
]Z[-< 2 + log m. Note that rn O(n/log n).

Technically speaking, in Theorem 3.1 we reduced B,, to the complement of
S-PROVABLE. By Fact 2.7 there is no loss (except for constant factors) in using
the length bound of the reduction of B,, to the complement of S-PROVABLE as
the length bound of the reduction of B,o to S-PROVABLE itself.

Case (i). S K. To begin with we more efficiently encode [3(’)D as D ^[q(D ^ [-I(D ^... (D ^ [-1D))...) so that O(mlDI). Another improve-
ment is to factor q(") out using the rule](")(C ^ D)=q()C ^ (")D. Notice also
that [Y =/IZ ^’" ^/(l+log,)Zl+log,[- O(1og m). From this we can see that
(4)" and (6) dominate the length of B with lengths O(m 3 log m) and O(mn)
respectively. We have that IB[is O(n3/log2 n),

Case (ii). S= T. We may replace](" with just [3 m. Again (4) and (6)
dominate with lengths O(m2) and O(n) respectively. Hence IBI is O(nZ/log n).

Case (iii). We replace fit’) with simply ft. In this case (1) and (6) dominate
with lengths O(m log m) and O(n) respectively. Hence [BI is
O(n log n). Q.E.D.

In the spirit of Stockmeyer 11 we use the lemma to show lower bounds on
the space complexity of provability in K, 7", and $4.

THEOREM 4.2. IfS {K, T, $4} and S-PROVABLE NSPACE(s(n)), then
there is a constant c > 0 such that

(i) S K implies s(n)> c(n/log n)1/6 for infinitely many n,
(ii) S T implies s(n)> cn 1/4 for infinitely many n,
(iii) S $4 implies s(n)> c(n/log2 n)1/ for infinitely many n.

Proof. We begin with a proof of (i) which parallels almost exactly a proof of
Stockmeyer [11, Cor. 6.6]. Suppose to the contrary that K-PROVABLEe
NSPACE(s(n)) where for all c >0, s(n)<=c(n/log4 n)1/6 for all but finitely many
n. We may assume that s is a nondecreasing function.

By the hierarchy theorem of Seiferas, Fischer and Meyer [10], we can
conclude that there is a set A e NSPACE(n) such that for all s’ if lim, (s’(n +
1)/n)=0, then AC:NSPACE(s’(n)). By Fact 2.5 A <--logB via a length
O(n2 log n) bounded function. By Lemma 4.1, B,, log K-PROVABLE via a

length O(n3/logn) bounded function. Hence A _-<log K-PROVABLE via
.a length O(n6 log n) bounded function. By Fact 2.3, A
NSPACE(s(an61ogn)+logn) for some constant a>0. For all c>0
s(an61ogn)<=cn for all but finitely many n, contradicting the fact that
A NSPACE(s’(n))if lim, (s’(n + 1)/n)= 0.

The proofs of (ii) and (iii) are analogous if we use the facts that if A e
NSPACE(n), then A--<log T-PROVABLE via a length O(n4) bounded
function and A <-ogS4-PROVABLE via a length O(n21ogn) bounded
function. O.E.D.

5. Space upper bounds for provability in K, T, and $4. In this section we
show that for S {K, T, $4}, S-PROVABLE P-SPACE. In essence we actually

476 RICHARD E. LADNER

show that S-SATISFIABLE P-SPACE. This may be surprising to some since
there are modal formulas A, of length O(n log (n) loglog (n)) with the property
that A, S4-SATISFIABLE and if (W, R, V) is an $4-model of A,, then the
cardinality of W is -2. What allows us to compute S SATISFIABLE in
polynomial space is the fact that if A is S-SATISFIABLE, then it is in a tree-like
model structure, with each branch of only polynomial length. Hence the structure
can be constructed one branch at a time.

THEOREM 5.1. For S {K, T, $4}, S-PROVABLE 6 P-SPACE.
Proof. The algorithms that we will give are simply reformulations of the

corresponding algorithms of Kripke [6] in such a way to optimize the space used.
We do not necessarily give the most efficient algorithms, because we wish to
present algorithms that are both understandable and run in polynomial spa,cez

We begin with a procedure K-WORLD which has parameters (, , -,),
where each parameter is a finite set of modal formulas; the value of K-WORLD
(-, , if,) is true if there is a K-model (W, R, V) and a w W such that

V(A A^ A---A^ UA ^ A [3A, w)= T,
A 57 A 5 A A eS,

otherwise its value is galse. More intuitively, K-WORLD(-, , -,) is true if
there is a world w in which all the formulas of - are true, all the formulas of are
false, in each world accessible from w each member of - is true, and for each
member, B, of there is a world accessible from w where B is false.
procedure K-WORLD(-, , ,)"
begin

it U Yg VAR then
begin

1. choose A -U-VAR;
2. itA -B andA -then return K-WORLD(--{A}, ,U {B}, if-,);
3. iiA ---B andA then return K-WORLD(-U {B}, -{A}, -,);
4. it A B ^ C and A - then return K-WORLD((-U {B, C})-{A}, ,
5. ii A B ^ C and A 6 then return K-WORLD(-, (U{B})-{A }, -,

) v K-WORLD(-, (U{C})-{At, -,);
6. it A [-1B and A 6 -then return K-WORLD(--{A}, , - t.J {B},);
7. if A =[3B and A - then return K-WORLD(T, F-{A}, -, oU{B})

end;
if -U

_
VAR then

begin
8. it - then return false;
9. if -= then return/K-WORLD(-, (B, ,)

end
end

(Note. The conjunction over the empty set is defined to be true.)
On line 1 we say "choose A 6 -U -VAR". We do not intend this as a

nondeterministic step; it is just that it does not matter in what specific order the
lists - and 0% are maintained.

MODAL PROPOSITIONAL LOGIC 477

The proof that K-WORLD works is essentially the same as that for Kripke’s
corresponding algorithm [6]. We can now give an algorithm for testing whether or
not a modal formula A K-PROVABLE.

Test for A K-PROVABLE.

begin
read A;
v ----K-WORLD({---A}, , ,);

The value of v determines if A is K-provable. This of course exploits the fact that
A K-PROVABLE if and only if --A K-SATISFIABLE.

We now examine the space complexity of this algorithm. The recursive
nature of the algorithm is implemented on a Turing m.achine by simulating a stack.
At each level of recursion the members of 3, , -, are just sets of subformulas
of ---A so that their values an be indicated by using "pointers" to ---A.

To implement the pointers, copy the original formula onto the stack and
place a mark on the major connective of each subformula pointed to. There are
four types of marks, one for each of the four subsets. The storage at each level of
recursion is O(n). We will also show that the numbers of levels of recursion is
O(n) so that the total space used is O(n 2).

If is a finite set of formulas then define I el; Y.A:I.A[We show by
induction on n [3-[+ / 121+ that K-WORLD(3-, o, ,) has at most
2n + 1 levels of recursion. Assume the result for all numbers <n. Let the first
recursive call of K-WORLD(3-, , if-,) be to (3-’, ’, 3-," ’). If 3-U: ,
then by a case-by-case analysis I ’1 + I ’1 + I -’1 + < n. If -U=, then we
must be at line 9 of the program, so that ’, which reduces us to the case
-’U ’ . Hence every two levels of recursion reduces I -I / / / by
at least 1. Thus K-WORLD({---A}, , ,) has recursion depth -<21A[+ 1.

We now argue that T-PROVABLE SPACE(n3). Only slight modifications
of the procedure K-WORLD are necessary to produce the analogous procedure
T-WORLD.

(T- 1) Replace all K’s with T’s.
(T-2) Replace line 6 with

"if A B and A 3- then return T-WORLD((TU{B})-{A}, ,
If Y is a set of modal formulas then define deg(6)= max{modal degree of

C" Ce 6e}. In this case the storage at each level of recursion remains O(n) but the
recursion depth is O(n2). This can be seen by noticing that there can be at most
O(n) successive recursive calls all with flU VAR; and if -’, ’ and -", "are the values of - and on successive calls with -UVAR, then
deg(-" U "’) < deg(-’ U ’). Since the degree of any set of subformulas of ---A is
_-<n, then there can be at most O(n2) levels of recursion. The total space is O(n 3).

More elaborate changes to T-WORLD are necessary to obtain an analogous
procedure S4-WORLD. We need the ability to check if the current world is
exactly the same as a prior world. To do this we introduce a new parameter
which is a sequence {(-1, B1), (-2, B2)," ", (-/, Bg)} where ’1 ’2 C’" " "k
are sets of modal formulas and B1,’’ ", B are modal formulas. The value of

478 RICHARD E. LADNER

S4-WORLD(-, , -, ,) is true if there is an S4-model (W, R, V) and a
sequence of words Wl, ", Wk, W in Wwith the properties: (a) Wi/l is accessible
from wi and w is accessible from wk; (b) V(/Ae-iA ^ --B, w.)= T for each i;
and (c) V(AAey-A ^/k,. --A ^ AAe. [3A ^ AAe .--[3A, w) T.

For clarity we give the entire algorithm for S4-WORLD. The major changes
are in lines 6 and 9.
procedure S4-WORLD(-, , -, ,);
begin

if -U VAR then
begin

1. choose A -LJ -VAR;
2. iiA =-B andA e - lhen return S4-WORLD(--{A},U{B}, 2, ,

);
3. iiA =-B andA e hen remm S4-WORLD(-U {B}, -{A}, 2, ,

);
4. ff A B ^ C and A 6 Wthen return S4-WORLD((-U {B, C})-{A }, ,
5. iiA B ^ C andA e then return S4-WORLD(-, (U{B})-{A}, if,, ’)v S4-WORLD(-, (U{C})-{A}, , , ’);
6. if A=F1B and A- then return S4-WORLD((-U{B})-{A}, ,

-U{B}, ’,);
7. irA =fiB andA then return S4-WORLD(-, -{A}, -, U{B},

end;
if -U VAR then

begin
8. if -t # then return false;
9. if - and # then return/B,(#,B)Ze S4-WORLD(ff, {B},-, ,. (if, B));

return true
end

end
(Note that . (, B) is the sequence extended with (-, B) and the

conjunction over the empty set defined to be true.)
Test for A S4-PROVABLE.

begin
read A
v <--S4-WORLD({A}, , , ,);

end

The value of v determines if A is S4-provable. We leave the verification of the
algorithm to the reader.

Let n IA I. In order to improve the space complexity of the algorithm we
should let be a global stack. If ’-{(’-I, B1) (-2, B2),..., (-k, Bk)} then
31_ 3-2_’"_ 3"k

_
subformulas of A. Since no repetitions can occur in the

sequence , then k -< n 2. Hence O(n3) storage suffices for S. What remains is an
analysis of the number of levels of recursion in S4-WORLD. Since is now a
global stack, then O(n) is all that is needed at each level of recursion. As before

MODAL PROPOSITIONAL LOGIC 479

there can be at most O(n) successive recursive calls all with -UgVAR.
Further, because the cardinality of is bounded by O(n2) there can be at most
O(n 2) depth of recursive calls with Ur_VAR. Thus the recursion depth is
O(n3). Total space is bounded by O(n4). Q.E.D.

To summarize the specific space bounds we give this corollary to the proof of
Theorem 5.1.

COROLrAR 5.2. K-PROVABLE SPACE(n2), T-PROVABLE
SPACE(n3), and S4-PROVABLE SPACE(n4).

We do not claim that these bounds are best possible, but they do guarantee
that these problems are computable in polynomial space.

COROLLARY 5.3. For S {K, T, $4}, S-PROVABLE is log space complete in
P-SPACE.

6. The complexity oi provability in $5. The provability problem in S5 seems
to be easier than that for the systems we have considered so far. For example, in T,
K and $4 we can construct satisfiable formulas which are only satisfiable in
exponential size model structures. This phenomenon does not happen for S5-
satisfiability Hence we can only show that S5-SATISFIABLE is log space
complete in NP-TIME.

LEMMA 6.1. I]’A S5-SATISFIABLE has m modal connectives, then A is

S5-satisfiable in an S5-model with <-m + 1 worlds.
PROOF. Let A be satisfied in an S5-model (W, R, V). We may assume that

u R v for all u, v W. We construct a mapping r from all instances of subformulas
of A into W in such a way that A is S5-satisfied in
(Range(o-), R IRange(o-), VIRange(r)) and the cardinality of Range(r) _-< m + 1.

The function r is defined inductively on the instances of subformulas of A.
(i) Choose r(A) e w such that V(A, r(A)) T,
(ii) r(C)= o’(B) if B -C,
(iii) o’(C) r(D) o’(B) if B C ^ D,(iv) r(C) r(B) if B [IC and V(B, r(B)) T,
(v) if B [C and V(B, r(B)) F, then choose o-(C) e W in such a way that

V(C, r(C)) F.
Clearly the cardinality of Range(w) m / 1. Let W Range(w) and let R’

and V be respectively R and Vrestricted to W. We may show inductively that for
each instance of a subformula B of A, V(B, or(B))= W(B, or(B)). Q.E.D.

THEOREM 6.2. SS-SATISFIABLE is log spce complete in NP-TIME.
Proof. Trivially BI is log space reducible to SS-SATISFIABLE,

X 3XA B if and only if A SS-SATISFIABLE.
It remains to show that SS-SATISFIABLE NP-TIME. Let A MF and let

[A n. By Lemma 6.1 A SS-SATISFIABLE if and only if there is an SS-model
(W, R, V) with the cardinality of W n / 1 and a w W such that V(A, w) T.
Such a modl can be "guessed" nondeterministically and checked in polynomial
time. Q.E.D.

7. Conclusion. It would be interesting to determine cut off points between
$4 and $5 where the complexity of satisfiability changes from complete in
P-SPACE to complete in NP-TIME. We conjecture that S4.3-SATISFIABLE is
log space complete in NP-TIME.

480 RICHARD E. LADNER

Another interesting area is the complexity of provability or validity in
intuitionistic propositional logic (IC). J. Cherniavsky 1 claimed that the nonvalid
formulas in IC can be determined in NP-TIME. He has since informed us of
mistakes in his proof. We conjecture that provability in IC is log space complete in
P-SPACE. There is a very simple reduction of IC to $4 given by McKinsey and
Tarski [7]. Define - inductively:

(i) -(A)= A if A is a variable,
(ii) -(A ^ B) -(A) ^ ’(B),
(iii) ’(a D B) [:](-(a) -(B)),
(iv) ’(---a) [-I -(a).

Now, A is IC-provable if and only if -(A) is S4-provable. Thus IC-
PROVABLE e P-SPACE. All that remains is to show that B, or some other
complete set is log space reducible to IC-PROVABLE.

Acknowledgments. We appreciate the suggestions of S. K. Thomason in
obtaining the results of 3. Also we are indebted to J. Cherniavsky in providing
helpful ideas that we used in our algorithms for K, T, and $4.

Note added in proof. M. J. Fischer has suggested a new construction which
improves the bounds of 4. For example S K implies /(n)= O(n2/log n) in
Lemma 4.1.

REFERENCES

[1] J. CHERNIAVSKY, The complexity of some non-classical logics, 14th Ann. IEEE Symp. on
Switching and Automata Theory (1973), pp. 209-213.

[2] S. A. CooI<, The complexity of theorem proving procedures, Proc. 3rd Ann. ACM Symp. on
Theory of Computing (1971), pp. 151-158.

[3] J. E. HOPCROFT AND J. D. ULLMAN, Formal Languages and their Relation to Automata,
Addison-Wesley, Reading, MA, 1969.

[4] G. E. HUGHES AND M. J. CRESSWELL, An Introduction to Modal Logic, Methuen, London,
1968.

[5] N.D. JONES, Space-bounded reducibility among combinatorialproblems, J. Comput. System Sci.,
11 (1975), pp. 68-85.

[6] S.A. KRI’KE, Semantical analysis ofmodal logic, L Normal modalpropositional calculi, Z. Math.
Logik Grundlagen Math., 9 (1963), pp. 67-96.

[7] J. C. C. MCKINSEY AND A. TArSKI, Some theorems about the sentential calculi of Lewis and
Heyting, J. Symbolic Logic, 13 (1948), pp. 1-15.

[8] V. R. PRATt, Semantical considerations on Floyd-Hoare logic, 17th Ann. IEEE Symposium on
Foundations of Computer Science (1976), pp. 109-121.

[9] W. J. SAVITCH, Relationship between nondeterministic and deterministic tape complexities, J.
Comput. System Sci., 4 (1970), pp. 177-192.

10] J. !. SEIFErAS, M. J. FISCHEr AND A. R. MEYER, Refinements ofthe nondeterministic time and
space hierarchies, 14th Ann. IEEE Symp. on Switching and Automata Theory (1973), pp.
130-137.

11] L. J. STOCKMEYEr, The polynomial-time hierarchy, IBM Tech. Rep. Yorktown Heights, NY,
1975.

12] L. J. STOCKMEYER AND A. R. MEYER, Wordproblems requiring exponential time: Preliminary
report, Proc. 5th Ann. ACM Symp. on Theory of Computing (1973), pp. 1-9.

SIAM J. COMPUT.
Vol. 6, No. 3, September 1977

A LINEAR TIME ALGORITHM FOR A 2xn TRANSPORTATION
PROBLEM*

D. L. ADOLPHSON AND G. N. THOMAS?

Abstract. This paper considers a special case of the standard transportation problem obtained by
restricting the number of origins to two. Necessary and sufficient conditions are established which lead
to a direct construction of the optimal solution. Using an extension of a recent selection algorithm, an
algorithm is developed to solve this special case of the transportation problem in O(n) time in the worst
case. The algorithm applies to both capacitated as well as uncapacitated problems.

Key words, transportation problem, selection algorithm, computational complexity

1. Introduction. One of the most important problem structures in operations
research is the standard transportation problem which can be described
mathematically as follows: find a vector x (xij) which minimizes

(1.1) z-- cijxij
i=lj=l

while satisfying

(1.2) xij ai,
j=l

(1.3) Y xij:bj,
i=1

and

i=1,2,...,m;

j=1,2,...,n;

(1.4) xii_->0 i=l, 2,...,m;]=l, 2,...,n;

where c (cij), a (ai) and b (bi) are known constant vectors. Furthermore, it
is assumed that ?=a ai ’=a bi so that a feasible solution exists.

The usual interpretation of the model is that we are given a transportation
network with m origins and n destinations in which ai represents the available
supply at origin and b represents the required demand at destination . The
constants cij represent a unit transportation cost from origin to destination . The
objective is to find a minimum cost transportation schedule subject to the supply
limitations at the origins and satifying the demand requirements at the destina-
tions. Although this is the most common interpretation of the model, there are
other problem situations such as production and inventory problems and schedul-
ing problems which have the same mathematical structure.

An important variation of the transportation is obtained by assuming upper
bounds on the xii values. Constraint (1.4) would then be replaced by

(1.4’) O<=xii<=uii, i=l, 2,...,m; =l, 2,...,n.

* Received by the editors November 18, 1975, and in final revised form October 29, 1976.
? Department of Finance, Business Economics and Quantitative Methods, University of

Washington, Seattle, Washington 98195.

481

482 D.L. ADOLPHSON AND G. N. THOMAS

Because of the broad applicability of this model, there has been a great deal
of effort towards development of efficient algorithms for solving this problem. The
most common approaches to solving this problem are the primal dual transporta-
tion algorithm and the transportation simplex algorithm. Both of these
approaches are iterative methods in which the computation time is at least a
higher order polynomial function of the number of nodes in the model. The primal
dual approach has been analyzed in detail by Edmonds and Karp [3]; there is no
theoretiCally known bound on the transportation simplex method although
empirical studies have shown that it is roughly comparable to the primal dual
method in terms of computation time.

In this paper, we restrict our attention to the special case in which m 2 (or
equivalently, n 2). The main theorem is stated and proved in 2 and provides a
direct construction of an optimal solution. An implementation of the algorithm,
given in 3, is shown to require at most O(n) steps. Section 4 provides a summary
and conclusions.

2. The main theorem. The transportation problem with two rows is much
simpler than the general problem. The reason for this can be seen by considering
the numerical example in Fig. 1.
It can easily be verified that the solution given is an optimal solution for this
problem. For this example the columns have been arranged so that the values of
dj Caj-c2i are nondecreasing. Given this ordering of the columns it will be
shown by the following theorem that an optimal solution can be found by filling
the top row from left to right and then filling in the values on the bottom row.

THEOREM 1. Letx (xq) be a vectorsatisfying (1.2), (1.3) and (1.4) fora 2 n
transportation problem. Define index sets J={flXli>O} and K={klX2k >0}.
If di c ai c2, the solution x is optimal i and only if dj <= dk]:or all J and all
kK.

Proof. The transportation problem can be viewed as a special case of the
following minimum cost network flow problem:

(2.1)

(2.2)

(2.3)

17

9

Minimize ciixii,
(i,j)

] source,
subject to 5](x -x) O, j # source, sink,

v,] sink,

0 _-< xj -< be

8 8 6 7

3 8 15 13

Lt E
20 19 20 10 7

-19 -16 -12 5

FIG. 1

A 2x n TRANSPORTATION PROBLEM 483

It is a well known result of minimum cost networks (see [4] for example) that a
vector x (xij) satisfying (2.2) and (2.3) is optimal if and only if the network
contains no negative cycles based on the costs c defined by

%, ifO<-xij

c= oo, ifxi=
-cii, if 0 < xji <--

A "cycle" is used here to donate a sequence of edges (io,]0), (il,]1),’", (ip,]p)
where]k ik/l, k 0, , p 1 and]p io. We can assume without loss of
generality that each ik is distinct (i.e., the cycle is a simple cycle) since the existence
of a negative cycle implies the existence of a negative simple cycle.

For a 2 n transportation problem any negative simple cycle must have the
form shown in Fig. 2.

FIG. 2

Note that C2 < (30 implies X2k > 0 which implies k 6 K. Similarly C1 < oo implies
] J. The total cost of the cycle is (C+ Ck*2) + (C.+ C1)
(c1 + Cl)

From this we see that a negative cycle exists if and only if dk d1 < 0 for some
k e K andj 6 J. In other words a given solution is optimal if and only if no negative
cycles exist which occurs if and only if d1 >-_ dk for all] e J and k e K. Q.E.D.

3. The algorithm. One way to construct a solution to a 2 n transportation
problem is to sort the columns according to d values and then fill in the first row
starting with the smallest dj value. However, we shall see that it is not necessary to
sort the d values. In order to see this we consider the following numerical example
(see Fig. 3) which is similar to the example of the previous section except that here
all bi values are 1 and the ai values have been changed accordingly.

(I

3

2
20

d -19

15

19 20 10 7

-12-16

FIG. 3

484 D. L. ADOLPHSON AND G. N. THOMAS

We see from this example that the following general procedure applies for the
special case when b. 1. We will assume for the present that the n d] values are
distinct.

1. Given dl, d2, ,dn find the alst smallest element (i.e., apply a selection
algorithm).

2. Letting dk be the value selected above set xij 1 if dj -< dk otherwise set

X2i 1.
Since selection can be done in O(n) time (see 1 and [4]) and since step 2 involves
a single pass through the data, the procedure is clearly O(n) for this special case.
For the more general case with b 1 we need to be able to solve the following
"weighted selection problem".

Given a set S of reals and a function W from S into reals and given a
nonnegative real number w <-xS W(x), the weighted selection problem is to
find an element z 6 S such that

where

L(z)<w<=U(z)

L(z) Z {W(x)lx e S and x < z},

U(z) Y { W(x)Ix e S and x -< z }.

The following recursive procedure WSELECT, which is an extension of the
selection algorithm given in [5], may be used to solve the weighted selection
problem.

ALGORITHM WSELECT(S, W, w, z).
Step 1 (find median). Use a median finding algorithm to select the [ISI/2]-

ranked element of S (break ties arbitrarily). Let y be this element.
Step 2 (discard or halt). If w > U(y) then use WSELECT recursively with

and

S:--{xeSlx>y}

w := w U(y).

If w_-<L(y) then use WSELECT recursively with S:={x SIx <y} and w
unchanged. If L (y) < w <- U(y) then z := y, stop.

The following numerical example illustrates the workings of WSELECT.

S=(1,2,3,4,5,6,7,8,9,10),

W(S) (15, 7, 9, 22, 3, 12, 18, 14, 9, 16),

w= 105.

Step 1. y 5, L(y)= 53, U(y)= 56.
Step 2. w > U(y), S:={6, 7, 8, 9, 10}

w:= 105-56 49.
Step 1. y 8, L(y)= 30, U(y)= 4.
Step 2. w > U(y), S :={9, 10}

w :=49- 44 5.

A 2 x n TRANSPORTATION PROBLEM 485

Step 1. y 9, L (y) 0, U(y) 9.
Step 2. L(y)< w < U(y), so z 9, stop.
Now that we have a procedure for solving the weighted selection problem we

can state the algorithm for solving a 2 x n transportation problem.
AGOeITHM T. Given (cq), (a), (bi) for i= 1, 2; j 1, 2,..., n; find an

optimal solution to the 2 x n transportation problem.
Step 1 (compute differences), di :=cq c2i, j 1, 2,. , n.
Step 2 (find breakpoint). Use WSELECT with S {dl, d2," ’’, dn},

w dj b],

W al,

z the value of d returned,

Step 3 (construct solution). For] 1, 2,. , n"

if dj < z, then xli:=bi, x2i:=0;
if d > z, then Xlj:=0, x2.:=bi;
if di z, then

xli:=min (bj, al-L(z)),

x2y:=(b]-Xl]),

L(z):=L(z)-xl.

The procedure above can also be used to solve the capacitated transportation
problem defined in 1 when m 2. The key here is to realize that an upper bound
on one row induces a lower bound on the other row. Given upper bounds uq on the
xq values we can define lower bounds lq as

llj=max(O,b-uzj),

lzi =max (0, bi-uli),
] 1, 2,..., n.

Then we can apply Algorithm T using

bi=b-llj-12,

lqai ai--
j=l

to find

j 1, 2, , n,

i=1,2,

xq=xq-lq, i= 1,2; j= 1,2,...,n.

The solution to the original capacitated transportation problem is (xq)=
+
4. Summary and conclusions. We have proved that the 2 x n transportation

problem can be solved in linear time. We can consider some possible extensions of
these results. First of all, these ideas may possibley be extended to an efficient
algorithm for 3 x n or even 4 x n transportation problems. Second, the ideas may

486 D.L. ADOLPHSON AND G. N. THOMAS

prove useful in a partitioning scheme for a m n transportation problem by
reducing the solution of these m n problems to a series of 2 n transportation
problems.

A third possible extension of these ideas involves the problem of scheduling n
jobs on m machines so as to minimize mean finishing time. It has been shown by
Bruno et al. I-2] that this problem can be formulated as a transportation problem
with n.m rows and n columns. The ideas contained in this paper may be
particularly useful in providing an efficient solution for this problem with m 2.

REFERENCES

[1] M. BLUM, R. W. FLOYD, V. PRATT, R. L. RIVEST AND R. E. TARJAN, Time bounds for
selection, Computer and Systems Sci., 7 (1973), pp. 448-461.

[2] J. BRUNO, E. G. COFFMAN, JR. AND R. SETHI, Scheduling independent tasks to reduce mean
finishing time, Comm. ACM, 17 (1974), pig. 382-387.

[3] J. EDMONDS AND R. M. KARP, Theoretical improvements in algorithm efficiency for network flow
problems, J. Assoc. Comput. Mach., 19 (1972), pp. 248-264.

[4] T. C. Hu, Integer Programming and Network Flows, Addison-Wesley, Reading, MA, 1969.
[5] A. SCHONHAGE, M. PATERSON AND N. PIPPENGER, Finding the median, Theory of Computa-

tion Rep. 6, Univ. of Warwick, Coventry, England.

SIAM J. COMPUT.
Vol. 6, No. 3, September 1977

LINEAR-TIME COMPUTATION BY NONDETERMINISTIC
MULTIDIMENSIONAL ITERATIVE ARRAYS*

JOEL I. SEIFERASt

Abstract. It is shown by simulation that every language accepted within time n a by a nondeter-
ministic one-dimensional Turing machine is accepted in linear time by a nondeterministic d-
dimensional iterative array. Conversely, every language accepted in linear time by such an iterative
array is accepted within time na+ by a nondeterministic one-dimensional Turing machine. It follows
that the class of languages accepted in linear time by nondeterministic multidimensional iterative
arrays is precisely Karp’s class NP, that nondeterministic (d + 2)-dimensional iterative arrays are more
powerful than nondeterministic d-dimensional iterative arrays, and that nondeterministic two-
dimensional iterative arrays are more powerful than the entire class of nondeterministic multidimen-
sional Turing machines. Related deterministic results are surveyed and summarized for comparison.

Key words, iterative array, cellular automaton, nondeterminism, multidimensional, Turing
machine, acceptor, on-line, off-line, simulation, time complexity

1. Introduction. Let NIA (d) be the family of languages accepted in linear
time by nondeterministic d-dimensional iterative arrays. (Deterministic mul-
tidimensional iterative arrays have been studied by Cole [2] and Kosaraju [7].) It
has been observed [10] that every language accepted by a one-dimensional
single-head Turing machine simultaneously within time n 2 and space n belongs to
NIA(2). Our main result (Theorem 1) generalizes this observation to
NTIME(nd) NIA (d), where NTIME(T(n)) is the family of languages accepted
within time T(n) by nondeterministic one-dimensional multihead Turing
machines.

Conversely, we show that NIA(d)_NTIME(na/l) (Theorem 2). The two
facts together show Lla NIA(d)= NTIME(na), which is the same as Karp’s
class NP [6]. We also use both facts in a proof that NIA(d)NIA (d + 2).

Let NTM(d) be the family of languages accepted in linear time by nondeter-
ministic d-dimensional multihead Turing machines. A real-time simulation of
Turing machines by iterative arrays gives NTM(d)NIA (d) [7], [12], but a less
direct simulation using Theorem 1 gives the stronger result t_JaNTM(d)
NIA(2). Thus, in the nondeterministic case, two-dimensional iterative arrays
outperform all multidimensional multihead Turing machines.

In 8 we examine related deterministic questions and summarize.

2. Notation.
Z is the set of integers.
Za is the set of d-tuples of integers.
N is the set of nonnegative integers.

* Received by the editors September 25, 1975, and in revised form January 24, 1977.

" Computer Science Department, Pennsylvania State University, University Park, Pennsylvania
16802. Most of this work was conducted at Massachusetts Institute of Technology Project MAC,
supported by the National Science Foundation under Grant GJ-34671.

487

488 JOEL I. SEIFERAS

Na is the set of d-tuples of nonnegative integers.
Ill is the absolute value of the integer i.
ri(v) is the ith component of the tuple v.
0 6 Za is the d-tuple with ri (0)- 0 for 1 _-<i =< d.
1 Zd is the d-tuple with r(1) 1 for 1 _-< =< d.

1 for =j,
e 6 Zu is the d-tuple with r (el)= 0 for/ j.
E* is the set of finite strings of characters from E.
Ix is the length of x 6 E*.
dom(f) is the domain of the function f.

3. String acceptance by Turing machines and iterative arrays. The basic
d-dimensional h-head Turing machine consists of a finite-state control and a single
d-dimensional worktape (infinite both ways in each dimension) on which the
control reads, writes, and shifts with its h (initially coincident) worktape heads (see
12] for a formal definition). A Turing machine is deterministic or nondeterministic,

respectively, if its finite-state control is. The input-output terminal of a Turing
machine is its finite-state control.

The basic d-dimensional iterative array [2], [7] is a synchronized d-
dimensional array (infinite both ways in each dimension) of identical finite-state
machines, each of which communicates only with its 2d nearest neighbors in the
array (see [12] for a formal definition). An iterative array is deterministic or
nondeterministic, respectively, if each finite-state machine is. The input-output
terminal of an iterative array is the finite-state machine at its origin. An iterative
array is quiescent if every finite-state computing element is in the same designated
quiescent state. For convenience, each identical finite-state machine of an iterative
array may be thought of as a finite sequence of finite-state registers. If R is a name
for one of these registers, then we will write R (v) for the contents of register R of
the computing element at location v in the array.

A Turing machine with initially blank tape or an initially quiescent iterative
array M acts as an acceptor by receiving an input string sequentially at its
input-output terminal. If for input string x the input-output terminal of M
eventually enters some designated accepting state, then Maccepts x. The language
accepted by M is

L (iV/) {x IM accepts string x }.

The acceptorMaccepts within time T: N N if it accepts each string x L (/V/) by
step number T([xl) in some computation on that input.

If an acceptor M receives its input subject to the restriction that it must halt
one step after detecting the end of the input string, then we say thatM is an on-line
acceptor. Without the restriction, M is an off-line acceptor (see [5]). Observe that
the on-line restriction is no real restriction for nondeterministic acceptors;
without spending extra time, they can anticipate the end of the input string by
simply guessing. It is known, on the other hand, that the on-line restriction is a real

LINEAR-TIME COMPUTATION 489

one for both deterministic Turing machines and deterministic iterative arrays.
DEFINITION. For T: N N,

NTIME(T) {LI some nondeterministic one-dimensional multihead Turing
machine accepts L within time T},

NTM(d)={LI some nondeterministic d-dimensional multihead Turing
machine accepts L in linear time (i.e., within time cn for some c)},

NIA (d) {L[some nondeterministic d-dimensional iterative array accepts L
in linear time}.

Similarly define DTIME(T), DTM(d), DIA (d), respectively, in terms of deter-
ministic off-line acceptance and QTIME(T), QTM(d), OIA (d), respectively, in
terms of deterministic on-line acceptance.

It is well known that the classes XIA (d) (X {N, D, O}) are not affected if we
permit the next state of each computing element of a d-dimensional iterative array
to depend on the current states of more nearest neighbors thanjust 2d [2]. Nor are
the classes affected if we permit the next state of each computing element to
depend on the signs of its location’s coordinates and the current states of the
computing elements scanned by some finite number of independently shiftable
(but initially coincident) array heads [7], [12]. The iterative array algorithms we
describe in this paper, therefore, will be for iterative arrays which may employ
these convenient features.

4. Arrays with multidimensional inputs. In this section we broaden our
concept of languages accepted by d-dimensional iterative arrays to include sets of
"d-boxes," which we define below to be a d-dimensional generalization of
one-dimensional character strings.

DEFINITION. A d-box of type (n 1,"" ", na) over the finite alphabet E is a
function

p: {1,.. ’, nl} X’’ X {1,’’ ", ha}-->

The diameter]Pl of such a d-box is nl+" "+ n,. (A string of length n can be
defined to be a 1-box of diameter n.) We shall often regard d-box p as a
(d + 1)-box by taking na/l 1. (Thus a string of length n is also a 2-box bf type
(n, 1), a 3-box of type (n, 1, 1), etc.)

We are interested in d-boxes for their capacity to represent long strings
(abbreviated Turing machine instantaneous descriptions (5) in particular) in
small diameters. With the next definition we fix such a representation.

DEFINITION. For each d-box p of type (n 1,..., na), using C1 for ordinary
1-dimensional string concatenation, define s(p) to be the following string of
length nl na:

d

C1 C1 p(i, ia).
id=l i1=1

In terms of the notation defined in this section, Hennie’s set Wd+l [5] belongs to DTM(1)_
DTM(d)

_
DIA (d) for every d. Yet Hennie’s argument shows that W+ belongs to neither OTM(d)

nor OIA (d). (Aanderaa has shown that even the entire transduction actually performed by an on-line
acceptor for Wa/ can be performed faster off-line than on-line in d dimensions [9].)

490 JOEL I. SEIFERAS

DEFINITION. If p, q are d-boxes of type (nl,. ha-l, rid),
(n,. ha-l, n), respectively, then the d-concatenation pCdq of p and q is the
d-box of type (n 1," , ha-l, na + n’) with

s(pCaq) s(p)ClS(q) s(p)s(q).

Remark. We can have both pCaq and pCa/lq defined, but they are different;

cd
abClcd=abcd, but abC2cd= ab"

A d-dimensional iterative arrayMis given the d-boxp as a preloaded input in
some designated input register, say "input," as follows:

input(v)
p (v) for v dom(p),

t # for v dom(p).

(We assume that # does not occur in the image of p.) Denote by L’(M) the set of
d-boxes accepted by the d-dimensional iterative array M. If M accepts each
p L’(M) within T(Ipl) steps, then Maccepts within time T: N->N. Let

NIA’(d)={L’(M)IM is a d-dimensional iterative array which accepts in
linear time},

DIA’(d) {L’(M)IM is a deterministic d-dimensional iterative array which
accepts in linear time}.

LEMMA 1. For each regular set L,

{PIP is a d-box (ofany type) with s(p) L} DIA ’(d).
Proof. Look at some deterministic one-way finite-state acceptor for L, and

consider the alphabet consisting of transition matrices (i.e., functions from the
state set into the state set) for that acceptor. Each string x has associated with it a
unique transition matrix o’x from this alphabet, and rxy is determined by rx and
o-y (it is their composition). The deterministic d-dimensional iterative array we
construct will start operation in the configuration (input, accum, command),
where

input(v) {p(v)forv dom(p),
for v dora(p),

accum(v) command(v) # for all v e Zd.
By accumulating (i.e., composing) transition matrices along the successive dimen-
sions (i.e., according to the definition of s), the array will successively compute the
transition matrices of the strings of the forms

Clp(il," ,ia),
il

C1 C1 p(i,""", ia),
i2 il

C1"’" C1 p(il,’"", ia)= s(p).
ia

LINEAR-TIME COMPUTATION 491

The accumulation will take only linear time in each of the d dimensions.
The transition rules are as follows, with no change implied where no rule

applies:

command(0) #:
command(0) 4- "load accumulators."

command(0) "load accumulators":
accum(v) O’input(v) if input(v) #
command(0) - "accumulate in dimension 1"

command(0)= "accumulate in dimension i":
If (accum(v), accum(v+ ei), accum(v + 2ei))= (trx, o’y, #), then set

(accum(v), accum(v+ e0, accum(v+ 2e0) - (trxy, #, #).
If accum(1 + ei) # and < d, then set

command(0) "accumulate in dimension + 1."
If accum(1 + e0 # and d, then set

"accept"
command (0) - "reject"

if accum(1) maps the start state to an
accepting state,

otherwise.f3

LEMMA 2. Let , be a Cartesian product alphabet with fields "key," "sex," and
:’dam." Let L be the set of d-boxes p =piCa... Capn such that each pi is a
(d- 1)-box over E and the following holds for each with sex(pi) identically 1:

The maximum j < with

key(p.) key(p/), sex(pj) # sex(p/)

exists and satisfies
data(pi) data(p).

Then L DIA ’(d).
Proof. Informally, for each pi whose sex is totally 1, the acceptor will have to

search sequentially through p_, pi-2," , pl until it finds the nearest "mate" p.
for pi. (A "mate" must differ at least slightly in sex but agree completely in key.) In
addition, the acceptor will have to verify thatp and pi agree completely in data.

The deterministic d-dimensional iterative array we construct will start opera-
tion with all registers containing #, except input(v)=p(v) for v dom(p). For
each i, the array will shift copies of pi, pi-x,""", px past p, watching for pi as
required. So that the successive comparisons can be performed without delay, the
copies will be "skewed" in such a way that, for 1 <= k =< d 1, each pi goes by p(v)
one step after it goes by pi(vq-ek) (see Figs. 1 and 2 below). This will allow the
instantaneous accumulation at p(v) of the results of comparing pi(v’) with pi(v’)
for all v’ dom(pi) dom(p.) with 7rk(V’)=> 7rk (V) for all k =<d-1.

The algorithm consists of the four steps below. Documentary remarks follow
the entire algorithm.
1. Set

0 if sex (input(v)) 1
status(v)

1 if sex (input(v)) { #, 1},

492 JOEL I. SEIFERAS

and then repeat the following]p[times:

0 if status(v)= 0 and status(v + ei) 1 for all < d,
status(v) <--

1 if status(v)= 1 or status(v+ ei)= 1 for some < d.

2. Set copy(v) # input(v).
Station a head at some Vo 6 Za with

input(vo) # #, input(vo + ei) # for all < d,
and then repeat the following until mobility(vo)= 1"
If either ri(v)= 1 for all < d

or mobility(v-e0 1 for some < d,
then set mobility(v)<-- 1.
If mobility(v) 1, then set copy(v) - copy(v + e).

3. Repeat the following 21p[times"
If input(v) # #, copy(v) # #, then set

xkey(v) <- 1 if
either key (input(v)) key (copy(v))
or xkey (v + e0 1 for some < d;

xsex(v) <-- 1 if
either sex (input(v)) r sex(copy(v))
or xsex (v + e) 1 for some < d;

xdata(v) - 1 if
either data (input(v)) # data (copy(v))
or xdata (v + e)= 1 for some < d.

Set copy(v) <-- copy(v-e).
If 7ri(v)= 1 for all < d and status(v)= 0, xkey(v)# 1, xsex(v)= 1, then set

1 ifxdata(v)#l
status(v) <--

-1 if xdata(v) 1.

4. Accept if status(v)= 1 for every v with
7r/(v) 1 for all < d, input(v)# #.

From the following documentary remarks, it is straightforward to prove that
such an iterative array does recognize L in linear time.

1) No transition ever modifies input(v).
2) Step 1 modifies only the "status" registers. After that step, the following

holds for each v dora(p)_ Nd of the form (1, , 1, i):

0 if sex(p/) is identically 1,
status(v)

1 otherwise.

In the rest of the algorithm, status(v) will be significant only for v of the form
(1, , 1, i), 1 _-< _-< n. Status 0, 1, or 1, respectively, will indicate that the search
for a satisfactory mate p. for pi is continuing, successfully concluded, or unsuccess-
fully concluded. (A mate is required only if sex(p/) is identically 1.)

3) Step 2 modifies only the "copy" and "mobility" registers. The step ends
after Ip]-d + 1 repetitions with the "copy" registers shifted (or "skewed") so
that

copy(vl, ", Vd-1, -]Pl] + vl +" + Vd-1) pi(131,’" ", /)d-l)

LINEAR-TIME COMPUTATION 493

for (/31, /3d-l, i) e dom(p). The "mobility" registers are not used after step 2.
4) In step 3, the "skewed" copies of the pi’s are rigidly shifted past the

original pi’s (see Figs. 1 and 2). This allows each Pi to be compared with the copy of
each p. for] <= i. Mismatches in the "key," "sex," and "data" fields, respectively,
are accumulated as 1 in the "xkey," "xsex," and "xdata" registers associated with
the "input" registers. The sequence of these accumulated comparisons for each pi

is accumulated in status(l,..., 1, i), which finally indicates whether the search
for an appropriate pj succeeds. Step 4 merely polls the registers
status(i, , 1, 1),. , status(i, , 1, n) to see whether the search succeeded
for every pi.

5) Steps 1, 3, respectively, call for l+]pl, 21pl transitions. Step 2
requires only 1 / Ipll / (]pl-d + 1) transitions. Only the positions
(1,..., 1, 1), , (1,..., 1, n) must be checked in step 4, so n -< Ipl transitions
suffice. 71

5. Abbreviated instantaneous descriptions.
DEFINITION. An instantaneous description (id)of a one-dimensional h-head

Turing machine M with finite control state set O(0 O) and tape alphabet Z is a

string x over the (h + 1)-track alphabet

(O u{o}). x (O u {o}) :
such that

(]q6O)(Trg(x)O*qO* for l<-i<-h),

dth dimension

Pn-

P2

\ (I 1)

lower dimensions

FIG. 1. Inputand copy before step 3

494 JOEL I. SEIFERAS

dth dimension

Pn-

P2

Pl
({ 1)

lower dimensions

FIG. 2. Inputand copy after step 3

where 0*q0* ={OiqOJ}i,]>-O} and we treat a string of length n over the (h + 1)-
track alphabet as an (h + 1)-tuple of strings of length n over the respective
component alphabets. Informally, rh+l(X)is the nonblank portion of the tape of
M, q is the control state of M, and the position of q in r; (x) is the position of head
ofM for 1 _-< -<_ h. An abbreviated instantaneous description (aid) ofM is a string x
over the (h + 2)-track alphabet

(0 u {o}) x x (0 u {o}) x x {o, [,]}
such that

(q6Q)(ch(x)O*qO* for l<-i<-h), rh+z(X)6 ([0"])*.

LINEAR-TIME COMPUTATION 495

A boundary between bracketed expressions on the extra track indicates the
possible excision at that point of some unscanned tape squares from a full id. For
x, y aids ofMwith Ix lYl and rrh /.(x) 7rh +:(y), we say x I Y ifMcan move in k
steps from aid x to aid y without shifting a head to a (possibly) missing tape
square. When M is fixed by context, we write - for I. If rr(x)= Try(y) for
1-< < h + 2, then we say x y. If 7rh+2(y) can be obtained from rrh/a(X) by
replacing some O’s by brackets, then we say x -< y. (We do not define x -< y to imply
x y or vice versa.)

Now we formulate a convenient set of conditions necessary and sufficient for
p q, where M is a fixed one-dimensional h-head Turing machine Since each
head can shift at most na/ times in n/1 steps, we may as well further abbreviate
the aids to length at most h (2n/), omitting some of the tape positions which
the heads could not possibly reach on the way from aid p to aid q. Then we can
easily pad p and q out to length exactly 2hn /, again without affecting derivabil-
ity. The conditions we give are in terms of n computations of length only n , so we
can parse the long aids into 2hn aids of length n and involve exactly 2h of them in
each such short computation. (Then we will be able to use the conditions
recursively in 6.)

LEMMA 3. Let

P P P2hn, q ql q2hn

be aids of length 2hn a+l with 7rh+2(p)=’lrh+2(q), Ipl= lql= n for l <-j <=2hn.
Then p 1"’+1 q if and only if there are 2n aids

xi xi,1 X,zh, 1 <-- <-- n,

Yi Yi, Yi,Zh, 1 <-- <-- n,

with Ix,l ly,;I-- n a, x " yfor 1 <= <- n, 1 <= j <-_ 2h and also an "address" func-
tion

addr:{1,..., n}{1,..., 2h}{1,..., 2hn}

such that the seven conditions below hold]’or all i, f. (Informally, addr(i, j) is the
"page number" within the longer aids (2hn pages long) of the/’th pages from the
shorter aids x and y (only 2h pages long) taking part in the ith of the n
subcomputations.)
1) addr(i, j + 1)> addr(i, j).
2) addr(i, j + 1)= 1 + addr(i,/’)

if] is not a suffix of 7rh+2(Xi,).
3) pi <----Xi,h wheneverj addr(il, j).
4) pi qi whenever

1 =< i’ <_- n =), addr(i’, j’) # j.
5) pi xi,h whenever

1 =< i’ < i =), addr(i’,/") j,
addr(il, ja)=j.

6) Yi,h x,i whenever i < i2 and
il < i’ < i2=) addr(i’, j’) addr(i, ja),
addr(i2, j2) addr(ia,

496 JOEL I. SEIFERAS

7) Yil,jl qj whenever
il < i’ _-< n addr(i’,]’) # addr(il,/1),
] addr(ix,]1).

Proof. () If p]nd+lq, then there are aids r0, rx," rn such that

If we parse ri-x, ri into blocks of length n a, then a computation ri-1
n

ri can
involve at most 2h pairs of blocks (two pairs for each head). We can select these
pairs (in order)to be

Xi, l,Yi,1, Xi,2h, Yi,2h, respectively,

adding new brackets on track h + 2 to indicate new excisions. For addr(i, j), we can
take the position of the jth selected pair of blocks.

() Assume we have the xi’s, yg’s, addr as described. For each i(0 _-< _-< n),
we can construct an aid rg r,l ri.2hn with

ro,. p for 1 <- j <- 2hn,

if]{addr(i,]x)[l <-]x <-2h},
rid

yi,.l if j addr(i, jl)

for 0<i<-n, l<-f<-2hn,

$Th+2(ri 7"/’h +2(p)

Thenp=rol"ral"... I""r--q. E]

for 0-<_i_-< n.

6. Simulation of one-dimensional Turing machines.
LEMMA 4. LetMbe a fixed nondeterministic one-dimensional h-head Turing

machine. For each d, let

Ld CJ {(p, q)l(p and q are d-boxes oftype (n, n, 2hn with s (p 1- s (q)},

where (p, q) is the d-box defined by

(p, q)(v) (p (v), q (v))

for every v dom((p, q))= dom(p) dom(q). Then Ld NIA ’(d).
Proof. Let F be the (h + 2)-track alphabet

((2 u {o}) x... x (0 u {o}) x x {o, [,]},
where (2(0 Q) is the finite control state set ofMand E is the tape alphabet of M.

The proof is by induction on d. By [12] NTM’(1) NIA’(1), and obviously
LI6NTM’(1). In the induction step, we use the fact LeeNIA’(d) to show
Le+I NIA’(d + 1). At a high level, the (d + 1)-dimensional algorithm closely
follows Lemma 3, so its correctness should be apparent.

1. Check that the input (d + 1)-box (p, q) is of type (n,. ., n, 2hn) for some
n, with s (p), s (q aids of M, 7rh+2(s(p))-- "gl’h+2(s(q)). Let pi, qi (1 _-<j -<_ 2hn) be the
d-boxes of type (n,. ., n) with

P-’plCd+l" Cd+lP2hn,

q qlCd+l Cd+lq2hn.
(See Fig. 3.)

LINEAR-TIME COMPUTATION 497

2. Nondeterministically. guess (x, y) to be the (d + 1)-concatenation of n
d-boxes (xi, yi) over F (1 <= <- n), each of type (n,. , n, 2hn). Let xi,j, yi,j (1 <- <-
n, 1 <= j <= 2h) be the d-boxes of type (n,. , n) with

Xi Xi, 1Cd CdXi,2h

Yi Yi, fd CdYi,2h.

(See Fig. 4.)
3. Use the induction hypothesis to check that (xi, yi) La for 1 -<_ -<_ n.
4. Nondeterministically guess an address for each of the d-boxes p and x,.

Assign the address addr(j)of pj to qj as well, and assign the address addr(i, j)of x,
to yi,. as well.

5. Check that addr(j)=/’.
6. Check that

addr(i,/" + 1)> addr(i, j),

addr(i, f + 1)= 1 + addr(i, f)

whenever is not a suffix of rh/2(S(X,)).

7. Nondeterministically change some brackets to O’s in Zrh/2(X), and set
77"h+2(y)<"7"l’h+2(X) after these changes. (This is a slight departure from 3) of
Lemma 3. The intention is to remove precisely the brackets (if any) that occur in
xi, but not in Paddr(id). By strengthening the =’s to equalities in 4)-7)of Lemma 3,
we will check to make sure that the following holds for all i, j after this modifica-
tion"

7l’h+2(Xi,j)-- 7"l’h+2(Yi,])-- 7"gh+2(Paddr(i,i)).)

8. Check that s (p.) s (qi) whenever

1 _-< i’ _-< n addr(i’, j’) # addr(j).

9. Check that s(p.)= S(Xil,]l) whenever

1 <- i’ < =), addr(i’, j’) addr(j),

addr(i,]1)= addr(/).

10. Check that s(yh,h) s(xg2,i2) Whenever il < i2 and

il < i’ < i2::: addr(i’, j’) addr(i, jl),

addr(i2, j)= addr(il, jl).

11. Check that s(yi,.h)= s(q) whenever

il < i’ _-< n ff addr(i’, j’) # addr(i, j),

addr(j) addr(il, jl).

498 JO I. SEIFERAS

FIG. 3. The given pair (p, q)

(X2,1 Y2,1)

(Xl,l Yl,1)

2hn

(X.,zn,y.,zn) n

U (x._,.h,y._,,zh)// 1 (ddiasion

(x1,2h, Y,,2,) (7ower
,/ dimensions)

(dimension d)

FIG. 4. The guessedpairs (xi, Yi)

Finally, let us elaborate on how the steps above may be carried out in linear
time.

1. Even a (d + 1)-dimensional multihead Turing machine can check in linear
time that its input (d+ 1)-box is of type (n,..., n, 2hn) for some n, so a
(d + 1)-dimensional iterative array can, too [12]. By Lemma 1, the check that
(s (p), s (q)) belongs to the regular language

{(u, v)lu, v are aids of Mwith rh+2(U)= 7"/’h+2(/))}

also requires only linear time.
2. First, the array sets up a constant (d + 1)-box of type (n,. , n, 2hn, n) in

linear time by starting with a trivial constant (d + 1)-box of type (1,..., 1),
converting that to one of type (n, 1, , 1) by shifting n 1 times in dimension 1,

LINEAR-TIME COMPUTATION 499

converting that to one of type (n, n, 1, , 1) by shifting n 1 times in dimension
2, and so on. In a single final transition, the array independently guesses a
character from F at each position in the constant (d + 1)-box.

3. In this step the (d + 1)-dimensional array behaves essentially like a
one-dimensional array of d-dimensional arrays, each of which recognizes Ld in
linear time, recording the outcome at its "origin"--actually a position of the form
(0,..., 0, i)Zd/l. After enough time has passed, the array need only check
whether the outcomes recorded at the positions (0,. , 0, i) for 1 _-< _-< n are all
"accept."

4. The guessed objects are actually d-boxes of type (n,..., n)over {0, 1},
superimposed on each Pi and xi.i. The addresses are the numbers whose binary
representations are the images of those respective d-boxes under the map s. The
address of each Pi or x;,i is assigned also to the corresponding qi or Yi,i by simply
creating copies of the guessed d-boxes.

5-6. To delimit the strings s (Pi) (and their addresses) within s (p), specially
mark the last character of each s(pi) (and of its address); i.e., specially mark the
positions (n, , n, i) Zd/l for 1 <= <- 2hn. Similarly delimit the strings s(qi),
S(Xi,i), s(yi,i) (and their addresses). Use some other special mark to delimit the
strings s (xi), s (yi) as well.

For step 5, shift a copy of each Pi’S address d-box up in dimension d + 1 to
pi/l’S address d-box. Appeal to Lemma 1 for linear-time verification that
addr(1) 1 and that addr(j + 1)= 1 +addr(]) for 1 -< <2hn. For step 6, shift a
copy of each xi,i and its address d-box up n times in dimension d to xi,i+l and its
address d-box, and again appeal to Lemma 1.

8-11. y routine shifting, the array can construct in linear time a (d + 1)-
box r rlCa+l. Cd+lrShn Of type (n, , n, 8hn) with

(data(r), s (key(r)), sex(r))-

(pg, addr(k), m)
(xg,i, addr(i, j), f)

(yi,i, addr(i, j), tn)

(qk-6hn, addr(k 6hn), f)

if 1 <= k <= 2hn,
if 2hn + 1 <= k <= 6hn and k

2hn +(i- 1). 4h +(2/’- 1),
if 2hn + 1 <= k <= 6hn and k

2hn +(i-l). 4h +2j,
if 6hn + 1 <- k <- 8hn,

where m, f: {1,. , n}d - {0, 1} are constantly 0, 1, respectively. It is easy to see
that steps 8-11 should merely check whether r belongs to the language of Lemma
2. 1

TI-IEOREM 1. NTIME(n a)
_
NIA (d).

Proof. Let M be a fixed nondeterministic one-dimensional h-head Turing
machine which accepts within time n a. Without loss of generality, make the
following assumptions about M:

1. The worktape of M is infinite to the right only.
2. The input to M is found initially written at the beginning of an otherwise

blank worktap’e. (Assume B is the blank symbol of M.)
3. Initially M is in control state q0 with all h heads scanning the leftmost

worktape square.

500 JOEL I. SEIFERAS

4. M accepts by entering control state qf with all h heads scanning the
leftmost square of a blank worktape.

5. Rather than "halt" when it enters control state q,Mtechnically continues
to go through transitions which do not change anything.
Let La be as in Lemma 4. A noldeterministic d-dimensional iterative array can
accept L (M) in linear time as follows"

1. If the input string is x,]x =n, then set up a d-box (p,q) of type
(n,. , n, 2hn) with s (p), s (q) aids of M such that

’rt’i (s (p)) qoO2hnd- for 1 =< -< h,

,l’t’h+ (S (p)) xB2hnu-n,

7Th +2(S p)) [02hnd--2],
7rg (s (q))’= q02"- for 1 <_- <_- h,

7r + (s (q)) B2nn,
(q))

2. Check that (p, q) La (Lemma 4).
COROLLARY 1.1. For any time bound T, all ofNTIME(T) is contained in the

class of languages accepted within time proportional to n + T(n)m by nondeter-
ministic d-dimensional iterative arrays.

Proof. If the one-dimensional Turing machineM accepts L within time T and
p is a new "padding" character, then L’= {xplx L,]xpla >= minimum time for
M to accept x} NTIME(na)_ NIA(d). If the d-dimensional iterative array M’
accepts L’ within time cn, then a d-dimensional iterative array can accept L within
time proportional to n + T(n)TM by operating as follows on input x" For
0, 1, 2,.. , simulate M’ on input Xp

2i for " IxpZil steps, accepting if M’ ever
does.

7. Simulation by one-dimensional Turing machines.
THEOREM 2. XIA (d)c_ XTIME(nd+l) for each prefix X {N, D, O}.
Proof. We give the simulation for X {D, O}; the simulation for the prefix

X N is similar. Without loss of generality, let the acceptorM be a deterministic
d-dimensional iterative array (without extra features such as direct central control
[12]) in which only the computing elements at positions belonging to Na (i.e., with
nonnegative coordinates) ever leave the quiescent state (see [2]). We give a step-
by-step simulation ofMby a deterministic one-dimensional (2d + 1)-head Turing
machine which spends about steps to simulate the tth step in each computation
byM.

For any fixed input toM and each nonnegative integer t, let p(t) be the d-box
of type (t + 1,. , + 1) with p (t)(v) equal for each v dom(p (t)) to the state after
steps of computation by M of the finite-state computing element at position

v- 1. (All other finite-state computing elements must still be quiescent at time t.)
The simulating Turing machine will write s(p(O)) on its worktape and then use a
linear-time algorithm to construct s(p(t+l)) from s(p(t)) repeatedly. Thus
s(p(t)) will be constructed within time proportional to t. [s(p(t))[t. (t + 1)a, as
desired.

LINEAR-TIME COMPUTATION 501

For each prefix of s(p(t)), the simulator will also record the largest d’ -< d for
which the length of the prefix is divisible by (t + 1)d’. This information can be
recorded interspersed between the characters of s(p(t)). Formally, then, the
maintained string will actually be a member of E(KE)*, where K is the state set of
each finite-state computing element ofM and X {0, 1,. , d}. For example, the
first character of this string is always d since the length 0 of the null prefix is
certainly divisible by (t + 1)d.

We divide the derivation of s(p(t + 1)) from s(p(t)) into two subtasks, the
first of which is to actually simulate a transition by M. For each v e Z with
0 ’7/’i (V) for all i, let loc(v, t) be the position in the string s(p(t))of the state at
time t of the computing element at position v of M. To simulate a transition by M,
we initially position head Ho at position lOoC(0, t)= 1 and head H/i (for 1 =< _<-d)
at position loc(0, t)+ (t + 1)i- in s(p(t)). (The latter is the position just beyond the
first s(p(t)) boundary to the right that .is labeled by i-1 s E.) We position head
H_g (for 1 <= <= d) equally distant from Ho but in the other direction. (Initially,
then, H-i is positioned somewhere to the left of s(p(t)).) Moving all 2d + 1 heads
synchronously across s(p(t)) until Ho reaches loc((t,..., t), t)=ls(p(t))l and
keeping track of when a boundary labeled ->_i intervenes between H0 and H/
or between H-i and Ho (for 1 <_-i _<-d), the simulato can produce an updated
version s(p’(t)) of s(p(t)) in linear time. To see this, just make the following obser-
vations:

1) If no boundary labeled ->i intervenes between positions loc(v, t) and
loc(v, t)+(t + 1)i- in s(p(t)), then loc(v+e, t)= loc(v, t)+(t + 1)i-a; otherwise,
the computing element at position v +e in the array is still in the quiescent state at
time t.

2) If no boundary labeled >-i intervenes between positions loc(v, t)-
(t + 1)i-1 and loc(v, t) in s(p(t)), then loc(v-el,/)= loc(v, t)-(t + 1)i-; otherwise,
the computing element at position v-e in the array is in the quiescent state
because the position has a negative ith coordinate.

The second subtask, of course, is to derive s(p(t + 1)), along with the
appropriate boundary labels, from s(p’(t)) and its boundary labels. Observe that
p(t + 1) is the type (t + 2,. , + 2) d-box that agrees with the type (t + 1,. , +
1) d-box p’(t) on its domain and is the quiescent state q0 elsewhere. One
linear-time algorithm for the subtask involves copying s(p’(t)) and its boundary
labels onto a new track, making appropriate amendments in the process. The old
string, a member of (E-{0})(KE)*, parses unambiguously into pieces from
(E-{0})(K{0})*. In the algorithm, each piece is copied whole, the only amend-
ments being made between pieces. The amendments are determined in each case
by the initial label in the following piece and the current cumulative contents of
the new track. If the initial label of the next piece is d’, then d’ consecutive
amendments are made. The d"-th amendment matches everything accumulated
on the new track so far, starting with the last label d"- 1 and including even the
most recent amendments, except that qo is substituted for every character from K.
One head on the old track and two heads on the new track suffice. It is easy to see
that the algorithm requires time that is only linear in the length of the string on the
new track, and it is easy to prove by induction that the amendments are
correct. [3

502 JOEL I. SEIFERAS

COROLLARY 2.1. For any time bound T, NTIME(Td+I), DTIME(Ta+I),
QTIME(Td+) include all languages accepted within time T by d-dimensional
iterative arrays which are nondeterministic, deterministic off-line, deterministic
on-line, respectively.

COROLLARY 2.2. dNIA (d)= dNTIME(na) NP.
COROLLARY 2.3. NIA (d)NIA (d + 2).
Proof. Cook’s nondeterministic time hierarchy theorem [3] gives

NTIME(n d+) NTIME n d+2), S0

NIA (d)_ NTIME(nd+x) (by Theorem 2)

NTIME(n d+-- NIA (d + 2) (by Theorem 1). [-1

Remarks. (i) It follows that Theorem 1 is optimal to within one dimension;
for, if we had NTIME(na+2)_ NIA (d), the proof of Corollary 2.3 would yield
NIA (d) NIA (d). Our conjecture is that Theorem 1 actually is optimal.

(ii) Similarly, Theorem 2 is optimal to within one dimension.
(iii) The refined nondeterministic time hierarchy theorem of [13] gives

tighter results such as NTIME(n d+l/log n). NTIME(n d+l), SO strengthening
Theorem 2 just a bit to XIA(d)_XTIME(na+l/log n)would tighten Corollary
2.3 to NIA (d)NIA (d + 1). Kosaraju has shown that every context-free lan-
guage belongs to DIA (2) [8], so it would also give a less-than-cubic time upper
bound on context-free language recognition by deterministic one-dimensional
Turing machines. Our conjecture, however, is that Theorem 2 (but probably not
Corollary 2.3) already is optimal.

COROLLARY 2.4. t_Ja NTM(d)NIA (2).
Proof. For each d and each X {N, D, Q}, NTM(d)_ NTIME(n2-a/d) [11].

Using this fact for X N, we have

t.J NTM d)
_

1,3 NTIME n2- d)
d d_

NTIME(n 2/log n)

NTIME(n 2) (by [13])_
NIA (2) (by Theorem 1).

8. Related deterministic questions and summary. A motivation for our work
has been to learn the effects, if any, of parallelism (the unbounded activity of
iterative arrays) and dimension on computing time. Allowing nondeterminism as
well has allowed us to draw some interesting conclusions, especially Corollary 2.4,
which says that unbounded activity in two dimensions is more powerful than
bounded activity in any number of dimensions. Because it is not known for sure
whether nondeterminism ever saves time (except for on-line models (see below)),
however, our results are of interest in connection with their more important
deterministic analogues, even if the proof of Theorem 1 does not generalize. In
this section we bring together the known deterministic analogues of the results of
the preceding sections. (See Table 1 for a summary.)

LINEAR-TIME COMPUTATION 503

TABLE
Summary

Assertion
Best known

Prefix results Conjectures

XTIME nd
_
XIA (d’) Q 73 d’

D d’
N d’= d --a::! d’ < d

XIA (d)
_
XTIME T(n)) Q T(n n d Optimal

D T(n) n d Optimal
N T(n) n d Optimal

XTM(d)
_
XIA (d’) Q d’= d - d’ < d

D d’=d ::ld’<d
N d’ 2 - d’ < 2

XIA (d’)-XTM(d) Q d’=l
D d’=
N d’=2 d’=l

XIA (d)
_
XTM(d’) Q - d’

D --q::! d’
N --q::l d’ unless d -! d’

XTM(d’)-XIA (d) f Q d’=d+l
D d’=d+l
N 7:! d’ unless d NTM(2)-NIA (1) (

XTM(d) XTM(d’) O d’=d+l
D d’=d+l
N d’=d+l

XIA d XIA d Q d’=d+l
D d’=d+l
N d’=d+2 d’=d+l

Although we have shown NTIME(na)NIA(d), our proof sheds no real
light on the related deterministic questions. We do not know whether even
DTIME(nd) (-Jd DIA (d) or QTIME(nd)_ a QIA (d) holds. Conversely, our
proof that XIA (d)_ XTIME(na/l) goes through for any X {N, D, Q}.

Similarly, we have shown that NIA (d)_ NIA (d + 2), but we have no idea
whether even DIA (d). dDIA (d) is true. In the on-line case, however, we have
even stronger results, witnessed by examples of Hennie [5]. Cook and Aanderaa
[4] have observed that those examples and Hennie’s information-theoretic argu-
ment apply to iterative arrays as well as to Turing machines, giving QTM(d + 1)-
QIA (d) # .2 By [12], QTM(d)- QIA (d), so we get both QTM(d)

2The witness language Wd/l e QTM(d+ 1)-QIA(d), in fact, is accepted in real time by an
on-line deterministic (d + 1)-dimensional single-head Turing machine.

504 JOEL t. SEIFERAS

OTM(d + 1) (cf., Hennie [5]) and OIA(d) OIA(d + 1) (cf., Cole [2]) as corol-
laries. (Both DTM(d)DTM(d + 1) and NTM(d)

_
NTM(d + 1) are unsettled

conjectures.)
Our result Ud NTM(d) NIA (2) easily yields NTM(d) NIA (d) for every

d _-> 2. For off-line deterministic machines, as usual, all such questions are open.
For on-line deterministic machines, however, a strong result is again known"
OIA (1) U OTM(d) (g. In particular, Atrubin 1] has designed a determinis-
tic on-line one-dimensional iterative array that multiplies in linear time (in fact in
real time), while Cook and Aanderaa [4] have shown that no on-line deterministic
multidimensional multihead Turing machine can do so. (On-line multiplication
of binary numbers, of course, is easily converted to an on-line language accep-
tance problem). Thus OTM(d) QIA (d) for every d. Of course we cannot have
(_JdOTM(d)_ OlA(d) for any d, for that would contradict QTM(d+I)-
QIA(d) .

REFERENCES

[1] A. J. ATRUBIN, A one-dimensional real-time iterative multiplier, IEEE Trans. Electronic
Computers, EC-14 (1965), pp. 394-399.

[2] S. N. COLE, Real-time computation by n-dimensional iterative arrays of finite-state machines,
Ibid., EC-18 (1969), pp. 349-365.

[3] S. A. COOK, A hierarchy for nondeterministic time complexity, J. Comput. System Sci., 7 (1973),
pp. 343-353.

[4] S. A. COOK AND S. O. AANDERAA, On the minimum computation time o]functions, Trans.
Amer. Math. Soc., 142 (1969), pp. 291-314.

[5] F. C. HENNIE, On-line Turing machine computations, IEEE Trans. Electronic Computers,
EC-15 (1966), pp. 35-44.

[6] R. M. KARP, Reducibility among combinatorial problems, Complexity of Computer Computa-
tions, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.

[7] S. R. KOSARAJU, Computations on iterative automata, Doctoral Thesis, University of Pennsyl-
vania, Philadelphia, August 1969.

[8] , Speed of recognition of context-]ree languages by array automata, this Journal, 4 (1975),
pp. 331-340.

[9] A. R. MEYER, Personal communication, November 1973.
[10] A. R. MEYER AND M. S. PATERSON, Personal communication, September 1973.
[11] N. J. PIPPENGER, in preparation.
12] J. I. SEIFERAS, Iterative arrays with direct central control, Acta Informatica, to appear.
[13] J. I. SEIFERAS, M. J. FISCHER AND A. R. MEYER, Separating nondeterministic time complexity

classes, J. Assoc. Comput. Mach., to appear.

SIAM J. COMPUT.
Vol. 6, No. 3, September 1977

A NEW ALGORITHM FOR GENERATING ALL THE MAXIMAL
INDEPENDENT SETS*

SHUJI TSUKIYAMA, MIKIO IDE,:I: HIROMU ARIYOSHI, AND ISAO SHIRAKAWA?

Abstract. The problem of generating all the maximal independent sets (or maximal cliques) of a
given graph is fundamental in graph theory and is also one of the most important in terms of the
application of graph theory. In this paper, we present a new efficient algorithm for generating all the
maximal independent sets, for which processing time and memory space are bounded by O(nrnx) and
O(n +m), respectively, where n, m, and /x are the numbers of vertices, edges, and maximal
independent sets of a graph.

Key words, algorithm, backtracking, graph, maximal clique, maximal independent set

1. Introduction. The efficient search for all the maximal independent sets (or
maximal cliques) is fundamental in the theory of graphs and its applications [4],
[6], and is also interesting in terms of complexity of computation.

The problem of listing all the maximal independent sets of a given graph is
equivalent to that of listing all the maximal cliques of a graph, since each maximal
independent set of a graph G corresponds one-to-one to each maximal clique of
the complementary graph of G. Thus, the former can be reduced to the latter, and
vice versa.

A number of authors have proposed a variety of approaches to this problem
[1], [2], [3], [5], [7], [9], [10], among which those proposed by Bierstone noted in
[2], Akkoyunlu [1], and Bron-Kerbosch [5] are distinctive in the sense that they
can be applied to a graph of comparatively large size. Specifically, the algorithm in
[2] finds all the maximal cliques of a graph in processing time proportional to u 2 in
the worst case, where u is the number of the maximal cliques, and the algorithm in
[5] empirically can be applied more efficiently than that of [2], but without any
theoretical estimation of complexity.

The present paper considers a new efficient algorithm for generating all the
maximal independent sets of a given graph G in processing time bounded by
O(nmtx), where n, m, and/x are the numbers of vertices, edges, and all the
maximal independent sets of G, respectively. This method is based on a modified
application of the vertex sequence method of [2], combined with a backtracking
method different from that employed in [1] or [5].

A graph is denoted by G V, El, where V is a set of vertices, and E is a set of
edges, each represented by an unordered pair (v, w) of its end vertices v and w.

* Received by the editors November 18, 1975. This paper was supported in part by the Grant in
Aid for Scientific Research of the Ministry of Education, Science and Culture of Japan under Grant
Cooperative Research (A) 035012 (1975) and 135017 (1976).

? Department of Electronic Engineering, Faculty of Engineering, Osaka University, Suita,
Osaka, 565 Japan.

$ Takasago Laboratory, Mitsubishi Heavy Industries Ltd., Takasago, Hyogo, 676 Japan.
Department of Electrical Engineering, Faculty of Engineering, Ehime University, Matsuyama,

Ehime, 790 Japan.
505

506 S. TSUKIYAMA, M. IDE, H. ARIYOSHI AND I. SHIRAKAWA

Unless otherwise stated, a graph of our interest henceforth does not contain any
self-loop or any multiple edge. For any edge (v, w) of graph G, (v, w) is said to be
incident to v and w, and v and w are said to be adjacent each other. Given a graph
G [V, E], let Fo(v) for any v e Vbe a set of vertices adjacent to v in G, that is,

(1) ro(v) ={wl(v, w)E}.
Given a set S c V of vertices of G, if any pair of distinct vertices in S are not
adjacent each other, then S is called an independent set of G, henceforth
abbreviated simply to IS, and any such S which is not contained in any other IS is
called a maximal independent set of G, abbreviated to MIS.

2. Main theorem. Given a set W V of vertices of G, let

and designate a subgraph G(W) of G as

(3) G(W) 3-A[V, E(W)].
For any W/-1, W/c V such that W/= W/_I t3 {x} with x V- W/_, let i- and
i be sets of the MIS’s of G(W/_) and G(W/), respectively, and consider a
relation between i-1 and , in the following.

For simplicity, let Fi(v) _a__ Focw,)(v) andA a__ Fi(x) for x W/- W/_; then for

(4) al/l x fi, a-- {M t/l M’ f-) A =},

(5) :tli-(x, A a-- {M J/[i-I[M’ f"I A :Q},

/i-1 can be partitioned in the form

(6) ACi-a :l/li_a(x, A) + ///i-l(X, A),

where "+" denotes the union of two disjoint sets. It should be noted that x is
contained in any M’ i_a, since x is an isolated vertex in G(W/-0 and also
G(W/_a) has all the vertices of the original graph G.

LEMMA 1. Let

(7) J/l,(2, A) a-- {M= M’-{xIIM’ Ji-l(X, A)};

then we have

(8)

Proof. Since All st/i_ (x, A and //i- (x, A) :///i (2, A) can be readily
verified, we shall show A/,(2, A) A/. Suppose that any M e ti(2, A) is not an
element of ; then there exists a nonempty set X such that Mf-IX and
M+Xe, since M is an IS of G(W/). This implies that M+X is an IS of
G(W_0. Moreover, we have x X, sinceM f’l A # andM+Xei. Therefore,
M+X+{x} is an IS of G(W/_0. This contradicts M e i(2, A) or M+{x} e t/_.
Hence the lemma.

Next, we shall show that any element of -,_(x, A)-://i (2, A) is gener-
ated from an element of ACi_l(x, A).

For sets X and Y, let X- Y& {ala X and a Y}.

MAXIMAL INDEPENDENT SETS 507

LEMMA 2. EachM6 u///i -////i- (x, A) //i (, A) contains x, andfor any such
M there exists M’6 li-a(X, A) such that

(i) Mc M’ and M’-M A (=Fi(x)), and
(ii)]or any y 6M’f3A either Fi_l(y) or Fi_I(Z)t3(M’-A)# (for all

z Fi-a(y)-A.
Proofi 1. We first prove that M-i-a(x,A)-li(,A) contains x.

Suppose xM, then MfqA , since M is an MIS of G(W). Moreover,
Fi_l(Z)fqM for any zM+{x}, sinceM or F(z)f-IM for any
z:M. Thus, M+{x} is an MIS of G(W_I), and hence M+{x}tl_l(X,A) and
M (, A). This contradicts the assumption for M.

2. We now show the existence of M’-a(x, A) satisfying (i). As can be
readily seen, any M-_I(X,A)-(Y,A) is an IS of G(W_I), and hence
we can find an MIS M’ of G(W_I) which contains M. If M’ M, then since x M
and Mf-)A , M’=M is an element of t_l(X, A), which contradicts the
assumption for M. Thus, M’ contains M properly. Suppose that a vertex vA
belongs to M’-M; then F_(v)fqM’=, and hence F(v)fqM=(, since
M’M and F_l(V) F(v) for vA. This contradicts Mi. Therefore, this M’
belongs to -l(X, A) and satisfies (i).

3. In the following we show that any such M’ as found in 2 also satisfies the
condition (ii). Since M’ is an MIS of G(W_I), for any y M’-M M’ 71A either

(9) Fi_a(y) Q,

or

(10) zMM’ forallz F-a(y).

Consider only the latter case, and as can be readily verified, F(z)fqM ;
implies that M+ {z} is an IS of G(W). This contradicts M . Thus, we have
F(z)f-IM=F(z)f-I(M’-A)# , and hence F_a(z)fq(M’-A)# for z
F_(y)-A, since F_(z)= F(z) for z A. This completes the proof.

Given M’ _(x, A), if M’ satisfies the condition (ii) in Lemma 2, then let
M’ be said to satisfy condition A.

Based on Lemma 2, we can construct a derivation policy for all the MIS’s of
G(W), which are contained in /-_(x, A)-/($, A), as follows.

Let CgA be a set of those MIS’s satisfying condition A which are contained in
_(x,A). We now introduce an equivalence relation "=" in cg such that
Ma M2 for M, M2 c c’g’A if and only if M-A M2-A. Then we partition A
into equivalence classes, and let denote a set of the representatives of the
equivalence classes. Define

(]1) n &{M=M’-AIM’ A},
then we can see from Lemma 2 that

_
(x, A) (, A) cn.

Furthermore, we can prove the following lemma.
LEMMA 3. There holds the following equation"

(12) z /-///-a(x, fi,)-J// (2, a).

Proof. It is sufticient to show that cg =-J//-l(X, A)-(, A). By defin-
ition, s f’l /_ (x, ft.) and s f’l (, A) ;. Thus, we have only to show

508 S. TSUKIYAMA, M. IDE, H. ARIYOSHI AND I. SHIRAKAWA

that %)B c J//i. Suppose that Mc (B is not an MIS of G(W/), then there exists a
nonempty set X such that M+X is an MIS of G(W). On the other hand, we can
see from the definition of B that there exists an MIS M’ cetli_l(x, A) of G(W_I)
such that M’-A M. Now, we shall show that for such a setX and any y c M’ (3 A
there hold

(3) yX,

and

(14) Fi_(y)X= .
SinceM+X JJ and x M, (13) can be readily verified. Consider any z Fi_(y).
If z F_(y) A, then since x M and M+X i, we obviously have z e X.
Otherwise, we have F(z)fqM= Fi_(z)M , since M’ satisfies condition A,
and hence zX, since M+X is an MIS of G(W). Thus, we see that (14) also
holds. However, (13) and (14) imply that M+X+(M’A) is an IS of G(W_),
contrary to the fact that M’ =M+(M’A) is an MIS of G(W_). Hence the
lemma.

We then consider how to derive %n from _(x, A). Let all the vertices in
A F (x) be arranged in an arbitrary order with subscripts 1 through p _a]A[such
that

(15)

and let

(16)

A {Yl, Y2, Y3,""", Yp},

{Yj / {Y/, Y/ + 1," Yh- 1, Yh }.

For any MIS M’cet/i_(x,A) of G(W_I), let M’ be said to satisfy con-
dition B, if for any vertex ykCM’fqA(l<=k<-_p) either F_l(Yk)= or
Fi-I(z)f’](M’-{yj}’=I) for all z cFi-(yk)--{yj}=a. In other words, what M’
satisfies condition B implies that for any v c tArM,nA Fi-(y) (c V-M’),

(i) if veA, then v is adjacent to some vertex of M’-A in G(W_), or
(ii) if v cA and we let y--av cA, then in G(W_)v is adjacent to some

vertex of M’-A or some Yk C M’ f-) A with k >j.
Note that if M’ satisfies condition A, then any v c yt’nA Fi-(y) satisfies (i),

but not always (ii). In this sense, for M’ condition B is more tight than condition A.
We now prove the following lemmas.
LEMMA 4. Let

(17)

then

(18)

:tl(x, fi,)a--{M=M’-AIM cJ[/[i_l(X,A), and M’ satisfies condition B};

Proof. It is sufficient to show that one and only one element of each
equivalence class of %A satisfies condition B.

1. We shall first show that any two distinct M] and M contained in an
equivalence class of A do not simultaneously satisfy condition B. Let Yhl be the
vertex inM-M(cA Fi (x)) with the largest subscript h 1, and let Yh2 be the one

MAXIMAL INDEPENDENT SETS 509

in M’z-M’ (cA) with the largest subscript h2. Unless otherwise stated, hence-
forth letM be said to be in a higher level than M., if h > h2, and without loss of
generality assume thatM is in a higher level than M. Then, since Yhl M’I -M,
and M’ztti-l(X,A), we have Fi_l(Yhl)(lM&# , and moreover noting that
M’-A M’-A and hi > h2, we can see that Fi-l(Yhl) f-’IM’ c {Y}) c A. Let y
be the vertex with the largest subscript in Fi_l(Yhl)()M2; then for this
y(6Mf’lA) there exists yhl(6Fi_l(y)--{yi}=l) such that
(M-{yi}= 1)= , and hence M does not satisfy condition B.

2. Given an equivalence class of (A, let M’,,, be in the highest level of all the
MIS’s in the class, and we shall show that M’m satisfies condition B. Suppose that
M’m does not satisfy condition B. Then, for some Yk e M’,, f’l A there exists a vertex
Z Fi_l(Yk)--{yr}kr=l such that

(19) F,_l(Z) (3 (M’m- {y}=l) .
If we assume that z Fi-1(Yk)- A, then since M’,, satisfies condition A, we have

(20) F,_l(Z) ("1 (M-{Yr}rP=l) # .
Hence, there hold z {Yr}rP=k+l and

(21) Fi_l(Z) f-’lM’m c {y}=l.
Now, let yj a___ z (j > k), and consider a set X defined by

(22) X a_M’ +{yj}-(Fi-I(yi) f"lM).

Then, X is an IS of G(W/_I), and therefore we can construct an MIS M’m’ --&X+ Y
of G(W_I) by adding toX a suitably chosen set Y if necessary (see Fig. 1). For this

FIG. 1. Illustrating example]’orproof

M, we shall show in the following that (i) M-A M-A, and (ii)M satisfies
condition A:

(i) For any v Y, we have Fi-l(v)f’lM’,n and Fi_(v)f-lX= . There-
fore, from the definition of X there holds Fi_(v)l"lMmCFi_l(y)l"lM, and
hence by (21)

(23) F,_l(V) f’lM c (Yr}=, c A.

510 S. TSUKIYAMA, M. IDE, H. ARIYOSHI AND I. SHIRAKAWA

Let Yt be a vertex in M’,, (’IA which is adjacent to v in G(W_I), and if we assume
that v Fi-l(yt)-A, then since M’m satisfies condition A, for this v there holds
Fi_l(V) ("l (M’,,-A) , which contradicts (23). Thus, v Fi-I(yt) I"]A, and hence

(24) M’m-A =M-A.
(ii). For any y (M’m’ f’) A) {yj} Y, we have obviously either Fi- (Y) or

Fi_l(z)f’l(M-A) : f for all z Fi-I(y)-A, since y is contained in M’,,, which
satisfies condition A. Consider any v Y+ {yj} cMf3 A), and suppose that this
v does not satisfy the condition (ii) of Lemma 2. Then there exists a vertex
w6Fi_l(v)-A such that Fi-l(w)fq(M"m-A)=, and hence by (24),
Fi_I(w)f’I(M’-A)= . Moreover, since M’,,, satisfies condition A, w is not
adjacent to any vertex of M’mf’qA in G(W-I). Hence, we have

(25) Fi-l(W) f-] M’m .
On the other hand, since w A, w M, andM’-A M-A, we can see that

(26) wC:M’m.
Therefore, from (25) and (26), M’m +{w} is an IS of G(W-I), which contradicts
M’,,, 6 i-1. This completes the proof of (ii)"

Thus, from (i) and (ii) M’,,, and M, belong to the same equivalence class of
a. Noting that M, contains yj z (] > k), and that from (21) and (22) there
holds M’,,-Mc Fi-l(yi ("1M’,, {Yr}= 1, we see thatM is in a higher level than
M’,,,. This contradicts the assumption for M’,,. Hence the lemma.

LEMMA 5. There also holds J/lI(x, A) cB, and consequently we have

(27) J//(x, A) c.
Proof. It is sufficient to show that any M’ ,////i- (x, A) satisfying condition B

also satisfies condition A. Suppose that any such M’ does not satisfy condition A,
then there exists a vertex zFi_l(yi)-A for some yieM’fqA such that
Fi-l(Z) f3 (M’-A)= . Among such vertices yi, let Yk be the one with the largest
subscript k, and let z F-I(yk)-A be a vertex such that

(28) Fi_l(Z f-) (M’ A

Then, from the definition of Yk there holds

(29)

From (28) and (29)we obtain F_l(z)fq(M’-{y}r=l)= , which implies that M’
does not satisfy condition B, contrary to the assumption. Hence the lemma.

Lemmas 4 and 5 indicate that cB can be derived directly from i-l(x, A)
without duplication, and moreover by Lemmas 3 and 5 the following theorem
follows.

THEOREM 1. There holds the equation

(30)

With the use of this theorem, we can show an outline to generate all the MIS’s
of G(W) from those of G(W_I) as in Fig. 2.

MAXIMAL INDEPENDENT SETS 511

bein
empty the set
for eachM’i_l do

if M’fqFi(x)=(then putM’l/li_l(X,A)intotli
else begin (in this case M’ J/li_(x,A))

put M’-{x}A/li(,A) into
if M’ satisfies condition B then
put M’-Fi(x)(x, fi,) into i;

end"
end;

FIG. 2. Outline to generate the MIS’s ofG(Wi)from those ofG(W/_I)

3. Algorithm. Based on the consideration so far stated, in what follows we
shall describe the details of a scheme to generate all the MIS’s of a given graph
G=[V,E].

Considering that in each stage of generating the MIS’s of G(W) from those
of G(W/_I) the processing time depends primarily on the procedure of determin-
ing whether each M’ i-l(x, A) satisfies condition B or not, we first discuss how
to achieve this determination efficiently.

Introduce a mapping] J//i x V-/, where I is the set of nonnegative integers,
which is defined such that for any MIS M and vertex v of G(W/) IV, E(W/)],

(31)

Then we can see that fi(M, v)= 0 if and only if v M, and furthermore from
Theorem 1 that the following relations are derived.

I. For each M’

_
(x, A),

(32) fi(M’, yj)=f/-l(M’, yj)+ 1 for all yj cA F(x),

(33) fi(M’, v)=fi-l(M’, v) for all v V-A.

II. For each M’ :tli_ (x, A),

f(M’-{x},x)=lM’f’lA[,
fi(M’-{x},v)=_l(M’,v)

III. For each M’ ///-l(X, A) satisfying condition B,

(34)

(35) for all v V-{x}.

(36) f(M’-A, yj)=J-I(M’,

(37) fi(M’-A, v)=fi-l(M’, v)-[M’ [’-’IA Fi-l(t)[
for all yj A,

for all v 6 V-A.

We can also observe that M’ J//- (x, A) satisfies condition B if and only if for any
Yt, M’fqA there holds either Fi_l(yg) , or f/_l(M’, z)-
[M’fq{yj}=lfqF_l(z)[0 for all z6F-l(y)-{yj}=l. Noting that given k
(l <-k <-p [A[), f_l(M’,z)-[M’fq{yi}=lf"lF_a(z)[+l>O for any z
F-I(y) f] {yi}= 1, we can show an outline how to determine whether M’ satisfies
condition B, as follows.

1. Provide an integer variable IS(v) for each v V, and initially set IS(v) -fi-(M’, v) for all v.

512 S. TSUKIYAMA, M. IDE, H. ARIYOSHI AND I. SHIRAKAWA

2. In the order of subscript numbers of yj A {yj}’= 1, conduct the follow-
ing process for each y: Set IS(z) IS(z) 1 for each z Fi- (Y) only if yj M’,
and then put IS(yj) - IS(y) + 1 for y.

3. In the process of each iteration for y in 2, if there exists a vertex z
adjacent to any y M’ such that IS(z) 1 0, then M’ is determined not to satisfy
condition B, or else M’ is proved to satisfy condition B.

Here, we should note that if M’ satisfies condition B, then at the termination
of 2, IS(v) for each v has been set to fi (M’-A, v).

For simplicity, henceforth let V of a given graph G V, E] be represented
by integers 1 through n &]V[, and let the incidence structure of G be specified by a
set of the adjacency lists Adj(v) ___a F(v) for all v V. For each 1, 2, , n, put
W ___a {1, 2,..., i}, and denote by :t/, & {M, M,..., M,} a set of the MIS’s of
subgraph G(W/).

To describe the proposing algorithm compactly, we introduce a digraph 3
associated with G to be defined below. Let each vertexM of corresponds one-
to-one to each element M of /i for 1, 2, , n, and let an edge be incident
from vertex M-1 J//-i to vertex M //, if and only if MJ/t is generated
fromM- i_ in the sense stated in the procedure shown in Fig. 2.

As readily seen, is an arborescence [3] with a root vertex M V /i, as
illustrated in Fig. 3, and there exist either one or two edges incident from eachM
(i n), and moreover if there exist two edges from anyM-1, thenM-1 {/- can
be seen to satisfy condition B.

M

/1 M"/ M
FIG. 3. Digraph

We now show in Fig. 4 our algorithm called procedure MIS to generate all the
MIS’s in a given graph G. This procedure starts at the root vertex M] of
associated with G, and proceeds to each vertex of by backtracking. In this
process, procedure BACKTRACK is called for each vertex.

For anyM-1 i-1, consider the stage when BACKTRACK(i 1) is called
for vertex M-1, then the following process is to be conducted: Statement C1
examines whetherM-1 f3 F(i) or not with the use of counter "c", for at this
time each IS(v) is equal to fi_l(M-, v) (this can be verified by induction). If c 0,
which implies that M}-1 (qF(i)= , statement B1 calls BACKTRACK(i) for
vertex M, such that M-I=M. If cO, statement B2 calls BACK-
TRACK(i) for vertexM such that M=M].--{i}J/li, and then statement C2

MAXIMAL INDEPENDENT SETS 513

procedure MIS;
comment Procedure MIS is a routine for generating all the MIS’s of a graph G represented by

adjacency lists Adj(.). Integer n is a global variable denoting the number of vertices;
IS(n);begin integer list array Bucket(n); integer array

procedure BACKTRACK(integer value i);
begin integer c,x" logical f;

if < n then
begin
x:=i+l;
c:=0;

CI: for yAdj(x) such that y_<-i do
if IS(y)=O then c:=c+l;

if c 0 then

LI:
BI:
L2:

begin
for y Adj(x) such that y =<
BACKTRACK(x
for y Adj(x) such that y =<

end
else

do IS(y):=IS(y)+ 1;

do IS(y):=IS(y)-l;

begin
IS(x):=c;

B2: BACKTRACK(x
IS(x):=O;
f := true;

C2: for y Adj(x) such that <- y _-< i, in increasing order
begin

if IS(y)=O then
begin

put y in Bucket(x);
C3: for z Adj(y) such that z =<i do

begin
IS(z) := IS(z)-
if IS(z)=O then f:=false;

end;
end;

IS(y) := IS(y)+ l;
end;

B3: if f=true then BACKTRACK(x);
L3: for y Adj(x) such that y =< do IS(y) := IS(y) 1;
L4: for y Bucket(x) do

begin
L5: for z Adj(y) such that z =<

delete y from Bucket(x);
end;

end;
end

else output new MIS designated by IS(.);
end BACKTRACK;

for j:=l until n do
begin

IS(j):=O;
Bucket(j) := ;

end;
BACKTRACK(I);

end MIS;

do

do IS(z):=IS(z)+ 1;

FIG. 4. An algorithmfor generating all the MIS’s

514 S. TSUKIYAMA, M. IDE, H. ARIYOSHI AND I. SHIRAKAWA

examines whetherM-1 satisfies condition B or not. Only iff true, which implies
that M}-1 satisfies condition B, statement B3 calls BACKTRACK(i) for vertex
M, such that Mk=M-I-F,(i),.

Here, we can see that every time BACKTRACK(i) is called for M in
statements B1, B2, and B3, each IS(v) has just been replaced by f(M,, v), and
that after the termination of BACKTRACK (i), each IS(v) is subsequently to
be restored to the original value fi_a(M-1, v). However, we should remark that
the restoring process for IS(v) in the statements L3 and L4 is different from those
in other statements. In fact, a list Bucket(. is newly introduced with a function
such that all the vertices in Fi (i), for which statement C3 is executed, are to be put
into Bucket(i), whether Mj-1 satisfies condition B or not.

Associated with this algorithm, the following theorem can be verified by
Theorem 1 and the above discussion.

THEOREM 2. The application ofprocedure MIS yields all the MIS’s ofa given
graph without duplication.

We can also prove the following theorem, which reveals the efficiency of the
algorithm.

THEOREM 3. Given a graph G V, E] with n a--IV1, m A IEI, and tx MIS’s,
procedure MIS requires processing time and memory space bounded by O(nml)
and O(n + m), respectively.

Proof. Noting that memory space of O(n + m) is necessary for list arrays
Bucket(. and Ad](.), respectively, the second half of the theorem may be easily
verified. Thus, we shall estimate the processing time to be required in the
algorithm. First, we can see that in each BACKTRACK(i), the iteration number
of any of the statements L1, L2, L3, L4, C1, and C2 is not greater than the degree
IF (x)l of vertex x + 1. On the other hand, we can also observe that any of the
total numbers of iterations of the statements L5 and C3 in each BACKTRACK(i)
does not exceed Yrrx)lF(y)[<_-2m (x + 1). Thus, the processing time T(i)
spent by one call of BACKTRACK(i) exclusive of recursive calls to BACK-
TRACK, is bounded by T(i)<kam +k.[F(i + 1)l +k3, where kl, k2, and k3 are
constants. Consequently, the processing time required to find an MIS is bounded

n--1by i=1 T(i)<klnm+2k2m+k3n, or O(nm), and hence the total processing
time is bounded by O(nml). This completes the proof.

4. Implemented results. To observe how efficiently this algorithm is virtually
executed, it is programmed in FORTRAN and run on NEAC 2200/700.

We first consider a class of graphs of n m 3k consisting of k vertex-
disjoint triangles (or 3-cliques), which have 3k MIS’s and are proved to contain the
largest number of MIS’s per vertex [8]. Associated with this class, to save a large
amount of printing, we modify the algorithm so as to count only the number of
MIS’s, not to list the members of each MIS. Table 1 shows the implemented result
for k -4, 5, , 13, which demonstrates that the processing time is bounded by
O(/x). This time bound can also be theoretically verified as follows: As shown in
the proof of Theorem 3, one call of BACKTRACK(i) for vertexMof requires
processing time of O(yro(x)Ir(y)l+lro(x)l), exclusive of recursive calls to
BACKTRACK. Considering that in such a graph the degree IFa(v)l of each
vertex v is 2, this processing time is of order O(1), since the modified algorithm
does not list each MIS.2 Note that the total processing time is proportional to the

In the original algorithm, this processing time is o[order O(n).

MAXIMAL INDEPENDENT SETS 515

number sr of vertices in q3; then we can see that it is bounded by O(" + n), where
additional O(n) is required in the initialization of IS(. and Bucket(.). On the
other hand, since each such graph of n 3k contains 3k MIS’s, the number " of
vertices of is less than 3k /1 and is bounded by O(tz).

TABLE
Implemented results]:or graphs of IV IE[3k consisting o[k vertex-disjoint 3-cliques

k 4 6

Number of MIS’s 81 243 729 2187 6561

CPU time per 555.6 551.4 558.3 547.3 554.8
MIS (tsec)

k 9 10 11 12 13

Number of MIS’s 19683 59049 177147 531441 1594323

CPU time per 585.4 586.8 580.3 546.3 546.3
MIS (tzsec)

We now consider randomly generated graphs ranging between n 10 and
50. For each value of n, we generated three classes of graphs with :(__a2m/In (n
1)]) 0.25, 0.50, and 0.75. The CPU time per MIS averaged over each such class
is shown in Figs. 5 and 6, plotted with respect to n and m, respectively. This result
demonstrates that the CPU time per MIS is almost O(rn).

CPU time/MIS

msec

100

50

=0.75

0.50

25

10 20 30 40 50

FIG. 5. CPUtimeperMlSforrandom graphsplotted with the size ofn a_ IV

516 S. TSUKIYAMA, M. IDE, H. ARIYOSHI AND I. SHIRAKAWA

5. Conclusion. A new algorithm for generating all the MIS’s of a given graph
is presented. The improvement of efficiency accomplished in this algorithm is
mainly due to the investigation of a close relation between J//i- and J// which is
summarized as follows:

(i) Each M-I E /i--1 generates either one or twoMEi without duplica-
tion.

(ii) Any M/ti to be generated from M-1 J//_l depends only on M-1

and the topology of G(W), independently of any other MIS of G(W_a) or G(W).

5O

l0

CPU time/MIS

msec

100
0.75 /-

5O

/

0.25

,I ,1

50 100 500 1000

FIG. 6. CPUtimeperMISforrandom graphsplotted with the size ofm a_ IE

Acknowledgments. The authors express their appreciation to Professor H.
Ozaki, Osaka University, for his encouragement, and Professor R. E. Tarjan,
University of California at Berkeley, presently Stanford University, for his
instructive suggestion that the memory space of this algorithm can be reduced to
O(n / m). They also wish to thank the reviewers for their helpful suggestions and
constructive criticisms.

REFERENCES

1] E. A. AKKOYUNLU, The enumeration of maximal cliques of large graphs, this Journal, 2 (1973),
pp. 1-6.

[2] J. G. AUGUSTON AND J. MINKER, An analysis of some graph theoretical cluster techniques, J.
Assoc. Comput. Mach., 17 (1970), pp. 571-588; Correction, G. D. MULLIGAN AND D. G.
CORNEIL, Corrections to Bierstone’s algorithm for generating cliques, Ibid., 19 (1972), pp.
244-247.

[3] C. BERGE, The Theory of Graphs and Its Applications, John Wiley, New York, 1962.
[4] M. A. BREUER, Design Automation of Digital Systems, vol. 1, Theory and Techniques,

Prentice-Hall, Englewood Cliffs, N.J., 1972.

MAXIMAL INDEPENDENT SETS 517

[5] C. BRON AND J. KERBOSCH, Finding all cliques of an undirected graph--Algorithm 457,
Comm. ACM, 16 (1973), pp. 575-577.

[6] N. DEO, Graph Theory with Applications to Engineering and Computer Science, Prentice-Hall,
Englewood Cliffs, N.J, 1974.

[7] P. M. MARCUS, Derivation of maximal compatibles using Boolean algebra, IBM J. Res.
Develop., 8 (1964), pp. 537-538.

[8] J. W. MOON AND L. MOSER, On cliques in graphs, Israel J. Math., 3 (1965), pp. 23-28.
[9] R. E. OSTEEN, Clique detection algorithms based on line addition and line removal, SIAM J.

Appl. Math., 26 (1974), pp. 126-135.
[10] M. C. PAULL AND S. H. UNGER, Minimizing the number of states in incompletely specified

sequentialswitchingfunctions, IRE Trans. Electronic Computers, EC-8 (1959), pp. 356-367.

SIAM J. COMPUT.
Vol. 6, No. 3, September 1977

WORST CASE ANALYSIS OF TWO SCHEDULING ALGORITHMS*
SHUI LAM" AND RAVI SETHIt

Abstract. Coffman and Graham give an algorithm to schedule unit execution time task systems
nonpreemptively. On two processors, their algorithm is optimal. We show that in general, if o) is the
length of a schedule produced by their algorithm and o90 the length of an optimal schedule, then
oo/e) <= 2 2/m, where m is the number of processors. The preemptive equivalent of the above al-
gorithm has been considered by Muntz and Coffman. Again we show that the ratio of the lengths of
theirs and an optimal schedule is bounded by 2 2/m. In both the nonpreemptive and the preemptive
cases there exist task systems for which the ratio 2 2/m can be approached arbitrarily closely. On a

small number of machines, 2 2/m is not too far from 1. In particular, as noted above, on two machines
the ratio is 1.

Key words, preemptive, nonpreemptive scheduling, list scheduling, algorithm analysis, processor
sharing, level algorithms, critical path algorithms, minimal length schedules

1. Overview. Given a set of tasks to be executed on a multiprocessor system,
the time taken to finish all the tasks (the schedule length) provides a measure of
processor utilization. Schedule length has therefore been a popular cost criterion
in the design of scheduling algorithms. Most such scheduling algorithms are
"critical path" or "level by level" algorithms. Whenever a processor becomes
available, the algorithms preferentially execute the tasks at the highest level.

In this paper we will consider two kinds ofschedules nonpreemptive schedules,
in which a task once started is executed to completion, and preemptive schedules,
where it is possible to suspend and at a later stage resume execution of a task at the
point of suspension. Preemption costs are assumed to be negligible.

Scheduling problems tend to fall into the class of combinatorial problems that
are called NP-complete [7], [12], [21]. NP-complete problems are notorious in
that all known solutions for them are enumerative, and it is strongly suspected
that no essentially faster (nonenumerative, polynomial time bounded) algorithms
will ever be found. Heuristics for determining approximate solutions are therefore
desirable.

A well-known rule for scheduling independent tasks nonpreemptively on rn
identical processors is the LPT (largest processing time first) rule. Whenever a
processor becomes available it is assigned the longest unexecuted task. Schedules
constructed by the LPT rule are not always the shortest possible. Karp [12]
shows that even on two processors, determining shortest schedules for independent
tasks is an NP-complete problem. LPT schedules are, however, easy to construct,
and from Graham’s analysis, [8], are within 33 percent of the optimal schedule
length. More precisely, the ratio of the lengths of the LPT and optimal schedules
is bounded by (4m 1)/3m, where m is the number of processors. The LPT rule
is a critical path algorithm since the task with the longest remaining execution
time determines the critical path at any point.

* Received by the editors January 6, 1975, and in revised form October 18, 1976. This workwas
supported in part by the National Science Foundation under Grant GJ-282890 at Pennsylvania State
University.

" Computer Science Department, Pennsylvania State University, University Park, Pennsylvania.
Now at School of Computer Science, McGill University, Montreal, Quebec, Canada H3C 3J7.

Computer Science Department, Pennsylvania State University, University Park, Pennsylvania.
Now at Bell Laboratories, Murray Hill, New Jersey 07974.

518

SCHEDULING ALGORITHM ANALYSIS 519

In general, there are constraints on the order in which tasks in a given system
can be executed. Precedence constraints between tasks are conveniently represen-
ted by directed acyclic graphs (dags) as in Figs. and 8. Tasks are represented by
nodes in Fig. 1. An edge from T to T’ means that T precedes T’ and must be com-
pleted before T’ can be started. All tasks in Fig. have the same execution time.
Such systems will be referred to as unit execution time, or UET systems.

UET systems are interesting because in certain special cases optimal schedules
can be easily constructed. Let the "level" of a task T be the length of a longest
path from T to a terminal. Hu [11] shows that executing tasks "level by level"
leads to an optimal (shortest) schedule when the precedence relation defines a tree.
A similar strategy applied to trees with tasks of arbitrary execution time results
in a bound of + (m 1)z/x on the ratio of constructed and optimal schedule
lengths 14]. Here m is the number ofprocessors, z the execution time of the longest
task, and x the sum of the execution times of all tasks in the system.

When the precedence relation defines an arbitrary directed acyclic graph
(dag), level by level execution is no longer optimal, even for UET systems on two
processors. Chen and Liu [2], [3] show worst case bounds of- for two processors
and 2 1/(m 1) for m > 2 processors. Meanwhile, for general m, determining
minimal length schedules for UET systems is an NP-complete problem [21], [22].

Coffman and Graham [5] give an algorithm that also executes tasks level by
level, but when there is more than one task at the highest level, it makes a judicious
choice of which task to execute first. As a result, for UET systems, their algorithm
is optimal on two processors. In 2 we analyze the performance of their algorithm
on m > 2 processors and show that its worst case bound is 2 2/m. The bound
is best possible in that for every m there exist task systems for which the bound is
approached arbitrarily closely. It should be noted that optimal solutions for
UET dags on two processors have been obtained by Fujii et al. [6] and Muraoka
[18], using quite different approaches.

All of the above algorithms, except the ones by Fujii et al. and Muraoka,
belong to the more general class of list scheduling algorithms [8], [9]: first a list
of the given tasks is constructed. Whenever a processor becomes available, the
list is scanned and the first unexecuted task that is ready to execute is assigned to
the processor. Graham [8], [9] compares an arbitrary list schedule with an optimal
one and obtains the worst case ratio of 2 1/m. Kaufman 13] has given examples
showing that the 2 1/m bound is achievable even for UET systems. As shown
in Table 1, the difference between 2 2/m and 2 1/m is significant when m is
small. In particular, 2 2/m implies an optimal schedule on 2 processors.

TABLE
A comparison of two bounds of 09/09

2
3
4
5
10

2/m

1.00
1.33
1.50
1.60
1.80

l/m

1.50
1.67
1.75
1.80
1.90

520 SHUI LAM AND RAVI SETHI

When preemption is allowed, a task of execution time z can be viewed as a
chain of one unit tasks. As in the nonpreemptive case, optimal schedules can
easily be constructed when the precedence relation defines a tree, or if there are
two processors available. A level by level algorithm due to Muntz and Coffman
16], 17] constructs optimal schedules for both the above cases. In 3 we analyze

the Muntz-Coffman algorithm and show that 2 2/m is again a best bound when
such schedules are compared with optimal schedules.

2. The Coffman-Graham algorithm. We are given a task system (-, <),
where -- T1, ..., T,} is a set of n tasks to be executed on m processors, and
< is a partial order on - that specifies the precedence relation among tasks.
For tasks T and T’ in -, if T < T’, then T is called a predecessor of T’ and T’
a successor of T, and the execution of T must be completed before T’ can begin.
If there exists no task T" such that T < T" < T’ then T will be called an immediate
predecessor of T’ and T’ an immediate successor of T. T is a terminal (initial) task
if T has no successors (predecessors). The graph that represents a task system
(-, <) has - as the node set. There is a directed edge from T to T’ in the graph
if and only if T is an immediate predecessor of T’.

Let (-, <) be a UET system. A chain of length k is a list of k tasks
(T,, T, ..., T) such that for all j, =< j < k, T/ < T+,. The level of a task T
is the length of a longest chain from T to a terminal task.

The idea of the Coffman-Graham algorithm is to assign a distinct label to
each task and then construct a schedule using the list of tasks in order of decreasing
label. Tasks at higher levels will have higher labels, while tasks at the same level
are assigned labels according to the lexicographical order of the labels of their
immediate successors.

In this section we will use the following notation. For all tasks T e --, let
S(T) denote the set of immediate successors of T. Let a(T) denote an integer label
assigned to task T. N(T) is used to denote the decreasing sequence of integers
formed by ordering the set {a(T’)IT’ S(T)}.

As noted in [20], for the Coffman-Graham algorithm to be optimal, the
graph specifying the UET system (-, <) must not contain any transitive edges.
The definition of immediate successor and graph excludes the possibility of having
transitive edges in the graph representing a task system. Note, however, that for an
n-node graph it takes O(n TM) time to delete all the transitive edges in the graph [1].

COFFaY--GRm4, (CG-) ALGORITHM. Given a UET System (-, <), this
algorithm determines a nonpreemptive schedule for (-, <) on m identical proces-
sors.

1. Choose an arbitrary task To from - with S(To) , and define (To) to
be 1.

2. Suppose, for some _<_ n, that labels 1, 2, ..., have been assigned.
Let R be the set of tasks with no unlabeled successors, i.e., for all T R, N(T) is
defined. Let T* be a task in R such that N(T*) is lexicographically smaller than
N(T) for all T in R. (Break ties at will.) Define e(T*) to be i.

3. When all tasks have been labeled, construct a list of tasks L- (U,,
U,_ , ..., U) such that e(U) for all i, =< __< n. Use list L to determine a
list schedule for (-, <).

SCHEDULING ALGORITHM ANALYSIS 521

Schedules constructed by this algorithm will be referred to as CG-schedules.
Lexicographic order is dictionary order, so that (5, 4, 3) is smaller than (6, 2)

and (5, 4, 3, 2). Fig. gives an example of a task system and its CG-schedule on
3 processors.

/

T, T2 T:5 T4 T5 T6 T7

2

PI Tt9 Tt7 Tt6
"///i’6,

P2 T8 ///,, T15

4 5 6 7 8

T.4 Tt, T8 T5 T
T,I5 TtO TI T4 ,"/,,

T6 T9 / T3 /
FIG. 1. A task system and its CG-schedule on 3-processors. One possible labeling of the above task

system yields labels given by the index for each task, i.e., (T) j. L =(T19, T18, T1).

Since all tasks have unit execution times, and are scheduled nonpreemptively,
it will be convenient to treat time as being discrete rather than continuous. All
schedules start at time 0. For all integers i, time unit is the time interval (i 1, i).
2(T) will denote the time unit during which task T is executed. Note that all
processors become available simultaneously at the beginning of every time unit.
If we have m processors, then by convention, let processor Pk be assigned a task
before Pk+ is, for all k, __< k < m. Then we can state the following simple lemma
from [5].

LF,MMA 2.1. In a CG-schedule, if task T is executed by processor P1, then all
tasks executed along with or after T have a lower label than T, i.e., 2(T)=< 2(T’)
implies o(T) > (T’).

Proof List L is in order of decreasing labels. By convention, processor P1
is assigned before any of the other processors, thereby getting the unexecuted task
with the highest label. F1

In order to prove that CG-schedules are optimal on 2 processors, Coffman
and Graham [5] divide the schedules into "segments" (called sets Xi in [5]). These

522 SHUI LAM AND RAVI SETHI

segments have the important property that all tasks in one segment must be com-
pleted before any task in the next segment can begin. Hence an optimal schedule
corresponding to a given CG-schedule will be no shorter than one that arranges
tasks in each segment optimally. On 2 processors, the CG-algorithm does arrange
tasks in each segment optimally.

We extend the notion of segments to m processors, m _>_ 2. By showing that
the ratio of the lengths of a segment W in a CG-schedule and the optimal length
for I4/is no larger than 2 2/m, we will show that the ratio of the lengths of
CG-schedules and optimal schedules is no larger than 2 2/m. Finally, we will
give examples of task systems for which the ratio can be approached arbitrarily
closely.

Given a particular CG-schedule S, segments for S will be defined in terms of
"blocks". Informally, a block is a portion of the schedule in which no task is
executed "ahead of its turn". An idle period is considered as an empty task with
label 0.

Given a CG-schedule, blocks will be defined from right to left. We start
with task T2 in Fig. 2 and look for time units during which tasks with lower labels
are executed. In time unit 6, T1 and the empty task have lower labels than T2,
leaving just one task T8 with a higher label than T2. T8 must precede T2, T3, T4
and Ts, for otherwise one of these tasks, and not T1 would have been executed
during time unit 6. We therefore divide the schedule and place T2, T3, T4 and T5
into block X0 and repeat the process starting with T8.

7 8?_ 3 4 5 6

----[1--]-
T9 7 6 Tt4 Ttt /

FIG. 2. An illustration of the de[initions of blocks and segments, using the CG-schedule given
in Fig. 1.

T6 in time unit 4, and the two empty tasks in time unit 2 have lower labels
than T8. We split the schedule between time units 2 and 3 since time unit 2 has
just one task, T 7, with a higher label than Ts. T6 is excluded from block X
since it has a lower label than Ta. A more precise definition of blocks follows.

DEFINITION. Given a CG-schedule S, we define blocks Xq, ---, Xo, for some
q _>_ 0 as follows"

1. Define Uo to be the last task executed by processor P during the last
time unit of S.

2. For >__ 1, Ui is defined to be the task executed by P in the most recent
(maximal) time unit 2, such that for all other tasks T’ executed in 2,
(r’ < (c_.

SCHEDULING ALGORITHM ANALYSIS 523

Block Xi_ is the set of all tasks T satisfying 2(Ui) < 2(T) =< 2(Ui_ 1) and
a(T) >= a(U_ 1). Suppose the above steps define U for 0 < i, =< q, and Uq/l does
not exist. Then Xq is the set of tasks T with 2(T) <= 2(Uq) and a(T) >= a(Uq).

It is often convenient to talk about the time units that tasks from X are
executed in. For all T in Xi we say 2(T) is in Xi. Extending our notation, we use
.(Xi) to refer to min {2(T)IT X}.

A task in S that does not belong to any block will be called an extra task.
Note from Fig. 2 that task T12 in X1 does not precede T5 in block Xo. Since

we want segments to be such that all tasks in one segment precede all tasks in
the next, we will form segments by merging blocks.

In proving that 2 2/m is the appropriate bound for segments, we will have
to account for at least two tasks during all time units except the last. By definition,
block Xi+l has just one task Ui+l during)(Ui+ 1). Thus, when merging Xi+
and X into the same segment we will have to find an extra task B (like T6 in Fig. 2)
that can be included into the segment. We will first define segments, and then show
that the extra tasks mentioned in step 2 can always be found.

DwrIyIVIOy. Given a CG-schedule S divided into blocks X,..., Xo, for
q >= 0, form segments Wo,’", W, for some r >= 0, as follows (note that unlike
blocks segments are defined from left to right)"

1. Wo:=Xq; i:=0;j:=q- 1;
2. while j >= 0 do

if for all tasks T in W and T’ in Xj, T < T’
then we have completed segment , so

start a new segment by" + 1; W Xj;
j:=j- 1.

else let T in W be such that for some T’ in X,
T < T’ is false.
Find task B W such that
2(T) < 2(B) < 2(X), z(B) > 0(U)and T < B.
W W [.J Xj {B};j j- 1.

3. If integer r is the final value of then segments Wo,’.., W have been
defined. The length of a segment is given by the number of time units in
the block contained in the segment.

We first show that the above definition is consistent.
LEMMA 2.2. During some execution of step 2, let there be a task T in W such that

for some T’ in X T < T’ is false. Then there exists B 6 Wi such that 2(T) < 2(B) <
2(Xj), (B) > (Uj) and T < B.

Proof. Choose T so that it has no successors in W, and T’ so that it has
no predecessors in Xj. Let I be the set of tasks in X that have no predecessors
in Xj. Clearly T’ I.

Consider U + the last task in X)+ 1. From the definition of segments U + W,
and from the definition of blocks Uj+ precedes all tasks in Xj. (Recall that all
other tasks executed during 2(Uj+ 1) have lower labels than Uj, and hence lower
labels than all tasks in Xj. Therefore U.i+l precedes all tasks in X).) Since there
are no transitive edges in the graph for a task system, the labels of all tasks in I
are considered when assigning a label to Uj+ 1.

From the definition of segments all tasks in W have higher labels than Uj+ 1.

Thus task T has a higher label than U)+ 1. Since T has no successors in W, for

524 SHUI LAM AND RAVI SETHI

e(T) > e(Uj+ 1) to be true, T must either precede all tasks in I or must precede
an extra task B as claimed. Since T does not precede T’ in-l, B must exist. The
arguments used here are essentially those used in [5] to show optimality on two
processors.

Having shown that segments are well defined, we now show that all tasks
in one segment precede all tasks in the next.

LEMMA 2.3. Let W be a segment immediately to the left of segment W’. Then
for all tasks T in W and T’ in W’, T must be completed before T’ can start, i.e.,
T<T’.

Proof. Let Xi be the leftmost block in W’. Then from the definition of segments,
all tasks T in W precede all tasks T’ in Xi. If X is the only block in W’, then the
proof is complete.

So assume that W’ contains blocks X, Xi_ 1,’", Xi-k, for k _>_ 1, as well
as some extra tasks. From the definition of blocks it follows that for all j, Uj
precedes all tasks in Xj_ 1. By transitivity for all T in W, T precedes all tasks in
X U U Xi_ k.

The first extra task B added to W’ is preceded by some task in X. Any
subsequent extra task added to W’ is either preceded by a task in some block in W’,
or by an extra task already in W’. In either case, by transitivity, the extra task is
preceded by an element of X.

The lemma follows. [-1

Lemma 2.3 permits us to restrict attention to individual segments in compar-
ing the lengths of optimal and CG-schedules. In the case of 2 processors, a segment
of length o9 contains 209- tasks and requires o time units to finish in any
schedule. Therefore the CG-schedule is optimal. For m > 2, Fig. 3 shows the CG
and optimal schedules for a segment. From this example, we can say that on
3 processors, a CG-schedule may be as much as 33 longer than an optimal
schedule. Other examples for m > 3 that we will consider in this paper have a
quite different structure.

5 6 7 8 9

2 5 4
(a)

PI- 9 6 4 ,,
P2 8 5 5

Pa "7 2

P 5

PZ 6

7

(c)

FIG. 3. A task system (a), its CG-schedule (b) and optimal schedule (c) on 3 processors. The integer
at each node is the task label.

SCHEDULING ALGORITHM ANALYSIS 525

For the next two lemmas, we reserve co and coo to refer to the lengths of a
CG-schedule and an optimal schedule, respectively, for some segment. In proving
o9/coo <= 2 2/m we will need to examine the structure of a block.

A time unit during which all processors are executing tasks in a block X will
be referred to as a full column of X. Time units in X that are not full columns
will be referred to as partial columns. We will determine lower bounds on coo
in terms of the number of partial columns in the blocks contained in a segment.

LEMMA 2.4. Let Xi, ..., Xi_k, k >= 0 be the blocks in segment W, and let there
be p partial columns in these blocks. If X starts with a full column, then an optimal
schedule for the tasks in W must have length o9o >= p + 1.

Proof. Let the partial columns of the segment be as shown in Fig. 4. Let V1
be the task executed by P1 during 2(X). Number the partial columns 1, 2, ..., p,
from left to right. For 1 __< j < p, let V+ be the task executed by P1 in the time unit
following partial column j. Let T be the highest labeled task in the first partial
column. We first observe the following two facts"

(i) Since T is in a partial column, any extra tasks in this column must have
a label lower than O (V2). Hence there must be a task T* in A (T) such that
T*< V2. If T* is T then we have T< V2. If T*4: T, then since
e(T) > e(T*), and V2 is the highest labeled task that T can precede,
we must also have T < V2.

(ii) Similarly, Vj, 2 __< j < p, and every task Tj such that e(T) > e(V) precedes
either V+I or some task Rj+I such that e(Rj+ 1) > e(V+).

Combining (i) and (ii) we conclude that T precedes a chain of at least p 1
tasks, and so does every task with label higher than e(T).

T IV2

Let A 1, Am

Vp_l

FIG. 4. ProofofLemma 2.4

be the tasks executed during the very first time unit of X.
If there is a task Aj such that e(Aj) < e(T), then there must be a task Al, 4: J,
such that A < T, for otherwise T would have replaced Aj in the schedule. With
A < T and the fact that T precedes a chain of p- 1 tasks, it follows that the
optimal schedule must have length at least p + 1.

If for all j, _< j =< m, e(Aj) > e(T), then we have at least m + 1 tasks that
each precede a chain of at least p 1 tasks. Again the optimal schedule length
must be at least p + 1. V1

LEMMA 2.5. Let co be the length of segment W and coo the length of an optimal
schedule for the tasks in the segment. Then 09/o90 <= 2- 2/m for m 3.

Proof. Let X, ..., X_k, be the blocks contained in segment W and let there
be p partial columns and f full columns in these blocks. Clearly o9 f + p.

526 SHUI LAM AND RAVI SETHI

From the definition of segments, k extra tasks must have been merged into W.
For each of the k + 1 blocks there is one partial column with one task. Since every
other partial column has at least two tasks, the total number of tasks x in W is
at leastmf+2(p-k- 1)+(k+ 1)+ k=mf+2p- 1.

We consider two cases.
Case 1. The leftmost block Xi starts with a full column. Then from Lemma 2.4,

ooo -> P + 1. Since the shortest possible schedule has no idle time, mooo >_- x >=
mf +2p-1.

Since oo f + p, we have

moo= m(f + p) mf + 2p- 1 + (m- 2)(p + 1)-m+ 3.

On substitution we get

moo =< mooo + (m 2)ooo (m 3).
Since m >_ 3, it follows that oo/ooo =< 2 2/m.

Case 2. The leftmost block Xi starts with a partial column. It follows from
the proof of Lemma 2.3 that tasks in Xi precede all other tasks in the segment.
Any extra tasks in the first time unit of Xi must have a lower label than all other
tasks in X. Thus the tasks in the partial column ofX precede all other tasks in Xi,
and by transitivity, precede all other tasks in the segment. Thus the optimal
schedule for the segment must have at least one idle period. Hence mooo => x + 1 >__
mf +2p.

From the proof of Lemma 2.4 it follows that there must be a chain of at least
p tasks in W. Therefore ooo >= P. Since oo f + p, we have

moo=re(f +p)-- mf + 2p + (m- 2)p.

Substituting, we get

moo =< mooo + (m- 2)ooo.

Hence, oo/ooo <- 2 2/m.
THEOREM 2.1. Let S be a CG-schedulefor a given UET system on m processors.

Let co be the length ofS and o90 be the length ofan optimal schedulefor the same task
system. Thenfor m >_ 2,

oo/ooo <= 2- 2/m.

Furthermore, the bound is best possible for m equal to 3 or any even number,

Proof For m 2, the bound follows from the optimality of CG-schedules
[4], [5], [20]. Therefore suppose m => 3. Let there be r + 1 segments, Wo, "., Wr_
Wr, in the CG-schedule S. Lemma 2.3 shows that an optimal schedule can be no
shorter than one that arranges each individual segment optimally. Therefore,
letting ooo(k) be the optimal schedule length of segment Wk, 0 =< k =< r, we have

090 ->_ ooo(k).
k=0

In 3 it will be shown that 2 2/m is a best bound for odd values of m also.

SCHEDULING ALGORITHM ANALYSIS 527

From Lemma 2.5 we have co(k)/coo(k) <= 2- 2/m, where co(k) is the length
of segment Wk in the CG-schedule. Thus

co co(k) _<_ (2 2/m)coo(k <__ (2 2/m)coo,
k=O k=O

and the bound is obtained.
That the bound is in fact best possible for the specified values of m can be

shown by examples. For m 3, see Fig. 3. For even values of m, we show a task
system for 6 processors that realizes the bound asymptotically. The construction
of task systems for any other even number of processors can be done following
the same pattern.

BIO

\\
B + \

AI8 &

DI

CI7

C9

C

,BIT

B9

FIG. 5. By repeating the pattern above, we can construct task systemsfor which the ratio ofthe lengths
of a CG-schedule and an optimal schedule on 6 processors approaches 2- 2/6 5/3 For even m, a
similar construction leads to task systemsfor which the ratio approaches 2 2/m. Some of the edges have
been drawn dotted for clarity. All edges are directed downwards.

Consider the task system in Fig. 5. Tasks B1, ..., B18 form a pattern that is
repeated by tasks C1, "’", C18. If the pattern is repeated k times by adding tasks
D1,’.., D18, El,-.., E18 and so on, we will get a task system with 18k + 2

528 SHUI LAM AND RAVI SETHI

tasks. If the task system is executed as in Fig. 6, then the length of the schedule
is3k+ 2.

DI Ci7

Clo CI6

Cll Ci5

Ci2 C2

C15 05

C9 CI

C8 BIO

C7 BII
C6 BI2

C5 BI3

IBIs BI4

BI7 B9 BI

BI6 B8

BI5 B7

B2 B6

B;5 B5

B4 AI8

FIG. 6. A schedule for the task system in Fig. 5. Bold lines enclose a repeatingpattern.

It is easy to verify that one possible labeling for the task system in Fig. 5 would
be to assign labels 1,2, in the order A18,B1,B2, "", B18, C, ..., C8,
D1,’" With 18k / 2 tasks, the CG-schedule would then be of length 5k + 1,
since it would take unit for each level with 2 tasks and 2 units for each level with
m + 2 8 tasks. The ratio of 09/090 approaches] 2 2/m as k increases.

With m processors where m is even, instead of the pattern B1,’", B8,
we need m/2 tasks" 1 task at the lowest level, m + 2 tasks at each of the next
m/2 levels, and the remaining task at the highest level. It is left to the reader
to fill in the details. A formal specification for general m is cumbersome. E]

Examination of Fig. 5, which provides the worst case example, shows that the
worst case occurs if ties are broken badly in step 2 of the CG-algorithm. The in-
teresting question is whether a "good" rule for breaking ties will improve the
worst case performance of the CG-algorithm. It is left to the reader to verify that
adding 4 tasks at the lowest levels and some extra edges as in Fig. 7, the CG-
algorithm can be forced to label tasks as required in the proof of Theorem 2.1.
The 4 tasks added lengthen both the optimal and CG-schedules by a constant,
which is insignificant in the limit. The extra edges are clearly not transitive edges.

3. The Muntz--Coffman algorithm. The preemptive counterpart of the
algorithm in the last section is given by Muntz and Coffman 16], 17]. A treatment
of the algorithm may also be found in [4] and [20].

DEFIrqITOrq. Let (-, <) be a task system containing tasks T, T2,..., T,
having execution times z l, z2, "’", ,. c{ {T/,, T/2 ..., k} is a chain from task
T, to task Tk if for all j, =< j < k, Tj < T The length ofc is given by ’kj=l 17ij"
The level of a task T in - is the maximum over the lengths of all chains from T
to a terminal task.

The idea behind the algorithm in [16], 17] is to preferentially execute tasks
at higher levels. Tasks at the same level get the same level of service. In order to

SCHEDULING ALGORITHM ANALYSIS 529

BIS

BIO

B2 B9

All U B

TI T2 IT
FIG. 7. Adding edges to force the CG algorithm tO assign labels in the order B 1, BE,...,

illustrate diagrammatically how tasks get the same level of service, the notion of
processor sharing is introduced. If there are more processors than tasks, then each
task gets a processor to itself. Otherwise, the tasks will have to share the available
resources. Thus each task is assigned fl processors, where 0 < fl _< 1. Instead of
talking of the execution time z of a task T, we sometimes say that T has a service
requirement of z processor-time units. An example of a task system scheduled
using processor sharing is given in Fig. 8. Task T assigned fl processors will
execute for /fl units, where /fl >__ , since 0 < fl _<_ 1.

Since levels of tasks change as execution proceeds, we need the following
definition.

DEFINITION. Let S be a schedule for a task system (-, <). Lt(T), the level
at time of task T with respect to schedule S, is the level of task T in the unexecuted
portion of the task system.

MUNTZ--COFFMAN (MC-) ALGORITHM. Given a task system (-, <), this
algorithm constructs a processor shared schedule which can easily be converted
into a preemptive schedule of the same length. Let s be the time when assignment
of processors is made. Initially s 0.

Among the tasks that are ready to execute, assign one processor each to the
tasks at the highest level. If there is a tie among b tasks (because they are at the same
level) for the last a(a < b) processors, then assign a/b of a processor to each of
these b tasks. Continue such an assignment until a time at which one of the
following events occurs.

Event 1. A task is completed at t.
Event 2. There are two tasks T and T’ such that L(T) > L(T’) but Lt(T)

L(T’). That is, the level of T’ has caught up with that of T at time t.

In either case set s and reassign the processors to the unexecuted portion of the
task system.

530 SHUI LAM AND RAVI SETHI

T6,1 /T4T9,,2 Ca)

PI

P3

P3

TI

TI

T4 T7 T9

(b)

(c)

FIG. 8. (a) A task system. Execution times oftasks appear next to the task names. (b) A shared schedule
for the task system, and (c) the preemptive schedule constructed from the shared schedule.

The resultant schedule is called an MC-schedule for (-, <).
Let 0 tx < t2 < < tk be the sequence of times at which Event or 2

occurs in the above construction. The following procedure will transform an
MC-schedule into a preemptive schedule of the same length. Consider interval
(ti, ti+l) and let T/l, ..., Ts be the tasks executed in this interval at rates
flil,..., fls, respectively. Now using the quantity flj(ti+l t) as the execution
time for Tj, we can apply McNaughton’s preemptive scheduling algorithm
[4], [15], [19], [20] for tasks T,..., T, in this time interval and construct a
valid preemptive schedule for these tasks. The length of the new schedule is
exactly (t + t). Do this for all intervals.

Figure 8 gives an example illustrating the above algorithm and the trans-
formation. Intuitively, one can visualize the MC-algorithm as pruning a partial
order from top down. Only "leaves" are ready to be pruned. The rate of pruning
at any time depends on the number of "leaves" at the top and the machine capacity.
If there is machine capacity left, then "leaves" at lower levels will be considered.

In MC-schedules, a task may be split into several pieces, each executed in a
different interval of time. Given an MC-schedule S for an n-task system (-, <),

SCHEDULING ALGORITHM ANALYSIS 5 3 1

let U, 1, Ui,i, for some ni >= 1, be all the pieces of task T in S, with piece
started before Uij+ in S, for all j, 1 =< j < n. Also let il, "’", z,. be the execution
requirements of tle pieces U, ..., U respectively. Then olviously we have
.’__1 zi v. If we define the precedence relation < among the pieces wth
Uij <’ Ui+ for all __< j < ni, 1 < <__ n, and Ui,, <’ Uk if and only if T < T
for 1 __< i, k __< n, it is easy to see that each of these pieces is just like a task and
S is an MC-schedule for the task system (-’, <’), where -’= {Uj, 1 <= j <= ni,

1 =< =< n} and <’ is defined as above. Therefore from now on we shall refer to
each of these pieces as a task as if S is constructed for the task system formed by
the pieces, and use the terms "piece" and "task" interchangeably.

It has been shown in [16], [17], [20] that the MC-algorithm constructs optimal
schedules if (-, <) is tree structured, or if there are only two processors. Now
we will show that if co and O9o are the lengths of an MC-schedule and an optimal
schedule, respectively, then 09/090 <= 2 2/m, and that 2 2/m is an asymptotic
best bound. Since all tasks at the same level are executed at the same rate, it will
be easier than the last section to show that 2 2/m is an upper bound. The hard
part is coming up with a task system that achieves the bound. We first show that
the bound is true for a special type of MC-schedule and then extend the result to
arbitrary MC-schedules.

LEMMA 3.1. Let S be an MC-schedule of length o) for a task system (-, <) on
m >= 2 processors. If at all times in the schedule at least two processors are busy,
then rn/coo <= 2 2/m, where o9o is the length of an optimal preemptive schedule
for (,, >).

Proof Since an MC-schedule has no unnecessary idle time, there exists a
chain of tasks in S such that whenever a processor is idle in (0, o) one of the other
processors is executing a task in the chain.. If L is the total length of time in S
when at least one processor is idle, then there must be a chain of length at least
L in (’, <). Hence 09o >_- L. Moreover, if x is the sum of the execution times of all
tasks in (-, <), then 09o _-> x/m.

Let I be the total idle time in S. Since no more than m 2 processors are idle
at any time, I _<_ (m 2)L. Therefore I __< (m 2)09o.

Since too9 x + I, on substitution for x and I, we get too9 __< mOgo + (m 2)o90,
which yields 09/(0o __< 2 2/m. []

MC-schedules do not introduce unnecessary idle time, but they may not
always have two busy processors. We shall show that any MC-schedule can be
divided into segments such that (a) within each segment, except for the last task,
there are always at least two busy processors, and (b) tasks in one segment must
be completed before those in the next segment can begin.

From the MC-algorithm, if there are not enough tasks at the highest level to
occupy all the processors, tasks at the next level will be considered. Therefore some
tasks are executed "ahead" of their levels. There are some "bottleneck tasks"
T in the sense that all tasks at a higher level than T must be executed before T.
In dividing an MC-schedule, we are essentially looking for these bottleneck tasks.
The tasks that are executed "ahead" of their levels will be deleted from the MC-
schedule, resulting in a reduced schedule. The task system corresponding to the
reduced schedule is called the reduced task system. In the reduced schedule, all
tasks at a higher level than a bottleneck task T must be completed before T

532 SHUI LAM AND RAVI SETHI

can start. Similarly all tasks at a lower level than T must be executed after T
is completed.

DEFINITION. Let S be an MC-schedule of length 09, and let

0 < t2 < < k

be the sequence of times at which either Event or 2 occurs. Clearly 09

Define segments Wr, W, Wo as follows"
(i) If the last time interval (tk_ , t) is executing only one task, then call this

task Uo; otherwise Uo . Uo is in segment Wo. Set j 0 and t_ (or
t if Uo).
(ii) If 0, then the entire schedule is divided, so stop. Otherwise let

be ti for some > 1. For h from down to 2 do"
(a) Compute Lth(T) for each task T executed in the interval (th_ , th) with

respect to the reduced task system at this point.
(b) Remove all tasks T in interval (th_ 1, th) that have L,,(T) < L,(U).
We will show that this step removes all tasks that are executed before U

but do not precede U. Figure 9 illustrates the above step.
(iii) Find the first interval (tz, fi/) before in which only one processor is

assigned a task. Define this task as U/ and add the portion of the schedule
between U+ and U to W. U/ is in V+.

(iv) Set j j + and t and go to (ii).
THEOREM 3.1. Let S be an MC-schedule of length 09 for a task system (-, <)

on m >= 2 processors; then 09/090 <= 2 2/m, where 090 is the length of an optimal
schedule. Moreover,for all values ofm there exists a task system that approaches the
bound arbitrarily closely.

Proof As in the definition above, let W, Wr_,..., Wo be the segments
of S. It is easy to see that the total length of the segments is 09. If in the definition
of segment a task T executed in the interval (th- , th) is deleted, then from step
(ii) of the definition, L,(T)< L,(U)= L,(U). Then from the MC-algorithm
there exists 1/, a predecessor of U, executing concurrently with T such that
L,_,(I/) > L,_,(T). It follows that V is assigned a full processor in the interval
(th-1, th)" Therefore deleting tasks like T does not change the length of S. The
reader can verify that W, W_ ,..., Wo taken together form an MC-schedule
of length 09 for the reduced task system.

Consider a task 1/in segment W for some j. By definition, segment W+
ends with task U+I, and while U+I is being executed, all other processors are
idle in the reduced schedule. Since the reduced schedule is an MC-schedule, it
must be true that U+ precedes V, for otherwise V would have been scheduled
concurrently with U+ .

To show that T < U+ for all T - U+ in W+ , we assume the contrary.
That is, there exists a task T in W.+ such that T < Uj / is false. Choose T so that
T is the last such task to finish in V/ . This choice ensures that T has no successors
in V/ . That is, T can only have immediate successors in or some later segment,
which implies that Lth(T < Lt(Uj+ 1), where (th- 1, th) is the interval that Tis in and

is the time when Uj+ starts execution. However, L(T) < L(Uj+) contradicts
the fact that T is not deleted. Consequently we have T < Uj+ < V for all
T 4: Uj+ in Wj+I and all V in W.

SCHEDULING ALGORITHM ANALYSIS 533

T9 TIO ,a

t=O 2

PI TI T3 T5
P2 T2 TII .-
P3 T4 T8

6 8 9
/g= 3/4 T9 TI2
/ 3/4 To
B 3/4

0 2 ,/-Wo 6 8 9

P3 T4 T8

O! 2. ,6 8 9

Pli TI T T9 _TI2

p3 IITT

FIG. 9. The top schedule is the original MC-schedulefor the task system. The middle schedule is the
reduced schedule after removal oftasks when compared with La(T12). Finally, there is the reduced schedule
after removal of tasks when compared with LI(T3).

It follows that as in Theorem 2.1, we need only consider one segment W
at a time. Let Uj be the last task executing in Wj. As noted above, T < Uj for all
other tasks T in Wj. Clearly the optimal strategy can do no better than executing
all other tasks optimally and then executing Uj. Thus consider all tasks in W
except Uj. By peeling off Uj, we are left with a portion of the schedule in which at
all times at least two processors are busy. From Lemma 3.1, for this part of the
segment o3’/o =< 2- 2/rn, where o’ is the length of this part of the segment

534 SHUI LAM AND RAVI SETHI

and o9 the optimal length for it. Clearly o9’/09 => (o9’+ c)/(OYo + c) when
o9’/o9 >= and c => 0. Thus taking task Uj into account cannot change the bound.

As in Theorem 2.1 if the bound for each individual segment is 2- 2/m,
then 2 2/m is an upper bound for the entire schedule.

Ull

U12

Ulk

Ul-l,k ,Vl-1, k

UII Vll

UI2 V12

Ulk Vlk

FIG. 10. The task systemfor the proofof Theorem 3.1. All tasks have unit execution time. Thefigure
has been drawnfor k 3, 4 and m 6. As k oe and oo, folio 2 2/m, where o9 and o are
the lengths of the MC- and optimal schedules for the task system.

To.see that 2 2/m is (asymptotically) achievable, consider the UET system
in Fig. 10. The task system has repetitions of a pattern that consists of k levels of
tasks. The figure has been drawn with k 3, 4 and rn 6. We can have a
schedule that executes Ull, UI2,..., Uk in the first k time units. In the next
time unit, V, T,,,..., T,,m-2 and U21 are executed. After that, V2,
Tl,2,1, Tl,z,m-2 and U22 are executed, and so on, until V/_ 1,k, T_ ,k,,’’",

Tl-1,k,rn-2 and Ulk are executed. Then k units are required to finish the schedule.
The optimal schedule of length Oo is therefore no longer than

2k + (l)k k(l + I).

The MC-schedule, on the other hand, is of length

co=(l- 1)(k- +(k(m-2)+2)/m)+k.

SCHEDULING ALGORITHM ANALYSIS 53 5

The ratio 09/o90 is then given lay

60 0

> (1- 1)(k- 1 +(k(m-2)+2)/m)+k
k(l + 1)

As k tends to infinity, we get

lim c
ko

(1- 1)(1 +(m-2)/m)+
(1+ 1)

Taking limits again, we find
m-2 2

lim limc= + =2
l ko m m

In Fig. 10, as k increases, the contribution of Ulk and Vk to the schedule
length becomes insignificant. Then as increases, the k extra time units in the
beginning and in the end of the schedule become insignificant. The example in
Fig. 10 can be modified to yield an example showing that 2 2/m is an asymp-
totic best bound for all values of m for the CG-algorithm of 2.

4. Discussion. As reviewed in [21], a large number of scheduling problems are
NP-complete. It is therefore desirable to devise heuristics for these problems.
We have taken two algorithms, one preemptive and the other nonpreemptive,
which yield optimal schedules on two processors. We have shown that on m
processors, m >= 2, the two algorithms produce schedules that are always within
a factor of 2 2/m of the optimal. We then gave an example of task systems for
which the ratio approached 2 2/m in the limit.

Acknowledgments. The authors acknowledge valuable suggestions from the
referees and helpful discussions with Ned Horvath and Chandra Kintala. The
example with the - bound in Fig. 3 was also communicated to the authors by
J. L. Baer. Deepak K. Goyal pointed out an error in an earlier version of this paper.
The definition of segments in 2 is adapted from the approach used in [23].

REFERENCES

[1] A. V. AHO, M. R. GAREY AND J. D. ULLMAN, The transitive reduction of a directed graph, this
Journal, (1972), pp. 131-137.

[2] N. F. CHEN AND C. L. Lu, personal communication, December, 1974.
[3] --., On a class of scheduling algorithms for multiprocessor computing systems, Parallel Pro-

cessing, Lecture Notes in Computer Science, vol. 24, Springer-Verlag, New York, 1975,
pp. 1-16.

[4] E. G. COFFMAN, JR. AND P. J. DENNING, Operating Systems Theory, Prentice-Hall, Englewood
Cliffs, N.J., 1973.

[5] E. G. COFFMAN, JR. AND R. L. GRAHAM, Optimal scheduling for two processor systems, Acta
Informatica, (1972), pp. 200-213.

[6] M. FuJII, T. KASAMI AND K. NINOMIYA, Optimal sequencing of two equivalent processors, SIAM
J. Appl. Math., 17 (1969), pp. 784-789; Erratum, 20 (1971), p. 141.

[7] M. R. GAREY AND D. S. JOHNSON, Complexity resultsfor multiprocessot, scheduling under resource
constraints, this Journal, 4 (1975), pp. 397-411.

[8] R. L. GRAHAM, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969),
pp. 416-429.

536 SHUI LAM AND RAVI SETHI

[9] --, Bounds for certain multiprocessing anomalies, Bell System Tech. J., a5 (1966), pp. 1563-
1581.

[10] --., Bounds on multiprocessing anomalies and related packing algorithms, AFIPS Conf. Proc.,
40 (1972), pp. 205-217.

[1 I] T. C. Hu, Parallel sequencing and assembly line problems, Operations Res., 9 (1961), pp. 841-848.
[12] R. M. KaRP, Reducibility among combinatorialproblems, Complexity of Computer Computation,

R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.
[13] M.T. KUFMaN, Anomalies in scheduling unit-time tasks, Stanford Electronics Lab. Tech. Rep. 34,

Stanford Univ., Stanford, Calif., 1972.
[14] --, An almost-optimal algorithm for the assembly-line scheduling problem, IEEE Trans.

Computers, C-23 (1974), pp. 1169-1174.
[15] R. McNauC;nTON, Scheduling with deadlines and loss functions, Management Sci., 6 (1959),

pp. 1-12.
16] R. R. MUNTZ AND E. G. COFFMaN, JR., Preemptive scheduling of real time tasks on multiprocessor

systems, J. Assoc. Comput. Math., 17 (1970), pp. 324-338.
[17] --., Optimal preemptive scheduling on two-processor systems, IEEE Trans. Computers, C-18

(1969), pp. 1014-1020.
[18] Y. MUROKa, Parallelism, exposure and exploitation in programs, Ph.D. thesis, Univ. of Illinois,

Urbana, 1971.
[19] M. H. ROTHKOPF, Saheduling independent tasks on parallel processors, Management Sci., 12

(1966), pp. 437-447.
[20] R. SEa’I-n, Algorithms for minimal length schedules, Computer and Job-shop Scheduling Theory,

E. G. Coffman, Jr., ed., John Wiley, New York, 1976, pp. 51-99.
[21] J. D. ULIM,N, Complexity ofsequencing problems, Computer and Job-shop Scheduling Theory,

E. G. Coffman, Jr., ed., John Wiley, New York, 1976, pp. 139-164.
[22], NP-complete scheduling problems, J. Comput. Systems Sci., 10 (1975), pp. 384-393.
[23] D. K. Go’AL, Scheduling equal execution time tasks under unit resource restriction, unpublished

manuscript, 1976.

SIAM J. COMPUT.
Vol. 6, No. 3, September 1977

FINDING A MAXIMUM INDEPENDENT SET*

ROBERT ENDRE TARJAN]" AND ANTHONY E. TROJANOWSKI$

Abstract. We present an algorithm which finds a maximum independent set in an n-vertex graph
in 0(2n/3) time. The algorithm can thus handle graphs roughly three times as large as could be
analyzed using a naive algorithm.

Key words, algorithm, clique, computational complexity, graph, maximum independent set,
NP-complete problem

1. Introduction. A graph G (V, E) is an ordered pair consisting of a finite
set V of vertices and a set of unordered pairs (v, w) of distinct vertices, called
edges. Two vertices v, w are adjacent if (v, w)eE. A set S of vertices is
independent (or internally stable) if (v, w) E for all v, w S. A set S of vertices is
a clique if (v, w) E for all pairs of distinct vertices v, w e S. The complement of a
graph G (V, E) is the graph G (V, E) where E {(v, w)lv, w V, v w, and
(v, w) E}. Clearly S V is an independent set of G if and only if S is a clique of
G. (Note" some authors require that a clique be a maximal set of pairwise adjacent
vertices; we do not.)

A path from v to Vk in a graph G= (V,E) is a sequence of vertices
/)1, 32, /3k such that (vi, Vi+l)eE for 1 =<i <k. A set of vertices S is connected
if, for all v, w e S, there is a path from v to w containing only vertices in S. The
vertices of a graph G can be partitioned into maximal connected subsets, called
the connected components of G. If G (V, E) is a graph and S is a set of vertices,
the graph G(S)= (S, E(S)), where E(S)= {(v, w) Ely, w S}, is called the sub-
graph of G induced by the vertex set S.

We consider the problem of finding a maximum-size independent set in a
given graph G (V, E); or, equivalently, finding a maximum-size clique in a given
graph. This problem has been studied extensively, but no polynomial-time
algorithm is known. In fact, the maximum independent set problem is NP-
complete [4], [7], and thus is unlikely to have a polynomial-time algorithm. Our
goal is to provide an algorithm, which, though not polynomial, is significantly
faster in the worst case than the obvious enumeration algorithm or any other
algorithm known to us.

Let n vI. The number of subsets of V is 2n. By listing each possible subset
of V and testing it for independence, one can find a maximum clique in O(p(n)2)
time, where p(n) is some polynomial. Other algorithms have been proposed
[2], [9], [10], but for none except the one in [10] has a worst-case time bound
better than O(2") been proved.

We extend the algorithm of [10] to provide an O(2"/3)-time algorithm. The
algorithm is recursive and depends upon a somewhat complicated case analysis.

* Received by the editors April 26, 1976.
t Computer Science Department, Stanford University, Stanford, California 94305. This research

was supported in part by National Science Foundation Grant MCS 75-22870 and by the Office of
Naval Research.

$ Computer Science Department, University of Illinois, Urbana, Illinois 61801. This research was
supported in part by National Science Foundation Grant DCR 74-02774.

537

538 ROBERT ENDRE TARJAN AND ANTHONY E. TROJANOWSKI

Though the algorithm is tedious to state in detail, it would be straightforward to
program, and we suspect that it would perform well in practice. Nevertheless, its
main interest seems to be theoretical; its existence shows that at least one
NP-complete problem can be solved in a time bound significantly better than that
of the obvious enumeration algorithm. For a similar algorithm to solve another
NP-complete problem,, see [5].

The maximum number of independent sets maximal with respect to the
subset relation in a graph of n vertices is 3 n/3. One could find a maximum-
size independent set by enumerating all maximal independent sets (using an
algorithm such as in [1], [3], [6], [8]) and choosing the largest. However, the
algorithm to be proposed is substantially better than even this method, in the
worst case.

The algorithm uses a recursive backtracking scheme. Its starting point is the
following observation. Let v V. Let A (v) be the set of vertices adjacent to v.
Then any maximum independent set either contains v or does not contain v. Thus
any maximum independent set of G is either {v} combined with a maximum
independent set in G(V-{v}-A(v)), or it is a maximum independent set in
O(V-{v}).

We extend this idea. For any S

V, let A (S) Uvs A (v). If S
_

V, then any
maximum independent set I in G consists of an independent set I f3 S in G(S) and
a maximum independent set I-S in G(V-S-A (I)). Our algorithm selects a
subset S_ V, finds each independent set J in G(S), and, for each such J,
recursively finds a maximum independent set in G(V-S-A (J)).

We improve this method further by introducing the concept of dominance. If
S

V and/, J are independent in G(S), we say Idominates J if, for any J’ V- S

such that J[..JJ’ is independent, there is a set I’ V-S such that I UI’ is
independent and II U I’1 => IJ U J’l. For any such dominated set J, we need not solve
a subproblem, since we get an independent set at least as large by solving a
subproblem for L

Dominance is important because in certain cases it can be confirmed quickly.
We give two examples which are used extensively in the algorithm. Let v V. Let
S={v}UA(v). If w cA(v), then {v} dominates {w} in S, since if I_ V-S and
I U {w} is independent, then I O {v} is independent. Similarly, {v} dominates in
S.

Let S

V. Let I and J IU{v} be independent in G(S). Suppose (V-S)f’I
(A (v A (I)) {w l, w2}. In S{wl, wz},J dominates both I Ll{wl} and I [..J {w2}.
We distinguish three possibilities.

(i) (w l, w2) E or I f’lA ({wl, w2}) . Then J dominates I in S" if I’_
V-S and I’[.JI is independent, then 1I’(3{wl, w2}l<l. Thus J’=I’-{wl, w2}
satisfies IJ’U JI => I’U II and J’UJ is independent.

(ii) (w 1, w2) E, IA({w 1, w2}) , and
1. Then I dominates J in S (and I U{wl, w2} dominates J in S U{wl, w2})" If
J’ V- S and J’ U J is independent, then I’ (J’ LI {w 1, we})-A ({wl, w2})
satisfies II’LJ I1 _-> IJ’U JI and I’[.J I is independent.

(iii) (wl, Wz)_E, Ifqa({w, w2})= (R), and [(V-$-a(J))f]a({wl, w2})l
= 2. In this case we need further information to determine whether I dominates J
or vice-versa.

FINDING A MAXIMUM INDEPENDENT SET 539

In summary, the algorithm selects a set S V, determines a set of dominating
independent sets in $ using the two observations on the previous page, and
recursively solves one subproblem for each dominating set.

2. The algorithm. A detailed specification of the algorithm appears below. A
call maxset(S) will return an integer which is the size of a maximum independent
set in G(S); the graph G =(V, E) is assumed to be a global variable. The
statement of the algorithm consists of a sequence of cases and subcases. The first
case which applies is used to define the value of maxset(S). Thus, inside a given
case, the hypotheses of all previous cases can be assumed to be false. We use this
convention to avoid a confusing nesting of if-then-else statements. Throughout
the procedure d(v) denotes the degree of v in G(S). It is easy to modify the
algorithm so that it returns a maximum independent set as well as the size of such a
set.

procedure maxset(S)
begin

0: S is not connected in G(S).
Let $1, Se,’", Sk be the connected components of G(S). Note that
every maximum independent set consists of a union of maximum
independent sets, one from each connected component. Let maxset
Y,= maxset(Si).

not 0: S is connected.
Let v be a vertex of minimum degree in G(S). One of the following six
cases applies.

1: d(v)= 1.
Let A (v) f) S {w}.
Let maxset 1 + maxset(S-{v, w}).

2: d(v)= 2.
2.1: d(w)= 2 for all w e V.

Note that the vertices of S form a cycle in G(S).
Let maxset

2.2: There exist u, Wl such that d(u)= 2, d(Wl) =>3, and (u, Wl)eE.
Let A(u)OS={w, w2}.
2.2.1: (wl, w.)eE.

Let maxset 1 + maxset(S-{u, Wl, w2}).
2.2.2: (Wl,

Let maxset max {1 + maxset(S-{u, wl, we}),
2 + maxset(S A (w 1) A (we))}.

3: d(v)= 3.
Let A (v) f’l S {Wl, we, w3}.
3.1: (w, we), (Wl, w3), (w, w3)E.

Let maxset 1 + rnaxset(S-{v, w, we, w3}).
3.2: (Wl, we), (Wl, w3)E (or any symmetric case).

Let maxset max {1 + maxset(S-{v, wl, we, w3}),
2 + maxset(S-A (we)-A (w3))}.

3.3: (Wl, we) e E (or any symmetric case).
For 1, 2, 3, let Ai-- S-{w1, w2, w3}-A(wi).

540 ROBERT ENDRE TARJAN AND ANTHONY E. TROJANOWSKI

..x. I,l-<[=ql- Isl-6 (or the symmetric case).
Note that A2fhA A3. Thus {w2, w3} dominates {Wl, w3}.
Let maxset max {1 + maxset(S-{v, wa, w2, w3}),

2 + maxset(A3)}.
3.3.2:

Let maxset max {1 + maxset(S-{v, wl, w2, w3}),
2 + maxset(A rl A3),
2 + maxset(A2 A3)}.

3.4" (w,,wi)E for i,]6{1, 2, 3}.
For 1, 2, 3, let Ai S-{w, w2, w3}-m (wi).
Note that I1 Isl-6 for i= 1, 2, 3.
3.4.1" I211sl-7.

Set {wa, w2, w3} dominates {We, wi} for i, j {1, 2, 3}.
Let maxset max {1 + maxset(S-{v, w, w, w3}),

3 + maxset(A A2 A3)}.
3.4.2:11231 ISl -8 or Isl-9.

If, for some i,], ,111+a, then {v, wi} is
dominated by {w l, w2, w3}.
For distinct i, j, k,
I,1 IA, nA2nAI+IA, n-(,n2nA)I

j. Let l, 2 be the pai (ff auy).
3.4.2.]" I, nll,nnl+

Let maxset max {1 + maxset(S -{v, w, w2, w3}),
3 + maxset(A NA2 n A3)}.

3.4.2.2" In21ln2Nl+2 (or any symmetric
case).
Let maxset=max {1 +maxset(S-{v, Wl, we, w3}),

2 + maxset(A A2),
3 + maxset(A Ae A3)}.

3.4.3" I nANAIIsI- o.
3.4.3.1" Inll2l+a for all i.

Same as 3.4.2.1.
3.4.3.2" 1 21 Ia 2 31 + 2 (or any symmetric

case).
Same as 3.4.2.2.

3.4.3.3" IINA21, I,NA3IIIN2NI+2 (or any
symmetric case).
Let maxset max {1 + maxset(S-{v, Wa, w2, w3}),

2 + maxset(A NA2),
2 + maxset(A n A3),
3 + maxset(A n A2 n A3)}.

3.4.3.4:I1Na], Ia n31, IA2NAI lJ, NA2NAI+2.
For i= 1,2, 3, let u, uz(AiA)-A (], k # i).

FINDING A MAXIMUM INDEPENDENT SET 541

3.4.3.4.1" I_ NI IINNI+ and
(ui 1, uie) E for some distinct i,], k.
Then {wl, we, w3} dominates {%, wk}.
Same as 3.4.3.3.

3.4.3.4.2:Isnl-Innl+2 and
(uil, ue) E for all distinct i,], k. Let

maxset=max {1 +maxset(S-{v, w, we, w3}),
4 + maxset(A nA2 0 A3 A (u 1) A (u 12)),
4 + maxset(A f-I A2 r"l A3-A (u21) -A (U22))
4 + maxset(A f’l A2 f-IA3-A (u31) -A (u32)),
3 + maxset(A (’1A2 r) A3)}.

3.4.3.4.3.
(or any symmetric case).
Let

maxset max {1 + maxset(S-{v, wl, w2, w3}),
4 + maxset(A10AzA3-A(u31)-A(u32)),
4 + maxset(A f) A. f-I A3 A (uel) A (U22))
2 + maxset(A2 (") A3),
3 + maxset(A (-I Ae (’1A3)}.

3.4.3.4.4:Ifilf-lzl=lfilf-qfizfqfi31+2 (or any
symmetric case).
Let

maxset max {1 + maxset(S-{v, Wl, w2, w3}),
4 + maxset(fi,1 f’l fi2 f"l fi3 A (u31) A (u32)),
2 + maxset(A f’l A3),
2 + maxset(A2 r) A
3 + maxset(A 71A2 ["] A3)}.

3.4.3.4.5" Ii f-I il --> Iris1 f"l2 f’l 31 + 3 for
Let

maxset=max {1 + maxset(S-{v, wl, w2, w3}),
2 + maxset(A f-I A2),
2 + maxset(A f-) A3),
2 + maxset(A2 A3),
3 + maxset(A f"l A. f-) A3)}.

4" d(v) 4.
4.1" d(w)= 4 for all vertices w.

4.1.1" There are vertices v, w such that (v, w)E and
A(w)nSl>=2.
4.1.1.1. Ia(v)na(w)nSl>-_3.

Then {v, w} dominates both {v} and {w} in {v, w}.
Let
maxset max{2 + maxset(S -{v, w}-a (v)-A (w)),

maxset(S-{v, w})}.
4.1.1.2: Ia(v)na(w) Sl= 2.

Let x, y (A (v)-A (w)) 71 S, q,
q, r (a(w)-a (v))("l S.
Let A (z) S-{z}-A (z) for z S.

542 ROBERT ENDRE TARJAN AND ANTHONY E. TROJANOWSKI

4.1.1.2.1" (x, y), (q, r)6E.
Then {v, w} dominates both {v} and {w} in
{v, w}.
Let
maxset max {2 + maxset(A (v) NA (w)),

maxset(S-{v, w})}.
4.1.1.2.2" (x, y)eE, (q, r)C_E (orsymmetriccase).

Let
maxset max {2 + maxset(fi, (v) N fi (w)),

3 + maxset(fi.(v)Nfi(w)fi(q)N(r)),
maxset(S-{v, w})}.

4.1.1.2.3" (x, y), (q, r) E,
IA (v) N ft. (w) N fi (q) N ft. (r)l--> Isl- 9
(or symmetric case).
Let

maxset max {3 + maxset(A (v) NA (w) NA (x) NA (y)),
3 + maxset(A (v) N A (w) nA (q) nA (r)),

maxset(S-{v, w})}.
4.1.1.2.4: (x, y), (q, r) E,

[fi (v) n fi (w) N ft. (q) N ft. if)l,
Ifi,(v)n,(w)n,(x)n(y)l<-_lSl 10.
Let

maxset max {2 + maxset(A (v n A (w)),
3 + maxset(fi, (v) n fi (w) N fi (x) n fi (y)),
3 + rnaxset((v) N fi (w) N fi (q) N fi (r)),

maxset(S-{v, w})}.
4.1.2" If (v, w)eE, then [A(v)NA(w)NSI<= 1.

Let A(t)nS={w1, w2, w3, w4}. For i=1,2,3,4, let Ai
S-A(v)-A(wi).Then, for ij, AiNAj=(. Also, if

(wi, wi), (wi, w) E, then (w, w)E E.*
4.1.2.1" (w 1, w) 6 E for 2, 3, 4 (or any symmetric case).

It follows from * above that the problem graph is a

complete graph of five vertices. Let maxset 1.
4.1.2.2" (w, W2) (WI, W3), (W2, w3)E,

(Wl, w4), (we, w4), (w3, w4)e!E (or any symmetric
case).
Let maxset max {1 + maxset(S-{v}-A (v)),

2 + maxset(A r] A4),
2 + maxset(A2 n An),
2 + maxset(A3 n An)}.

4.1.2.3: (Wl, we), (w3, w4)6E,
(W1, W3), (W1, W4), (W2, W3), (W2, W4)E (or any
symmetric case).
Let maxset max {1 + maxset(S -{v}-A (v)),

2 + maxset(A1N A3),
2 + maxset(A2 (’] A3),
2 + maxset(A1N A4),
2 + maxset(A2 N A4)}.

FINDING A MAXIMUM INDEPENDENT SET 543

4.1.2.4" (wl, W2) E E,
(w1, w3) (w2, w3) (w1, w4) (w2, w4) (w3, w4)E
(or any symmetric case).
Let maxset max {1 + maxset(S-{v}-A (v)),

2 + maxset(A CI A3),
2 + maxset(A2 A3),
2 + maxset(A f3 A4),
2 + maxset(A2 fq A4),
2 + maxset(A3 fq A4),
3 + maxset(A (q A3 ["] A4),
3 + maxset(A2 fq A3 fq A4)}.

4.1.2.5" (wi, wi)E for].
Let maxset max {1 + maxset(S -{v}-A (v)),

2 + maxset(A fq A2),
2 + maxset(A I"l A3),
2 + maxset(A f3 A4),
2 + maxset(A2 A3),
2 + maxset(A2 I"] A4)
2 + maxset(A3 f-’l A4),
3 + maxset(A (3 A2 (’] A3),
3 + maxset(A fq A2 (’
3 + maxset(A ("1 A3 f"l A4),
3 + maxset(A2 A3 i"1A4),
4 + maxset(A (’] A2 (’] A3 (’1A4)}.

4.2" d(w)=> 5 for some vertex w.
Let v, w be such that d(v) 4, d(w) >- 5, (v, w) E.
Let maxset max {1 + maxset(S -{w}-A (w)),

maxset(S {w})}.
Note that S -{w} contains a vertex of degree three and all vertices are
of degree three or greater.

5" d (w) 5 for all vertices w.
5.1" [Sl 6.

Let maxset 1.
5.2, Isl > 6.

Let maxset max {1 + maxset(S-{v}-A (v)),
maxset(S {v})}.

Note that S-{v} contains a vertex of degree four, a vertex of degree
five, and all vertices are of degree four or greater.

6" Some vertex w has d(w) => 6.
Let maxset max {1 + maxset(S-{w}-A (w)),

maxset(S {w})}.
end maxset.

3. Resource bounds. Let T(n) be an upper bound on the worst-case running
time of maxset(S) when ISI n. Let T/(n) be an upper bound on the worst-case
running time of maxset(S) when ISI n and case occurs at the outermost level of
recursion. Let p(n) be a polynomial which bounds the running time of the
outermost level of recursion, exclusive of recursive calls. We have the following

544 ROBERT ENDRE TARJAN AND ANTHONY E. TROJANOWSKI

inequalities. (Starred inequalities are cases which are not obviously better than
other cases.)

To(n)_-<max r(ni) Y ni n, 1 <-_ni <-n +p(n).
i=1 i=1

r(n) <-_ r(n 2)+p(n).

T.(n)<-p(n).

r.(n) <= r(n)+p(n).

r:.3(n) < T(n 3) + T(n-5)+p(n).*

T.(n <- T(n 4) +p(n).

T.2(n) <- r(n 4) + r(n 5) +p(n).

T..a(n) <- T(n -4) + r(n -6) +p(n).

r3.3.2(n) < T(n 4) + 2r(n 7) +p(n).*

r3.4.(n) -< T(n 4) + r(n 7) +p(n).

r3.4.2.(n) -< T(n -4)+ r(n 8) +p(n).

r.4.2.2(n) T(n -4) + T(n -6) + T(n 8) +p(n).*

r3.4.3.1(n r(n -4)+ T(n 10) +p(n).

r3.4..2(n) T(n -4)+ T(n 8) + T(n 10)+p(n).

r3.4..3(.n) T(n -4) + 2T(n 8) + r(n 10) +p(n).*

r.4... (n) _-< T(n 4) + 2T(n 8) + r(n 1 O) +p(n).

r.4.3.4.z(n) < r(n 4) + 4T(n 10).*

T.4..4.(n) =< r(n 4) + r(n 8) + 3 r(n 11).*

r3.4.3.4.4(n r(n -4) + 2r(n -9) + 2r(n 12).*

T.4..4.s(n) <-_ r(n 4) + 3 r(n o) + T(n 13).

Z4.a.l.(n) < r(n-2)+ T(n 6) +p(n).*

T4.a.a...(n) < r(n 2) + r(n 8) +p(n).

T4.a..z.2(n) --< r(n 2) + 2 r(n 8) +p(n).*

r4....(n) =< r(n 2)+ 2r(n 8)+p(n).

r4...2.4(n) -< r(n 2)+ r(n 8)+ 2 r(n 10)+p(n).*

T4..2.1(n) <=p(n).

r4.1.2.2(n)

r4.1.2.3(n)

r4.1.2.4(n)

<--_ T(n 5) + 3 T(n 9) +p(n).
<- T(n 5) + 4r(n 9) +p(n).*
<-_ T(n 5) + 4T(n 10) + T(n 11) + 2T(n 13) +p(n).

FINDING A MAXIMUM INDEPENDENT SET 545

T4.1.2.5(n) =< T(n 5) +6T(n 11) + 4T(n 14) + T(n 17) +p(n).*

T4.2(n) -< T3(n 1)+ T(n -6)+p(n)
_-<max {T(n 5) + T(n 6), T(n-5)+2T(n-8), T(n 5) + T(n 7)

+ T(n 9),

T(n 5) + 2 T(n 9) + T(n 11), T(n 5) + 4T(n 11),

T(n 5) + T(n-9)+3T(n- 12), T(n-5)+2T(n- 10)
+2T(n- 13)}

+ T(n- 6) +p(n).

Ts.l(n)<=p(n).

Ts.2(n) =< T4.2(n 1) + T(n -6) +p(n)

-<max {T(n-6) + T(n 7), T(n-6)+2T(n-9), T(n 6) + T(n 8)
+ T(n- 10),

T(n-6)+2T(n- 10)+ T(n- 12), T(n-6)+4T(n- 12),

T(n-6)+ T(n- 10)+3T(n- 13), T(n-6)+2T(n- 11)
+ 2T(n 14)}

+ T(n 6) +p(n)
T6(n) -< T(n 1)+ T(n 7) +p(n).

T(n) <- max T (n).

From each of the recursive bounds

T(n) <- aT(n-b)+p(n)
i=1

we get a polynomial equation

X bk aix bk-bi.
i=1

If y is the maximum of the positive solutions to all these equations, cy+ is a
bound on the running time of the algorithm. It happens that the value of y is
slightly less than x. By means of a tedious calculation using Table 1, one can
prove by induction that T(n)<=c2/3 without solving lots of polynomials. The
constant c depends upon p(n). The worst cases of the recursion are 4.1.1.2.4 and
4.1.2.5.

The storage required by the algorithm is certainly polynomial, since the depth
of recursion is only O(n). With careful programming, the storage required can be
made linear in the size of the graph.

4. Conclusions. We have presented a recursive algorithm which finds a
maximum independent set in a graph of n vertices in O(2n/a) time. The algorithm
is an extension and improvement of one described in [10]. Though the case

546 ROBERT ENDRE TARJAN AND ANTHONY E. TROJANOWSKI

TABLE
Fractional exponentialsfor inductive proofoftime bound

n/3

1.2599 9
1.5876 10
2.0000 11
2.5198 12
3.1747 13
4.0000 14
5.0397 15
6.3496 16

2n/3

8.0000
10.079
12.699
16.000
20.158
25.398
32.000
40.317

analysis used is lengthy, the algorithm could be programmed easily, and we
believe the algorithm would perform well in practice. It may also be possible to
simplify the algorithm somewhat by combining cases; we leave such a simplifica-
tion as an open problem.

Nevertheless, the main interest of the result is theoretical; it shows that even
for NP-complete problems it is sometimes possible to develop algorithms which
are substantially better in the worst case than the obvious enumeration
algorithms. Whether the algorithm presented here can be improved substantially,
and whether similar algorithms can be developed for other NP-complete prob-
lems, are open questions. Recently, Chvatal (private communication) has shown
that certain kinds of recursive algorithms for finding a maximum independent set
must use 2 time in the worst case, for some small positive e. His lower bound
applies to the algorithm presented here.

REFERENCES

[1] J. G. AUGUSTIN AND J. MINKER, An analysis o[some graph theoretical cluster techniques,
J. Assoc. Comput. Mach., 17 (1970), pp. 571-588.

[2] E. BALAS AND A. SAMUELSON, Finding a minimum node cover in an arbitrary graph,
Management Sciences Research Rep. 325, Graduate School of Business Administration,
Carnegie-Mellon Univ., Pittsburgh, PA, 1973.

[3] C. BRON AND J. KERBOSCH, Algorithm 457: Finding all cliques o[an undirected graph, Comm.
ACM, 16 (1973), pp. 575-577.

[4] S. COOK, The complexity of theorem-proving procedures, Proc. Third ACM Symposium on
Theory of Computing, Association for Computing Machinery, New York, 1970, pp. 151-
158.

[5] E. HOROWITZ AND S. SAHNI, Computing partitions with applications to the knapsack problem,
Tech. Rep. 72-134, Computer Sci. Dept., Cornell Univ., Ithaca, NY, 1972.

[6] H. C. JOHNSTON, Cliques of a graph: Variations on the Bron-Kerbosch algorithm, Internat. J.
Comput. and Information Sci., 5 (1976), pp. 209-238.

[7] R. KARP, Reducibility among combinatorial problems, Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.

[8] G. D. MULLIGAN AND D. G. CORNEIL, Corrections to Bierstone’s algorithm for generating
cliques, J. Assoc. Comput. Mach., 19 (1972), pp. 244-247.

[9] G. L. NEMHAUSER AND L. E. TROTTER, JR., Vertex packings: Structural properties and
algorithms, Math. Programming, 8 (1975), pp. 232-248.

10] R. TARJAN, Finding a maximum clique, Tech. Rep. 72-123, Computer Sci. Dept., Cornell Univ.,
Ithaca, NY, 1972.

SIAM J. COMPUT.
Vol. 6, No. 3, September 1977

SUCCINCTNESS OF DESCRIPTIONS OF UNAMBIGUOUS
CONTEXT-FREE LANGUAGES*

ERIK MEINECHE SCHMIDT AND THOMAS G. SZYMANSKI:I:

Abstract. There is no recursive function bounding the succinctness gained using ambiguous
grammars rather than unambiguous ones in the description of unambiguous context-free languages.

Key words, inherent ambiguity, size of grammars, encoding ofTM computations, halting problem

1. Introduction. In this paper we examine the relationship between the size
of ambiguous and unambiguous context-free grammars generating the same
language. We show that for certain languages the presence of ambiguity in a
grammar allows it to be much smaller than any unambiguous one. Specifically we
show that for any recursive function there is a language such that the gap between
the size of the two types of grammars is not bounded by the function.

The same result is known in two other cases. Meyer and Fischer [3] proved it
for descriptions of regular (in fact cofinite) languages using finite automata and
ambiguous context-free grammars, and Valiant [6] recently proved it for deter-
ministic pushdown automata (dpda) and unambiguous grammars. Both results are
based on the idea of encoding large Turing machine (TM) computations in small
context-free grammars, as described by Hartmanis [2]. Meyer and Fischer’s result
follows easily from this, whereas Valiant has to prove a "repetition lemma" for
dpda’s in order to get his theorem.

Here we also use the encoding of TM computations but rather than the dpda
property we use Ogden’s Lemma [4] for context-free languages in an argument
which is similar to the proof of the existence of (inherently) ambiguous languages.

2. Preliminaries. We assume that the reader is familiar with the usual
concepts associated with context-free grammars as described, for example, in the
book by Aho and Ullman [1]. We will denote the length of a string x by Ix [, and the
reversal of x by xn. The empty string will be represented by A. The symbols * and /

will be used in their usual sense of "zero or more" and "one or more" respectively.
In order to talk about economy of descriptions we first have to define what we

mean by the size of Turing machines and context-free grammars. We use the same
definitions as in [6].

DEFINITION.
(a) LetM be a TM with q states and tape symbols. The size ofM (size (M))

is equal to q t.

* Received by the editors April 30, 1976, and in revised form October 6, 1976.
? Department of Computer Science, Cornell University, Ithaca, New York 14853. The work of

this author was supported in part by Aarhus University, Aarhus, Denmark, and by "Thanks to
Scandinavia, Inc.", New York.

$ Department of Electrical Engineering and Computer Science, Princeton University, Princeton,
New Jersey 08540. The work of this author was supported in part by the National Science Foundation
under Grant DCR 74-21939.

547

548 ERIK M. SCHMIDT AND THOMAS G. SZYMANSKI

(b) Let G be a context-free grammar. Its size (size(G)) equals the total
number of occurrences of terminal and nonterminal symbols in the
productions.

Let denote the class of deterministic one-tape Turing machines which
always halt (eventually) when started on a blank input tape. For technical reasons
we assume that these machines cannot write the blank symbol. Thus at the end of
such a machine’s computations, every tape cell which had been scanned by the
machine during the course of its computation will be left nonblank. We also
assume that machines in 0//always halt after performing an odd number of steps.

Let M be an arbitrary machine from 0//. Let O and F represent respectively
the state set and set of tape symbols of M. The blank symbol is not considered to be
a member of F. A configuration of M is any string in F’OF*. A configuration
represents, in the natural fashion, the nonblank portion of M’s tape, M’s state and
head position at some moment in time. A computation of M on input x is a
sequence of configurations zl, z2 zn such that 1) each zi is a configuration of
M, 2) z is the starting configuration of M on x (i.e. z qox where q0 e O is the
start state of M), 3) each zi follows from z_a by application of the transition
function of M (denoted z NEXTM(Zi_I)) and 4) zn is a halting configuration of
M, that is, a string in F*FF* where F is the set of final states of M.

3. Languages associated with q/. In this section we will describe a way to
embed Turing machine computations in context-free languages.

Let M be an arbitrary machine from o//. Let {#, a, b, c} be a set of new
symbols disj_oint from both O and F, and let A O I,,J F U { # }. We associate two
languages, LM and LM, with M as follows:

L-M {Xl#X # x3 #x #’’’ #x,abc
(a) n>=l,i>-l,]>=l
(b) Xl is the starting configuration of M when started on blank tape,
(C) X2p NEXTM(X2p_I) for 1 -_<p =<n},

M {Yl #Y# Y3 Y YnalY2"’-lbici[
(a) n>--l,j>-i
(b) Y2p+l NEXTM(y2p) for 1___< p < n
(c) Y2, is a halting configuration of M}.

Observe that both L-M and M are subsets of A+a/b/c /. 1vt and t have been
chosen to generate strings consisting of pairs of M-configurations. In LM, the
odd-even pairs represent single steps of M, and in LM, it is the even-odd pairs
which represent single steps.

It is easy to see that LM and LM have unambiguous context-free grammars,
GM and GM respectively, whose sizes are no bigger than a constant times the size
of M. If we take their union, we get a grammar GM for the language

LM LM ULM
having the property that

size(GM) C size(M)

for some constant C independent of M. This grammar, however, is ambiguous
because LM f3 L2 is nonempty. Indeed, this intersection contains exactly one string

UNAMBIGUOUS CONTEXT-FREE LANGUAGES 549

z which corresponds to the computation z l, z2,’’’, Z2n of M started on blank
tape in the following way:

z zl #z #" #z,aNbcN

where N is the amount of tape used during the computation.
Since/2t (3t is a finite set, Lt also has an unambiguous context-free

grammar. One way of pr_oducingsuch a grammar is to first construct unambiguous
pda’s for the languages Lt and Lt. Modify the pda fort by adding appropriate
states to its final control to enable it to reject z. Convert the pda’s to grammars,
take their union, and the result is an unambiguous grammar for Lt. Its size,
however, is large due to the extra machinery necessary to avoid generating z in
two different ways.

In the next section we are going to prove that any unambiguous grammar for
Lt must be huge if z is long.

4. Property of unambiguous grammars for LM. Here we prove that since the
word z has inherited two different structures (one from Lt and another from Lt)
it will have two different derivations in any small grammar generating Lt. The
proof is very similar to the proof that {aibJckli =j/j=k} is an ambiguous
language which can be found on p. 205 of Aho and Ullman [1]. It uses the
following result from [4].

LEMMA (Ogden). Let G be a context-free grammar with m symbols (terminals
and nonterminals), let be the length ofthe longest right-hand side ofthe productions
and let k max {3,/2,+3}. If z L(G), Izl >-_ k and if k or more positions in z are
designated as being "distinguished" then z can be written as uvwxy such that

1) w contains at least one of the distinguished positions,
2) either u and both contain distinguished positions or x and y both contain

distinguished positions,
3) vwx has at most k distinguished positions,
4) there is a nonterminal A such that

S uAy uviAxy z: uvwxy for all >- O.

Using Ogden’s Lemma we can prove the key lemma of the paper.
LEMMA 1. Let M be in oR and let N be the amount of tape used in its

computation on blank tape. Let G be any context-free grammar generating Lt and
let k be the constant from Ogden’s Lemma. IfN >-_ k + k then G is ambiguous.

Proof. Consider the language Lt and the corresponding string z as described
in the previous section. Let us rewrite z as aaNbUc where a A+ is that portion
of z representing the computation of M. We will show that if N-> k + k then z has
two different derivations in G (recall that {z} L f3 Lt).

Assume thatN k +j where] => k and consider the word z’ aaUbJc which
is a member oft and therefore of Lt. Since] _-> k, we may distinguish all the b’s
in z’ and write z’ as

z’ uvwxy

where u, v, w, x and y satisfy the conditions of Ogden’s lemma. We claim that

550 ERIK M. SCHMIDT AND THOMAS G. SZYMANSKI

v consists entirely of b’s, x consists entirely oj" c’s and Ivl Ixl. The argument is as
follows.

If x and y both have distinguished positions, then x b / because w has at
least one distinguished position. This implies that v is A or else v is a member of
A+, A+a +, A+a+b +, a +, a+b + or b +.

If v does not contain any a’s then the string uwy is of the form a’aNbJ-ic for
some >0. Since this string has different numbers of a’s, b’s and c’s it can’t be a
member of Lt and so v must contain at least one a. If v contains other symbols
than a’s, then the string Ul)2wx2y is not in A+a*b*c * and hence not in Lt. Thus,
v a +. Now uwy aN-Ilbi-lxlc and ut92wx2y oaN+lvlbJ+lxlc are both in Lt.
This implies that N-Iv 1= j -Ix landN+ Iv 1= j + Ix which contradicts the fact that
N j. Hence the possibilities for v are exhausted and we may conclude that x and
y do not both have distinguished positions.

Accordingly, u and v must both have distinguished positions. Moreover,
v b +. The possible locations for x are x A, x b +, x b +c + or x c +. The first
two possibilities are eliminated by considering uwy aNbY-lvl-lxlc and the third
possibility is eliminated by noting that uv2wx2y is a member of A/a/b/c/b/c+.
This means that v b + and x c /. Moreover, if Iv IS Ix I, then the string uwy
aNbJ-lVlc-Ixl is certainly not in LM, and the proof of our claim is completed.

According to Ogden’s Lemma there exists a nonterminal A such that z’ can
be derived as shown below:

S uAy uvAxy uvwxy z’.

Since v consists entirely of distinguished positions and vwx has at most k
distinguished positions, < k and so divides k! Let/= k! I. By repeating
the subderivation A vAx exactly times, we can derive z in the following way:

S uAy uvtAxty

* ly IvUOIwx oaNb+l IcY/llvl-- z.

(Recall that N=
Now let us consider the string z ’’= aabic1 which is a member of/SM and

hence LM. By distinguishing all the b’s in z" and arguing in a fashion similar to the
above, we can write z" as z"= uvwxy with It51 [1, 5 a / and b +. As before,
there exists some nonterminal B and integer m for which

S aBy

To complete the proof we will show that the two derivations of z described
above have different derivation trees. Assume the contrary. Then the derivation
tree for z contains a node labeled A and a node labeled B. No A node can be a

UNAMBIGUOUS CONTEXT-FREE LANGUAGES 551

descendant of a B node in any derivation tree, for if it were, there would be a
derivation of the form B t2At4 in the grammar, and consequently LM would
contain words of the form

tla lOlt2b lVlt3c lVlt4b
Similarly, B is not a descendent of A. This means that A and B are incomparable
in the derivation tree for z and hence there are terminal strings sl, s2, and s3 such

+ +
that S slBs2As3 in G. By inserting the subderivations B :ff 3Bg and A vAx
we can produce, for any integer i, the string slf’g’s2v wx s3. By choosing
sufficiently large, we can produce strings having many more b’s than either a’s or
c’s. Such a word is clearly not in LM, contradicting our assumption that the two
derivations of z correspond to the same tree, Accordingly, G is ambiguous.

5. The size of an unambiguous grammar for LM. We use Lemma 1 to show
that the size of any unambiguous grammar for L4 must grow with the amount of
tape used in M’s computation.

LEMMA 2. There exists a constant C with the following property: LetM be a
machine in 71 which uses Ntape cells in its computation. Let G be an unambiguous
grammar generating L. Then

size(G) >-_ C [log log N]1/.

Pro@ Let m and be, respectively, the number of symbols in G and the
length of the longest right side of a production in G. Let g size(G). We know
from Lemma 1 that

N<(12m+3)!+l2m+3.

Since m is at least 2 (otherwise G could only generate strings of length 0 and 1) we
must have 2m + 3 -< 4m. In addition, m _-< g and _-< g. Hence

N< (g4g)! + g4g _< 2(g4g)!

which implies (since g -> 2) that

N< (g4g)(gZtg)
Taking logarithms twice, we obtain

log log N< 4g log g + log 4 + log g + log log g

-< 4g log g + 4 log g

_<- 6g log g

__<6g

which is what we want. !-1
Now we can prove our main .result.
THEOREM. There is no recursivefunctionFwith thefollowingproperty" For all

ambiguous context-free grammars G generating an unambiguous language there

552 ERIK M. SCHMIDT AND THOMAS G. SZYMANSKI

exists an unambiguous grammar G. generating the same language such that

size(Gu) <-_F(size(Ga)).

Proof. Assume the contrary and consider some Lt whereM is in 0//. Since Lt
has an ambiguous grammar G such that

size(G) _-< const. size(M)

we get--using Lemma 2 and the function F (which we may assume to be
increasing)--

C" flog log N]1/2 <=size(G) <=F(size(G)) =<F(const. size(M))

where N is the amount of tape used in M’s computation. But this means that there
is a fixed recursive relation between N and size (M) for all machines in R and this
immediately enables us to decide whether an arbitrary TM halts when started on
blank tape.
Thus we have a contradiction and we may conclude that the theorem is true. 71

6. Conclusion. The result proved in this paper answers one of the questions
left open by Valiant [6]. If we consider the relative succinctness gained using finite
automata, deterministic pushdown automata, unambiguous context-free gram-
mars and arbitrary context-free grammars we get the following table (see Table 1)

TABLE
Bounds on relative succinctness

New

descriptor

fa

dpda

ucfg

cfg

fa dpda ucfg cfg

recursive ?
nonrec

nonrec
nonrec
nonrec

representing bounds on the size savings achieved by substituting a more powerful
descriptor for the original descriptor of a given language. The recursiveness of
fa-dpda was proved by Stearns [5]. The nature of the relation between fa and ucfg
is still open.

Acknowledgment. The authors wish to thank Leonard Berman and the
referees for their remarks on earlier drafts of this paper.

REFERENCES

[1] A. V. AHO AND J. D. ULLMAN, The Theory of Parsing, Translation and Compiling, Vol. 1:
Parsing, Prentice-Hall, Englewood Cliffs, NJ, 1972.

[2] J. HARTMANIS, Context-flee languages and Turing machine computations, Proc. Sympos. Appl.
Math., vol. 19, American Mathematical Society, Providence, RI, 1967 pp. 42-51.

UNAMBIGUOUS CONTEXT-FREE LANGUAGES g 5 3

[3] A. R. MEYER AND M. J. FISHER, Economy of description by automata, grammars and formal
systems, Proc. 12th An. Sympos. on Switching and Automata Theory (1971), IEEE
Computer Society, Silver Spring, MD, pp. 188-191.

[4] W. OGDEN, A helpful result for proving inherent ambiguity, Math. Systems Theory, 2 (1968),
no. 3, pp. 191-194.

[5] R. E. STEARNS, A regularity test]’or pushdown machines, Information and Control 11 (1967),
pp. 323-340.

[6] L. G. VALIANT, A note on the succinctness of descriptions of deterministic languages, Information
and Control, 32 (1976), no. 2, pp. 139-145.

SIAM J. COMPUT.
Vol. 6, No. 3, September 1977

THE PARTIAL FRACTION EXPANSION PROBLEM
AND ITS INVERSE*

FRANCIS Y. CHIN"

Abstract. The partial fraction expansion problem and its inverse are studied and it is shown that
these two problems can be solved in O(N log N) steps for those rational functions with N simple
poles, O(N log N) steps for those with a single multiple pole of order N and O(N log N(log n + 1))
steps for the general multiple pole case, where N is the degree of the denominator polynomial and n is
the number of distinct poles. We further show that the evaluation of a rational function and its
derivatives at a given point can be done more efficiently than previously known. Previous known
algorithms for the partial fraction problem and its inverse require O(n 2) steps.

Key words, partial fraction decomposition, asymptotic arithmetic complexity, polynomial
evaluation, rational functions

1. Introduction. In Laplace and z-transform analysis and many other appli-
cations, we encounter the problem of breaking up rational functions into a sum of
simple components, which sum is called a partial fraction expansion. Consider the
following rational function which has no common factors in the numerator and
denominator polynomials,

m--1 n--1

F(x)=P(x)/Q(x) 1-[(X--Zi)di H (x-Pj)c
=0 /’=0

with zeros zi of multiplicity di and poles pj of multiplicity cj. If p is a simple zero
(c 1) of the denominator polynomial O(x), then pi is said to be a simple pole of
the rational function. If ci r > 1, then pj is called a multiple pole of order r.

The partial fraction expansion can be obtained by solving a system of linear
equations, which takes O(Nz81) steps by Strassen’s method [ST69]. Here, N is the
degree of the denominator polynomial, assumed to be greater than the
numerator’s degree. Another approach is to find the residues of the poles, which
still takes O(N2) steps for the simple pole case, and more than O(N2) steps for the
multiple pole case by Brugia [BR] and Linner’s method [LI]. By applying those
better algorithms given in [CS] or in Pottle’s paper [PO], the general problem for
the multiple pole case can be solved in O(N2) steps. In this paper, we are going to
study the asymptotic complexity of this problem. We have shown that the partial
expansion problem is reducible to the polynomial evaluation problem and can be
done in O(Nlog2 N) steps for those rational functions with simple poles,
O(NlogN) steps for the case of a single multiple pole, and O(NlogN
(log n + 1)) steps for the general multiple pole case, where n is the number of
distinct poles in F(x). Furthermore, we show that the evaluation of the derivatives
of a rational function at a certain point is reducible to the partial fraction

* Received by the editors May 21, 1976.
t Department of Computing Science, University of Alberta, Edmonton, Canada T6G 2H1. This

research is part of the author’s Ph.D. dissertation and was carried out at Princeton University. This
work was supported by National Science Foundation under Grant GK-42028 and the U.S. Army
Research Office-Durham under Contract DAHC04-69-C0012.

Part of these results also appear in [CU].
554

THE PARTIAL FRACTION EXPANSION PROBLEM 555

expansion problem and thus can be done more efficiently than by previously
known algorithms.

For the second section of this paper, we shall study the inverse of the partial
fraction expansion problem and show that it will take O(N log2 N) steps for the
simple pole case, O(NlogN) steps for the single multiple pole case and
O(N log N(log n + 1)) steps for the general multiple pole case, analogously to the
results of the partial fraction expansion problem.

2. The partial fraction expansion problem (PF problem). In what follows we
shall work over the field of complex numbers. The PF problem can be defined
thusly:

PFproblem: Given a rational function

M

(1) F(x) P(x)/Q(x) Z dixi/ H (x _pj)C,
=o =o

with N= ’_Y c >M, we want to find the K,i’s such that

n-1 c
F(x) 2 KLi/(x-P)i. [’]

y=Oi=l

Usually, K,i is calculated by the following formula"

K .,i [1/(q
where

Qj(x) Q(x)/(x-pi)c, 1-!i (x-pi)c’,
i=0

and D is the differentiation operator. The Ki, can be related to the truncated
Taylor expansion of P(x)/Qj(x) by

P(x)/Qi(x) K,c, + KLc,-a(X -pi) + + Ki, l(X _pj)C,-i +....
Now, we are going to bound from above the asymptotic complexity of the PF

problem by means of algorithms for fast polynomial evaluation, multiplication
and division. Furthermore, we shall make use of the O(n logZn) n,point evalua-
tion algorithm [MB], [KU] to solve this problem for the simple pole case.

THEOREM 1. The PF problem for the case of N simple poles can be done in
O(N logZN) steps.

Proof. Writing

F(x) P(x)/Q(x)
i=o

dixijH=ol (x -p)

we know that

N--1

Y
]=0

N--1

Kk =[P(x)/ H (x-Pi)]lx=pk P(x)/O’(x)lx=pk
]=0

for k =0, 1,... ,N-1.

556 FRANCIS Y. CHIN

Q(x) can be computed as 7=0 ajx in O(N log2N) steps and its derivative
O’(x) can be found in O(N) steps. Since O’(x) and P(x) are two polynomials of
degree at most (?4- 1), there exists an 0(?4 log274) algorithm [MB], [KU] for the
evaluation of O’(x) and P(x) at Pk, k 0, 1,..., N- 1. [-1

Now we shall show that the PF problem for the single multiple pole of orderN
is equivalent to evaluating an (N- 1)st degree polynomial and all its derivatives.

DEFINITION. A =<B means that problem A is reducible to problem B in
linear time, and we say that problem A is equivalent to problem B iff A -< B and
B<-A.

THEOREM 2. The PF problem for the single multiple pole of order N is
equivalent to the evaluation problem of an (N- 1)-st degree polynomial and all its
derivatives at any point.

Proof. We have

N

F(x) P(x)/(x -pl)N= y’. Ki/(x -pl)
i=1

with KN-j (1/j!)(DP(x))lx=pl where j 0,..., N- 1.
So the PF problem is reducible to the evaluation problem for P(x). Con-

versely, by letting P(x) be any (N-1)st degree polynomial, the evaluation
problem for P(x) and all its derivatives at Pl is reducible to the PF problem for a
single multiple pole of order N at P l.

COROLLARY 1. The PFproblem for the single multiple pole of order Ncan be
done in O(N log N) steps.

Proof. An (N- 1)st degree polynomial and all its derivatives can be evaluated
at any point in O(N log ?4) steps [ASU], [VA]. So by the above theorem, this PF
problem can be done in O(N log N) steps. [-I

Besides these two particular cases, the general multiple pole problem can also
be solved asymptotically more efficiently than in O(N2) steps. Before showing
this, we are going to prove that the first N terms in the truncated Taylor series of
any rational polynomial function can be obtained in O(N log N) steps.

LEMMA 1. Given P(x) =0 aiXi and O(x)= 7=o bixi, where O(x) does not
have a root atx O, the first?4terms in the truncated Taylor expansion ofP(x /Q(x
at x 0 can be computed in O(N log N) steps.

Proof. From [SI], the first ?4 terms of 1/Q(x) can be found from the first
terms of Q(x) in O(?41ogN) steps. With another 0(741og?4) steps, we can
multiply the first N terms of 1/Q(x) by the first ?4 terms of P(x) and obtain the first
N terms in the truncated Taylor expansion of P(x)/Q(x) at x O.

LEMMA 2. Given P(x)= ’=o aixi and O(x) =o bixi, the firstNterms in the
truncated Taylor expansion of P(x)/Q(x) at any point which is not a root of O(x)
can be found in O(N log N) steps, where m, n <-N.

Proof. Taylor expansion of a polynomial at any point requires O(N log N)
steps [ASU], the proof then proceeds as in Lemma 1. [-1

i=o ci N can beLEMMA 3. All I (x (X pi)C’ 0, n 1, where n-1

computed in O(N) steps.
Proof. It is easy to see that each Ig(x) takes only O(cg) steps by the recurrence

formula ak=((cg-k+l)pi/k)ag_l where Ii(x)=’=oac,_ix. Thus it follows
immediately that all the Ig(x) can be computed in O(N) steps. [-I

THE PARTIAL FRACTION EXPANSION PROBLEM 557

depth

depth 2

depth (log n)

lo(x) ll(x) 12(x) 13(x) l._z(x

/’

Q(x)

LEMMA 4.
FIG.

n-1

O(x)= II (x-p,)
i=0

n-1can be obtained in O((N log N)(log n)) steps where N =o c.
Proof. See Fig. 1.
Since the sum of the degrees of all the terms at any depth is N, the

computation of all the terms at depth from the terms at depth (i- 1) takes
O(N log N) steps. The result follows immediately from the fact that the depth of
the tree is log n.

Now we are going to show that the general PF problem is reducible to the
problem of evaluating a polynomial of degree N and its first (cj- 1) derivatives at
points xj where j 0,-.., n- 1 and N ’__- ci. This evaluation problem has
been shown in [CH] that it can be done in O(N log N(log n / 1)) steps. Thus, we
can show that the general PF problem can be done in the same number of steps
which matches with its two extreme cases, O(N log2N) and O(N log N) steps
when n N and n 1 respectively.

THEOREM 3. The general PF problem with n distinct poles requires no more
than O(N log N(log n + 1)) steps.

Proof. Let
F(x) P(x)/ [-I (x

,/(x-p)
1--0 i=1

where n--1Y4=o c =N. It is shown in Lemma 4 that the computation of O(x)=
n--1Hj=o (x -p.) takes no more than O(N log N log n) steps.

Let’s first consider
n-1

G(x)=P(x)/ H (x-p) =P(x)/O(x)
./=0
./#k

k-1
E gk,c-i(X--pk)i+’’"
i=0

where Kkxk-i (1/i!)(DiGk(X))l,=pk.

558 FRANCIS Y. CHIN

Basically, we do the Taylor expansions at each of the poles, and it will be
sufficient if the first (c/- 1) terms o the truncated Taylor expansions of P(x) and
Q/(x) at the poles xi are known. As for P(x), the evaluation of P(x) and its first
(c-1) derivatives at the poles xi will take no more than O(N log N(log n + 1))
steps by the results in [CH]. Although each Q(x) is different for each pole p/, we
can write

n-1

O(x)= 1-I (x-p),
k=0

SO

or

(i)D(O(x))[=. c/!D-q (O/(x))l =p

Dh Q(x))l,,=pj [h /(ci + h !][DC’+h Q(x))]l,,=pj.

Therefore, to evaluate all the DiO(x)lx=pj for i=0, 1,-.., c-1 and all
] 0, 1,. , n- 1, we evaluate O(x) and all its (2ci- 1) derivatives at.all the pi’s
and this will take no more than O(N log N(log n + 1)) steps [CH]. Hence all the
g],i’S can be found in O(N log N(log n + 1)) steps. [-1

3. The evaluation problem for rational functions. In Theorem 2, we have
shown that the evaluation problem of an (N-1)st degree polynomial and all its
derivatives at any point is equivalent to the PF problem for the single multiple pole
of order N. We can now show some similar equivalences.

THEOREM 4. The problem of finding the L coefficients of 1/(x-po) where
1, 2,..., L, in the PF expansion of P(x)/[(x-po)tQ(x)] is equivalent to the

evaluation problem of P(x)/Q(x) and its (L- 1) derivatives at po, as long as Po is
not a root of either P(x) or Q(x).

Proof. The result follows trivially from the equations below:

L

F(x)=P(x)/(x-po)LQ(x) E Ki/(x-po) +""
i=1

and

KL-, (1/i !)[Di (p(x)/Q(x))]l,,=po

where 0, 1, , L 1. [-1
n--1COROLLARY 2. If F(x) P(x)/O(x)= Y’,i=o dix /I-I]=o (x _pi)C where M<

n--1]i=o ci + L, then the evaluation ofF(x and its first (L 1) derivatives atPo which is
not a root of P(x) or O(x) can be done in O((N+L) log (N+L) log (n + 1)) steps,
where N Y4=o c/. !--!

THE PARTIAL FRACTION EXPANSION PROBLEM 559

COROLLARY 3. Similarly for
N--1

(i) F(x)=P(x)/ I-[(x-p in O((N+L) log2 (N+L)) steps,
/=0

(ii) F(x)= P(x)/(x -pa)1 in O((N+L) log (N+L)) steps,

(iii) F(x)= P(x)/(x--Pl) in O(L log L) steps.

4. The inverse of the partial fraction expansion problem (IPF problem). The
IPF problem is defined as:

IPFproblem. Given

(2) F(x)= X (xj=0 i=1

find the di’s, 1, , N- 1, such that

N-1 n-1

F(x)= Z dixi/ I-I (x-pc’,
=0 =o

where N }’__- c/. l-I
THEOREM 5 (simple pole case). If all the c/’s in (2) are 1 (i.e. all the poles are

simple) the IPFproblem can be done in O(N log2N) steps.
Proof.

NI g/1 NI (N-1)/N--1F_x.(
/=o (x P/) /=o K,l,kl-I=o (x Pk) /=0 (X p/).

k ej

By the divide and conquer approach to compute the summation in the
numerator

1 (N--1) (N--1)(N/2-1 IN/2--1))Kj,1 H (X--pk) H (X--pk) --0 KI’’I 2 (X--pk)
j=O \k=O k=N/2 k=O

kj kj

N-1 N--1

k e/

this IPF problem can be solved in O(N log2 N) steps. [-]

THEOREM 6 (single multiple pole case). If n 1 in (2), i.e. F has only one
multiple pole oforderN, then this IPFproblem can be solved in O(N log N) steps.

Proof.
N

F(x)= g]/(x-pl)
/=1

N, K/(x--pa)N-//(x--pl)N,
/=1

560 FRANCIS Y. CHIN

N N-1

E/,-(x-p)u-;= Z I’;,,,-(x-p,)

K_ p{-x
=o =o

2 - p-’x
i=0 j=i

gj)g(i -]) x/i
i=O

where f(k) Ku_kk for 0 k N- 1,

pk/(--k)[, -N+ lk 0,
g(k)

O, lkN-1.

It is easy to see that f(k) and g(k) can be computed in O(N) steps, and since the
inner summation in the above formula is a convolution which can be evaluated in
O(N log N) steps, the coefficients of x can be found in O(N log N) steps.

There exists an O(N log N(log n + 1)) algorithm for the general IPF problem
with multiple poles.

TEOREM 7. e IPFproblem can be solved in O(N log N(log n + 1)) steps.
Proof. It suffices for us to consider the case when n > 1 and not all the cy’s are

1. Let’s first consider the summation of all the terms with the same pole with ci > 1,

(x) K,i/(x _p)i (x)/(x -)
i=l

where
cj

Hj(x) E K],i(x p]
i=l

which can be calculated in O(c log c.) steps as proved in Theorem 6. Let Cp be the
constant for this computation; then all the /-/.(x) can be computed in
Cp 2= c log c CpN log N O(N log N) steps.

Let (x) (x p)C. Lemma 3 shows that all the (x)’s can be computed in
O(N) steps. Now we can write (2) as

F(x): E [(x)/(x)]
=0

.(x) Ik(X) (X).
k=0
k #y

Assume n 2r. We have

1 n--1 [n/2--1 /n/2--1

j=O

+J0,/- * .(x I(x
2 k =n/2

THE PARTIAL FRACTION EXPANSION PROBLEM 561

depth

depth 2

Ho(x) H t(x) Hz(x) H3(x)

+ +

Lo, L2,3

J2,3" *
"+

Lo,3

Hn- Hn-

+

gn 2,n

+

gn 4,n-

depth (r- 1)

Lo,n/2-1 Ln/2,n-

Jn/2,n-l*/Jo,n/2-1*
depth Lo,. P(x)

FIG. 2

where Je,]-I=e/(X). All the J2,(j_l)+l,2/ where 1,. ., 2r-i’, 1, r, can
be computed in O(N log N log n) steps by saving the intermediate results when
building up the tree in Lemma 4. Finally, we want to show that

n--1 n--1I-Ik =0,k jj=0 H.(x) Ik(X) can be computed in O(N log N log n) steps.
Letting L,t=](=/-/(x)n=,/(x), we have the computation tree in

Fig. 2.
So, it can be shown by the similar argument as given in Lemma 4 that the

number of steps for computing all the terms at each depth is O(N log N). Since the
height of this tree is log n, Lo,n-1 can be in O(N(log N)(log n + 1)) steps. U

5. Conclusion. The partial fraction expansion problem is also investigated by
E. Horowitz [HO]. Instead of assuming a linearly factored denominator, he
considers the partial fraction expansion problem with the denominator polyno-
mial in its square-free factorization form.2 Algorithms of cost >O(N4) are
presented, but there is no fundamental dispute with the results in this paper. In
[HO], Horowitz deals with rational numbers where the complexity of each
arithmetic step depends on the size of the numbers, while in this paper, the field of
complex number is used and each complex arithmetic step is assumed to be unit
cost. Anyway, the assumption that the denominator of the rational function is

Let B be a polynomial of positive degree and B 1-Ii=0 B where each Bi is square-free (i.e., Bi
has no divisor of multiplicity _-> 2), and the Bi are pairwise relative prime for _-< _-< k. Then H’=o BI is
called the square-free factorization of B. Algorithms for square-free factorization are presented in
[YU].

562 FRANCIS Y. CHIN

given in an already factored form is one basic weakness of the paper; the general
case is considered by Kung and Tong in [KT].

REFERENCES

[ASU] A. V. AHO, K. STEIGLITZ AND J. D. ULLMAN, Evaluation ofpolynomials at a fixed set of
points, this Journal, 4 (1975), pp. 533-539.

[BR] O. BRUGIA, A noniterative method for the partialfraction expansion of rational functions with
higher order poles, SIAM Rev., 7 (1965), pp. 381-387.

[CH] F.Y. CHIN, A generalized asymptotic upper bound on polynomial evaluation and interpolation,
this Journal, 5 (1976), pp. 682-690.

[CS] F. Y. CHIN AND K. STEIGLITZ, An O(N2) algorithm for partial fraction expansion, IEEE
Trans. Circuits and Systems, CAS-24, (1977), pp. 42-45.

[CU] F. Y. CHIN AND J. D. ULLMAN, Asymptotic complexity of partial fraction expansion, Tech.
Rep. 172, Dept. of Electrical Engineering, Princeton Univ., Princeton, NJ.

[HO]E. HOROWITZ, Algorithmsforpartialfraction decomposition and rationalfunction integration,
Proc. 2nd Symposium on Symbolic and Algebraic Manipulation, 1971, pp. 441-457.

[KU] H. T. KUNG, Fast evaluation and interpolation, Computer Science Tech. Rep., Carnegie-
Mellon University, Jan. 1973.

[KT] H. T. KUNG AND D. M. TONG, Fast algorithms for partial fraction decomposition, Proc.
Symposium on New Directions and Recent Results in Algorithms and Complexity at

Carnegie-Mellon Univ., J. Traub, ed., April, 1976.
[LI] L. J. P. LINNER, The computation of the K-th derivative ofpolynomials and rationalfunctions

in factor form and related matters, IEEE trans. Circuits and Systems, (1974), pp. 233-236.
[MB] R. MOENCK AND A. BORODIN, Fast modular transforms via division, Proc. of the IEEE

13th Annual Symposium on Switching and Automatia Theory, (1972), pp. 90-96.
[PO] C. POTWLE, On the partialfraction expansion ofa rationalfunction with multiple poles by digital

computer, IEEE trans, on Circuit Theory, (1964), pp. 161-162.
[SI] M. SIEVEKING, An algorithmfor division ofpowerseries, Computing 10 (1972), pp. 153-156.

[ST69] V. STRASSEN, Guassian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-356.
[ST72],Die Berechnungskomplexitat yon Elementarsymmetrischen Funktionen und yon Inter-

polationskoeffizioten, Ibid., 20 (1972), pp. 238-251.
[VA] T. M. VARI, Some complexity results for a class of Toeplitz matrices, Tech. Rep., Dept. of

Computer Science and Mathematics, York University, Toronto, 1974.
[YU] D. Y. Y. YuN, On square-[tee decomposition algorithms, Proc. of 1976 ACM Symposium on

Symbolic and Algebraic Computation, pp. 26-35.

SIAM J. COMPUT.
Vol. 6, No. 3, September 1977

AN ANALYSIS OF SEVERAL HEURISTICS FOR THE TRAVELING
SALESMAN PROBLEM*

DANIEL J. ROSENKRANTZ,’ RICHARD E. STEARNS? AND PHILIP M. LEWIS II?

Abstract. Several polynomial time algorithms finding "good," but not necessarily optimal, tours
for the traveling salesman problem are considered. We measure the closeness of a tour by the ratio of
the obtained tour length to the minimal tour length. For the nearest neighbor method, we show the
ratio is bounded above by a logarithmic function of the number of nodes. We also provide a logarithmic
lower bound on the worst case. A class of approximation methods we call insertion methods are
studied, and these are also shown to have a logarithmic upper bound. For two specific insertion
methods, which we call nearest insertion and cheapest insertion, the ratio is shown to have a constant
upper bound of 2, and examples are provided that come arbitrarily close to this upper bound. It is also
shown that for any n => 8, there are traveling salesman problems with n nodes having tours which
cannot be improved by making n/4 edge changes, but for which the ratio is 2(1- l/n).

Key words, traveling salesman problem, approximation algorithm, k-optimal, minimal spanning
tree, triangle inequality

1. Introduction. The traveling salesman problem has long been of great
interest. The problem has been formulated in several different ways. We use the
following formulation"

A traveling salesman graph G is a complete weighted undirected graph
specified by a pair (N, d) where N is a set of nodes, d is a distance function
mapping pairs of nodes (or edges) into real numbers, and d satisfies

a) d (i,]) d (/’, i) for all and/’ in N,
b) d(i,) >= 0 for all and/" in N,
c) d(i,f)+d(j,k)>=d(i,k)foralli, j, k inN.
Condition c) is referred to as the triangle inequality. The number d(i,) is

called the length or weight of (i,/’).
A tour for a traveling salesman graph G is a circuit on the graph containing

each node exactly once (i.e. a Hamiltonian circuit). The length of a tour is the sum
of the lengths of the edges composing the circuit. An optimal tour or solution for G
is a tour of minimal length. The traveling salesman problem is to take a traveling
salesman graph and find an optimal tour.

The traveling salesman problem is sometimes formulated (Bellmore and
Nemhauser 1]) as the problem of finding a minimal length circuit containing each
node at least once for an undirected graph in which the distances are not
constrained by the triangle inequality. However, a problem stated in this manner
can always be reduced (Hardgrave and Nemhauser [6]) to the problem considered
here by the technique of changing each d(i,) to the length of the shortest path
between and/’. This conversion can be done in time proportional to the cube of
the number of nodes (Floyd [4]). Each tour in the new problem corresponds to a

* Received by the editors July 19, 1976, and in reyised form December 13, 1976.
t General Electric Research and Development Center, Schenectady, New York 12345. An

extended abstract of this paper is in the Proceedings of the IEEE Fifteenth Annual Symposium on
Switching and Automata Theory, 1974, under the title Approximate algorithms for the traveling
salesperson problem.

563

564 D. J. ROSENKRANTZ, R. E. STEARNS AND P. M. LEWIS II

circuit of the same length in the original problem, and the two problems have
solutions of the same length. Therefore, our results, which are stated in terms of
the new problem, also apply to the original problem.

Another formulation requires that a shortest tour be found for distances not
constrained by the triangle inequality. A problem stated this way can always be
reduced to the type of problem considered here by adding a suitably large constant
k to each distance. The altered problem has thesame optimal tour as the original,
but the lengths of the optimal tours will differ by the amount n k where n is the
number of nodes. Our results do not apply to this formulation, since our results
pertain to the tour lengths.

The best known methods of solving the traveling salesman problem take an
amount of time exponential in the number of nodes. Furthermore, the problem is
easily seen to be NP-hard. Karp [8] shows that determining whether an
undirected graph has a Hamiltonian circuit is NP-complete. This problem can be
reduced to a traveling salesman problem by forming the complete weighted graph
whose edges are of length one if there is a corresponding edge in the original
graph, and of length two otherwise. For an n node graph, the minimal tour of the
new graph has length n if and only if the original graph is a Hamiltonian circuit.

In view of the computational difficulties in obtaining optimal tours, a number
of algorithms have been published which run faster but do not necessarily produce
an optimal tour. A number of these approximation algorithms have been experi-
mentally observed to perform well, but there has not been a theoretical charac-
terization of how the obtained tours compare with the optimal.

In this paper, we analyze some of these methods to bound the ratio of the
obtained tour length to the optimal tour length. In some cases, these bounds grow
as a function of the number of nodes and in other cases a constant bound is found
for all traveling salesman problems. In contrast, if the distance function is
unconstrained by the triangle inequality then for any constant k >- 1, the problem
of finding a tour with a ratio bounded by k is NP-complete (Sahni and Gonzalez
[16]).

Another approximation method was recently announced and analyzed in
Christofides [2]. This method produces a better worst case approximation than the
methods analyzed here, but requires more running time.

In the material which follows, we exclude the trivial case where the distance
function is identically zero. This assumption together with the triangle inequality
implies that every tour has a length greater than zero. We also adopt the
convention that OPTIMAL represents the length of the optimal tour. Under the
assumption of nontriviality,

(1.1) OPTIMAL> 0

2. Nearest neighbor algorithm. The first approximation algorithm we study
is the nearest neighbor method (Bellmore and Nemhauser [1]), also called the
next best method in Gavett [5]. In this algorithm, a path is constructed as follows:

1. Start with an arbitrary node.
2. Find the node not yet on the path which is closest to the node last added

and add to the path the edge connecting these two nodes.

TRAVELING SALESMAN PROBLEM 565

3. When all nodes have been added to the path, add an edge connecting the
starting node and the last node added.

We assume that when there are ties in step 2, they can be broken arbitrarily.
We note that the nearest neighbor algorithm can be programmed to operate

in time proportional to n 2 where n is the number of nodes. This time is linear in the
input length if the input is a list of all distances.

Let NEARNEIBER be the length of the tour obtained by the nearest
neighbor algorithm. Let lg denote the logarithm to the base 2, and Ix denote the
smallest integer greater than or equal to x.

TI-IEOREM 1. For a traveling salesman graph with n nodes

NEARNEIBER
<

1
OPTIMAL = [lg (n)] +.

The proof of Theorem 1 is given after the proof of the following lemma.
LEMMA 1. Suppose thatfor a n node graph (N, d) there is a mapping assigning

each node p a number l such that the following two conditions hold:
a) d(p, q)=>min (l, l,) for all nodes p and q.
b) lp _-< 1/2 OPTIMAL for all nodes p.
Then Y lp =<1/2([lg (n)] + 1)OPTIMAL.
Proof. We can assume without loss of generality that node setN is {i]1 _-< _-< n }

and that Ig => li whenever =<]. The key to the proof is the following inequality:

min(2k,n)

(2.1) OPTIMAL => 2 li
i=k+l

for all k satisfying 1 -< k =< n.
To prove (2.1), we letH be the complete subgraph defined on the set of nodes

{i11 =<i =<min (2k, n)}.

We let T be the tour in H which visits the nodes of H in the same order as these
nodes are visited in an optimal tour of the original graph. Let LENGTH be the
length of T. By the triangle inequality, each edge (b, c) of T must have a length
which is less than or equal to the length of the path from b to c used in the optimal
tour. Since the ed’ges of T sum to LENGTH and the corresponding paths in the
original graph sum to OPTIMAL we conclude that

(2.2) OPTIMAL => LENGTH.
By condition a) of the Lemma, for each (i,f) in T, d (i, /’) >- min (l, li).

Therefore,

(2.3) LENGTH=> Z min (Zi, lj)= 2 ali
(i,/)T iH

where a is the number of edges (i,j) in T for which i>j (and hence
1 min (l, 1.)).

We want to obtain a lower bound on the right hand side of (2.3). Observe that
each ce is at most 2 (because is the endpoint of only two edges in tour T) and that
the cei sum to the number of edges in T. Because k is at least half of the number of

566 D. J. ROSENKRANTZ, R. E. STEARNS AND P. M. LEWIS II

edges in T, we certainly get a lower bound on the right hand side of (2.3) if we
assume that the k largest l have a 0 and the remaining min (2k, n)- k of the l
have O 2. By assumption, the k largest are {/ill =< -< k} so the estimated lower
bound is

min (2k, n)

(2.4) Y aiZ, >- 2 Y Zi
iH i=k+l

and (2.2), (2.3), and (2.4) together establish (2.1).
We now sum inequalities 2.1 for all values of k equal to a power of two less

than n, namely:
[lg(n)]--I [lg(n)]--I min(2i+l,n)
Z OPTIMAL-->
j=O j=O =2J+l

which reduces to

(2.5) [lg(n)]. OPTIMAL_-> 2" i.
i=2

Now condition b) of the lemma implies

(2.6) OPTIMAL => 2. ll
and (2.5) and (2.6) combine to give the conclusion of the lemma.

Proofof Theorem 1. For each node p, let lp be the length of the edge leaving
node p and going to the node selected as the nearest neighbor to p. We want to
show that the Ip satisfy the conditions of Lemma 1.

If node p was selected by the algorithm before node q, then q was a candidate
for the closest unselected node to node p. This means that edge (p, q) is no shorter
than the edge selected and hence

(2.7) d(p, q) >- l.
Conversely, if q was selected before p, then

(2.8) d(p,q)>-lq.

Since one of the nodes was selected before the other, either (2.7) or (2.8) must
hold and condition a) of Lemma 1 must be satisfied.

To prove condition b) it suffices to prove that for any edge (p, q)

(2.9) d(p, q)<=1/2. OPTIMAL.
The optimal tour can be considered to consist of two disjoint parts, each of which
is a path between nodes p and q. From the triangle inequality, the length of any
path between p and q cannot be less than d(p, q), establishing (2.9).

Because the l, are the lengths of the pairs comprising tour T,

(2.10) Y. l NEARNEIBER.

The conclusion of Lemma 1 together with (2.10) and (1.1) imply the inequality of
Theorem 1.

THEOREM 2. For each m > 3, there exists a traveling salesman graph with
n 2" 1 nodes such that

NEARNEIBER 1 4
OPTIMAL

> g lg(n + 1) +.

TRAVELING SALESMAN PROBLEM 567

Proof. For all _-> 1, we define an incomplete weighted graph F with three
distinguished nodes. The distinguished nodes are called the start node, the middle
node, and the right node. These graphs are defined recursively using Fig. 1 where
the start node appears to the left, the middle node in the middle, and the right
node on the right. Each F has a path P which goes from the start node to the
middle node visiting each node of F on the way. The P are also defined
recursively in Fig. 1.

A B C D E F G

Fi+l
FIG.

Graph FI consists of precisely three nodes with each pair of nodes having an
edge of weight 1. PathP consists of two edges, the edge from the start node to the
right node and the edge from the right node to the middle node.

To construct graph F+1, one takes two copies of F/(which we call the left copy
and right copy) and one additional node (which becomes the middle node of F+).
This additional node is called D in Fig. 1. The additional node D is connected to
the right node of the left copy (node C) and the start node of the right copy (node
E) by edges of length 1. The additional node D is also connected to the middle
node of the right copy (node F) by an edge of length lg (defined below). Finally, the
middle node of the left copy (node B) is connected to the start node of the right
copy (node E) by an edge of length Ig. The start node of F,.+I is the start node of the
left copy (node A) and the right node is the right node of the right copy (node G).
The path Pi/x consists of the two copies of path Pi plus the two edges (B, E) and
(F, D) of length lg. The length lg is given by the formula

(2.11) l, =(4.2’-(- 1)’ + 3).

Let L be the length of path P. Length L is described by the difference
equation

Li+ 2 Li + 2 li
since P/ consists of two copies of Pi and two edges of length l. Given that L 2,
the solution of this difference equation is

(2.12) L, (6. i. 2’+ 8.2’ + (-1)’-9).

568 D. J. ROSENKRANTZ, R. E. STEARNS AND P. M. LEWIS II

For each F, we define a graph Gi obtained by connecting the start and right
nodes of F by an edge of length 1, and connecting the middle node to the start
node with an edge of length li- 1. The start node of F is then also referred to as
the start node of G. Figure 2 is a picture of G4. We define G to be the complete
graph on the nodes of Gi where d(a, b) is the length of the minimal path from a to
b in G. Therefore, the distances in Gi satisfy the triangle inequality.

START

2 2

FIG. 2

Graph Gg has two important properties"
a) the edges of Gi have the same lengths in Gg as they have in Gi;
b) if the nearest neighbor method is started with the start node of Gg, the
method can (with suitable resolution of ties) produce path Pg followed by
the edge of length lg- 1 returning from the middle node (which is the last
node of path P;) to the start node.

We return to prove properties a) and b) after completing the main thread of
the proof.

Each Gg has an optimal tour whose length is equal to the number of nodes n
in (g (namely 2/- 1). This tour is found, starting with the start node, by visiting
the nodes in left to right order and then returning from the right node back to the
start node. Each of the edges in this tour has weight one.

TRAVELING SALESMAN PROBLEM 569

The example satisfying the theorem is G,-I. Its ratio is exactly

NEARNEIBER
OPTIMAL =(L,+l-l)/n where lg (n + 1)- 1.

This ratio is greater than the ratio indicated in the theorem.
All that remains is to prove properties a) and b). Referring back to Fig. 1, we

first show that for each F//

(2.13) AB BC=EF=FG= li 1,

(2.14) AC=EG=/i+1- 2,

(2.15 BE DF li,

(2.16) AD DG li+ 1-- 1,

(2.17) AG= li+:z-2.
The notation XYindicates the length of the shortest path betweenX and Y in

F,.+I. The equations are routinely verified for i- 1. We continue by induction.
Assume that (2.13)-(2.17) are true for -<I- 1 (i.e. for FI). Figure 3a shows the
relevant nodes in FI/I before the two copies of F are connected. Associated with
each pair of nodes from the same copy of Fz, an edge is shown whose weight is the
length of the shortest path in Fz connecting these nodes. These shortest path
lengths in F are specified by the induction hypothesis. For instance, edge (A, B)
in Fig. 3a connects the start and middle nodes of F and from (2.16), the shortest
path length in F connecting these nodes is If- 1. Figure 3b shows Fig. 3a with the
addition of the four edges created in the construction of F+ from the two copies
of Fz. Because each of the edge weights in Fig. 3a represents a shortest path in F,
by applying formula (2.11) for l to all possible paths in F+2, we can conclude that

A I-I B E lI +I
-2 G

FIG. 3a

C

FIG. 3b

570 D. J. ROSENKRANTZ, R. E. STEARNS AND P. M. LEWIS II

each of the edge weights in Fig. 3b is the length of the shortest path in
connecting the end nodes o]’ the edges. This establishes equations (2.13)-(2.15)]’or
Ft/l. Equations (2.16) and (2.17) are established by a similar consideration of all
paths in Fig. 3b. The path of length lt+2-2 from A to G is ABEG.

We note also that (2.13)-(2.16) also hold when Ft/I is converted to Gt/!. This
is proven by connecting A and G in Fig. 3b by an edge of weight one andA andD
by an edge at length It/x-1 and again checking the paths. Note also that the
shortest path from A to D is the edge (A, D).

Now we return to property a). Equation (2.15) shows that, as each F/I is
constructed, the newly added edges constitute the shortest paths between their
endpoints. All distances among points in an F are maintained when that F/ is
embedded in F/I, because the distances among the three exit points at F are
maintained. (Compare (2.13) with (2.16) and (2.14) with (2.17).)

We have already noted that the final edge added in constructing a Gi is also a
shortest path and the fact that the length one edges are also shortest paths requires
no argument. Thus property a) is established.

Property b) is established by observing that the middle node of an F is
reached only after all of the nodes of F have been visited, and the node at the end
of the edge of length li is at least as close as any node reached by a path through the
start or right nodes. These nodes are already distance l_ away from the middle
node and are at least distance 1 from a node not yet selected.

One way to improve a nearest neighbor result is to repeat the method for each
possible starting node and then take the minimum solution among these. This idea
is described in Gavett [5]. However, for the examples used to prove Theorem 2,
the result of this method (with suitable resolution of ties) is also proportional to
g(n).

3. Insertion methods. We now consider a class of methods we call insertion
methods. The basic idea of these methods is to construct the approximation tour
by a sequence of steps in which tours are constructed for progressively larger
subsets of the nodes.

DEFINI:rION. Given a traveling salesman graph (N, d), a tour T on a subset S
of N will be called a subtour of (N, d). We write a T to mean a S. We treat a
one node subset as a tour without edges.

DEFirI:rioy. Given a traveling salesman graph (N, d), a subtour T, and a
node k in N which is not in T, we define TOUR(T, k) to be a subtour obtained as
follows:

if T passes through more than one point, then
a) find an edge (x, y) in T which minimizes

b) delete edge (x,y) and add edges (x,k) and (k,y) to obtain
TOUR(T, k);

if T passes through a single node i, then make TOUR(T, k) the two node tour
consisting of edges (i, k) and (k, i).

In either case, we say that TOUR(T, k) is obtained by inserting k into T.
Formula (3.1) represents the difference in length between tour T and the tour

obtained by replacing (x, y) by (x, k) and (k, y). Thus, when T has two or more

TRAVELING SALESMAN PROBLEM 571

nodes, TOUR(T, k) is the shortest tour that can be obtained from T and k by the
alteration described in step b). When T has only one node, TOUR(T, k) is the
only tour that can be made from k and the point in T.

DEFINITION. An approximation method is called an insertion method if it
takes a traveling salesman graph (N, d) with n nodes and constructs a sequence of
subtours T1," ’, T, so that

1. T1 consists of a single node ao,
2. for each < n, there is a node ai not in Ti such that

(3.2)
3. T, is the approximation.

In later sections, we consider specific selection criteria for choosing the nodes
a. Here we are concerned with results which hold regardless of the selection
method.

DEFINITION. Given a subtour T and a node k not in T, we define COST(T, k)
to be the length of TOUR(T, k) minus the length of T.

An important consequence of the triangle inequality is the following:
LEMMA 2. If (N, d) is a traveling salesman graph, T is a subtour, k a node not

in T, and] a node in T, then

(3.3) COST(T, k)<=2 d(k,]).

Proof. In the case that T has only one node, the result is obvious. When T
consists of more than one node, j is an endpoint of some edge (i, j) in T. Because k
is inserted to minimize (3.1),

(3.4) COST(T,k)<-d(i,k)+d(k,f)-d(i,j)

where the right-hand side is (3.1) with (i, j) substituted for (x, y). The triangle
inequality says

(3.5) d(i, k)-d(i, j) <=d(j,k).

Inequalities (3.4) and (3.5) together with d(f, k) d(k,]) give (3.3).
We let INSERT represent the length of a path constructed by an insertion

algorithm.
THEOREM 3. For a traveling salesman graph with n nodes,

INSERT -< [lg (n)] + 1(3.6) OPTIMAL

Proof. Let (N, d) be the graph and let Ti for 1 -< -< n and ai for 0 < n be
the subtours and nodes referred to in the definition of an insertion method. An
obvious consequence of the definition of cost is

n-1

(3.7) INSERT= Y COST(T, a)
i=1

For each node a in N-{ao}, define

(3.8) la, 1/2" COST(T, a,)

572 D. J. ROSENKRANTZ, R. E. STEARNS AND P. M. LEWIS II

and define

(3.9) /o= 0.

We want to show that the Ip for p in N satisfy the hypothesis of Lemma 1. To
verify condition a), consider two nodes ai and a. with >/’. By our naming
conventions, >/" means that a. belongs to T/ and ai was inserted in T/. By
Lemma 2,

(3.10) COST(T, ai) <= 2. d(ai,

With (3.8) this implies

(3.11) la,<-d(ai, ai),

which implies condition a).
Condition b) is trivial for lao. For other la,, (3.8) requires us to prove

(3.12) COST(T, ai) <- OPTIMAL.

In the case of a l, this cost is just 2d(ao, a l) and by the triangle inequality,
OPTIMAL is at least as large as the distance between two points and back. For
> 1, ai is inserted between two distinct points x and y with cost

(3.13) d(x, ai)+d(ai, y)-d(x, y),

which is the length of the added edges minus the length of the deleted edge. There
is a subpath of the optimal tour between x and ai which does not contain y and a
disjoint subpath between a; and y not containing x. By the triangle inequality,
these subpaths are no shorter than d(x, ai) and d(a, y) respectively and hence
(3.13) must be no greater than OPTIMAL and condition b) is established.

Lemma 1 together with (3.8), (3.9), (3.7), and (1.1) imply the theorem.
We do not know if the logarithmic growth permitted by Theorem 3 can

actually be achieved. In fact, we know of no examples such that
INSERT/OPTIMAL> 4 so there could even be a constant upper bound. In the
next section we present some insertion methods for which we can establish a
constant upper bound.

4. Nearest insertion and cheapest insertion. We now consider two insertion
methods which produce a tour no longer than twice the optimal regardless of the
number of nodes in the problem. We call these two methods the nearest insertion
method and the cheapest insertion method.

Given a subtour T and a node p, we define the distance d(T, p) between T
and p as

(4.1) min {d(x, p) for x in T}.

We say that a tour is constructed by nearest insertion if each a, 1 _<- < n, in the
definition of an insertion method satisfies

(4.2) d(Ti, ai) min {d(T/, x) for x inN- Ti}.

We say a tour is constructed by cheapest insertion if the ai satisfy

(4.3) COST(T/, a) min {COST(T/, x) for x inN- T/}.

TRAVELING SALESMAN PROBLEM 573

The nearest insertion method is easily programmed to run in a time propor-
tional to n 2. The only programming trick is to compute the value of d(T,.+l, x) as
the minimum of the two numbers d (Ti, x) and d(a, x). Thus the nearest insertion
method runs in time proportional to the nearest neighbor method.

The cheapest insertion method is described in Nicholson [12]. The fastest
algorithm we have devised for the cheapest insertion method runs proportional to
n 2. log (n). Each time a node ai is inserted in T, the new subtour Ti/l contains
two new edges not in T/. For each new edge (x, ai) in T/I, the algorithm involves
performing a sort of the n -(i + 1) values of

d(x, k)+d(k, ai)-d(x, ai)

obtained for all k in N- r/+1.

THEOREM 4. If a tour of length INSERT is obtained by nearest insertion or
cheapest insertion, then

INSERT
(4.4) OPTIMAL< 2.

We prove this theorem after proving the following lemma"
LEMMA 3. Suppose that,]:or a traveling salesman graph (N, d) with n nodes, a

tour olength INSERT is constructed by the insertion method of 3. Supposefurther
thatfor satisfying 1 <- < n, the tour T and node ai selected by the insertion method
satisfy

(4.5) COST(T, ai)_-<2 d(p, q)

for all nodes p and q such that p is in Ti and q is not in T. Then

(4.6) INSERT-< 2 TREE

where TREE is the length of a minimal spanning tree for (N, d).
Proof. LetM be a minimal spanning tree. The idea of the proof is to establish

a correspondence between steps in the insertion procedure and edges of M. For
the step of inserting node ai into T, the corresponding edge of M will have one
endpoint in T and the other endpoint in N- T. Thus (4.5) can be used to show
that the cost of each step is no more than twice the corresponding edge.

First, since M is a tree, there is a unique path in M connecting each pair of
nodes. For each node a; with > 0, we say that node ai is compatible with node a; if
/" < and all the intermediate nodes in the unique path in M connecting ai and ai
have indices greater than i. Thus a. compatible with ai implies that ai is the first
node in T encountered in the path from ag to ai. For each ag with > 0, the critical
node is the node with the largest index that is compatible with ai. The critical path
for ai is the unique path inMbetween ai and its critical node. The critical edge for
a; is the edge in the critical path, one of whose endpoints is the critical node.
Observe that the critical edge for ag has one endpoint (the critical node) in T, and
the other endpoint in N- T.

We now show that no two nodes can have the same critical edge. Assume to
the contrary that ai and ai (with j> i) have the same critical edge. Let the
endpoints of this critical edge be a and al with > k. For any critical edge, the
node with the lower index is the critical node and the node with the higher index is

574 D. J. ROSENKRANTZ, R. E. STEARNS AND P. M. LEWIS II

on the critical path, so node ak is the critical node for both ai and aj. Thus, the
critical paths for ai and a. both pass through al before reaching ak. Therefore,
there is a path P in M connecting a and ai, such that every edge in P belongs to
either the critical path for a. or the critical path for ai (or both). Therefore every
intermediate node on P has an index greater than i. Since the path P from a.
reaches a node of lower index (ai), some node a, along path P is compatible with
aj. Now m >- because a, is on path P and > k because ak is a compatible node
for a. This implies m > k and so a, is a compatible node for a. with a higher index
than ak. This contradicts the assumption that ak is critical for a.. Therefore no two
nodes can have the same critical edge. Thus given a minimal spanning tree we can
associate a unique edge in that tree with each node inserted by the insertion
method.

Let e; be the critical edge for node a. Since one endpoint of e is in T and the
other endpoint is not, by (4.5).

(4.7)

Summing (4.7) gives

(4.8)

COST(T, ai <= 2. d (ei).

n--1 n--1

E COST(G, ai) <-2" d(ei).
i=1 i=1

The left-hand side of (4.8) is INSERT by (3.7). Since M consists of n 1 edges,
and each e is distinct, the right-hand side of (4.8) is 2. TREE. Thus (4.8) implies
(4.6).

Proof of Theorem 4. We first show that, for both insertion methods, (4.5)
holds. For the nearest insertion, there is for each by (4.2) a node Yi in T/such that

(4.9) d(yi, ai) <= d(p, q)

for all p in T/and q in N- T. Lemma 2 says that

(4.10) COST(T., ai) _-< 2. d(yi, a)

and (4.9) and (4.10) imply (4.5). For the cheapest insertion, the cost of inserting ai
is by (4.3) even less than the cost of inserting an ai chosen to satisfy (4.2).
Therefore (4.5) must also hold in this case and Lemma 3 applies to both cases.

The optimal tour can be made into a tree by deleting its longest edge and this
longest edge has a length at least OPTIMAL/n where n is the number of nodes in
the problem. Since the minimal spanning tree is no longer than this tree,

(4.11) TREE-< (1 nl-) OPTIMAL.

Equations (4.11), (4.6), and (1.1) imply (4.4),
COROLLARY. For a traveling salesman graph on n nodes, equation (4.4) in

Theorem 4 may be replaced by

INSERT _<_2.(1_1)(4.12)
OPTIMAL -For the nearest insertion method, a simpler correspondence than that in the

proof of Lemma 3 can be established between the cost of the insertion steps and

TRAVELING SALESMAN PROBLEM 575

the edges of a minimal spanning tree. Since each ai is selected in accordance with
(4.2), there is an edge (x, ai) such that x is in T and

(4.13) d (x, ai) min {d (p, q) for p in T/and q in N- T/}.

Let ei be this edge (x, ai) and observe from Lemma 2 that

COST(T, ai) <- 2. e.
Moreover, the set of edges {eill <- < n} constitute a minimal spanning tree since
the method of selecting edges satisfying (4.13) is a method of constructing a
minimal spanning tree (Kruskal [9], Prim [13]).

We now show that there exist traveling salesman graphs for which the bound
(4.12) is actually achieved. The examples can be interpreted as cities placed
uniformly on a circular road. The case for 8 nodes is shown in Fig. 4. The optimal
path is simply to go around the circle. The insertion methods may construct a path
such as that in the figure, a path which goes almost all the way around and then
doubles back on itself. Thus, each edge of the circle (except one) is traveled twice
instead of the one time actually required, and the ratio of the path obtained to
OPTIMAL is roughly two.

8

6 2

5 3

FIG. 4

THEOREM 5. For n >= 6, there exists a traveling salesman graph on n nodes such
that

(4.14) OPTIMAL
=2. 1-

for either the nearest insertion or cheapest insertion methods.
Pro@ We define graph (N, d) as follows:

Nn={ill<=i<-n},
dn (i,/’) smallest nonnegative integer m such that

-j m (mod n) or j m (mod n).

576 D. J. ROSENKRANTZ, R. E. STEARNS AND P. M. LEWIS II

We define T to be the tour on set {1}, we define

Ta {(1, 2), (2, 1)}

and for 3 -<_ -<_ n we define

T/= {(1, 2), (i- 1, i)} U {(f,/" + 2)11 <--/" <_-i-2}.

Figure 4 shows T8 for the case n 8.
We define

ai + l for0-<i<n.

Obviously the T defined above are tours. We will show that the T/together with
the ai satisfy (3.2), (4.2), and (4.3).

Ti/I is obtained from Ti by deleting edge (i-1, i) and adding edges (i-1,
+ 1) and (i, + 1).

We compute that

COST(T/, ai)= 2

and that (i 1, i) is the edge in Ti which minimizes (3.1); this proves (3.2). We also
compute that

d(Ti, ai)= l

because d(ai-1, ai) (i + 1)- 1 and (4.2) is satisfied because 1 is the shortest
distance between distinct nodes. It can also be calculated that no insertion can cost
less than 2 and so (4.2) holds. We omit these calculations but note that they
require the assumption n -> 6.

We note finally that the approximation Tn has two edges of length one and
n- 2 edges of length two for a total length of 2. (n- 1). The optimal tour is
obviously the tour of length n that starts with node 1 and visits the nodes in
numerical order. Equation (4.14) is obtained by dividing these two lengths. [3

For > 3 in the above proof, the insertion of a into T/to obtain T/I involves
a tie between edges (i-1, i) and (i-2, i), both of which minimize (3.1). An
example with no ties in (3.1) is obtained from the example by decreasing the
length of all edges greater than 1 by a small number e. The choice (i- 1, i) of the
proof becomes the unique choice and the construction proceeds as in the proof.
The resulting ratio is very close (depending on e) to (4.14).

Theorem 5 shows that, in the worst case, nearest insertion can create paths
which double back on themselves and are roughly twice as long as necessary. We
examined a number of problems with nodes placed randomly on a plane, and
observed that the nearest insertion method often produced paths in which
portions doubled back on themselves.

$. Farthest insert. There is another insertion method which has some
intuitive and empirical appeal, a method we call farthest insertion.

We say that a tour is constructed by farthest insertion if each a, 1 =< < n, in
the definition of an insertion method satisfies

(5.1) d(Ti, ai) max {d(T/, x) for x inN- Ti}.

TRAVELING SALESMAN PROBLEM 577

Contrasting (5.1) with (4.2), we observe that farthest insertion has a max
where nearest insertion has a min. The intuitive appeal is that the method
establishes the general outline of the approximate tour at the outset and then fills
in the details. The early establishment of a general outline is appealing because we
expect better performance when the number of nodes is small. Inserting nearby
points late in the approximation is appealing because the short edges used late in
the procedure are less likely to be accidentally deleted by some still later insertion.

The empirical appeal is that, in a series of experiments, we found that farthest
insertion usually produced a better tour than nearest insertion, cheapest insertion,
and the nearest neighbor. For example, when tried on problems obtained by
placing 50 nodes randomly on a unit square, nearest insertion was from 7 to 22%
worse than farthest insertion, nearest neighbor was from 0 to 38% worse, and
cheapest insertion ranged from 7% better to 12% worse. The usual ranking was
thus farthest insertion first, cheapest insertion second, nearest insertion third, and
nearest neighbor last.

The largest example we tried was 2000 points placed uniformly at random in
the unit square. The score was farthest insertion 36.8, nearest insertion 41.4,
nearest neighbor 39.9. A path of length 37.2 was obtained by randomly selecting
the order in which points were chosen for insertion. The farthest insertion path
was no more than 1.25 times the optimal since the minimal spanning tree had
length 29.5.

The advantage of picking random or arbitrary points for insertion is that
virtually no computation time is needed to select an arbitrary point. On the 2000
city problem, the nearest neighbor tour was constructed in 751 seconds, the
arbitrary insertion in 820 seconds, and the nearest and farthest insertions in 1628
seconds each.

Theorems 2 and 4 tell us that, in the worst case, the nearest neighbor paths
become progressively worse than the nearest insertion paths as the number of
nodes increase. We found no evidence of such a trend in our experiments. For
example, in the 2000 node example described above, nearest neighbor actually
did better than nearest insertion.

Altogether, our experiments suggest that the performance of the methods is
not strongly tied to their worst case behavior.

6. Some other approximation methods. There are a variety of other approxi-
mation methods for which the cost of each step in the construction of the tour
corresponds to a unique edge in a minimal spanning tree and for which the
reasoning of Lemma 3 and Theorem 4 can be used to demonstrate a worst case
ratio bound of 2. In this section, we discuss two such methods.

The first method, which we call nearest addition, is similar to nearest
insertion. The nearest addition method takes a traveling salesman graph (N, d)
with n nodes and constructs a sequence of subtours T, T2,’", T, so that

1. T consists of a single node a0;

2. for each < n there are nodes ai in N- T and bi in T such that

(6.1) d(bi, ai) min {d(y, x) for y in T/and x in N- T}
and T/I is constructed from T by deleting some edge (c, b) from T and
adding the two edges (c, ai) and (b, a);

578 D. J. ROSENKRANTZ, R. E. STEARNSAND P. M. LEWIS II

3. Tn is the approximation.
At each step of the procedure, the closest node is selected and added to the
subtour next to the node to which it is the closest.

The increase in length between T and T/I is

(6.2) d(c, ai)+d(bi, ai)-d(c, bi).

From the triangle inequality

(6.3) d(c, ai) <- d(c, bi) + d(bi, ai)

so that (6.2) is bounded by 2. d(bi, ai). The set of edges (bi, ai) selected in
accordance with (6.1) is identical to the set of edges that would be selected for the
nearest insertion method in accordance with (4.2), and constitutes a minimal
spanning tree. Therefore results similar to Lemma 3 and Theorem 4 apply, and
the ratio of the obtained tour length to the optimal tour length is bounded by 2.

Another approximation method is one we call nearest merger. First, given two
disjoint subtours (i.e., subtours having no nodes in common) T and T., their
merger MERGE(T1, T2) is defined as follows:

a) If T1 consists of a single node k, then

MERGE(T1, T2) TOUR(T2, k)

else if T2 consists of a single node kl, then

MERGE(T1, T2) TOUR(T1, k).

b) If T1 and T2 each contain at least two nodes, let a, b, c, d be nodes such
that (a, b) is an edge in T1, (c, d) is an edge in T2 and

(6.4) d(a, c)+d(b, d)-d(a, b)-d(c, d)

is minimized. Then MERGE(T1, T2) is the tour obtained from T1 and Tz
by deleting (a, b) and (c, d) and adding (a, c) and (b, d).

The nearest merger method takes a problem (N, d) with n nodes and
constructs a sequence $1,""", Sn such that each Si is a set of n- + 1 disjoint
subtours covering all the nodes in N. The sequence is constructed as follows"

1. $1 consists of n subtours, each containing a single node.
2. For each < n, find an edge (ag, c) such that

(6.5) d(ai, ci) min {d(x, y) for x and y in different subtours inS/}.

Then S/ is obtained from -i by merging the subtours containing ai
and c.

At each step in the procedure, the two closest subtours are merged.
Observe that in a merger corresponding to (6.4), from the triangle inequality

d (b, d) -< d(b, a + d(a, c) + d (c, d)

so that (6.4) is bounded by 2. d(a, c). Also observe that the set of edges (a, c)
chosen in accordance with (6.5) form a minimal spanning tree (Kruskal [9]). From
these facts, results similar to Lemma 3 and Theorem 4 can be proved for nearest
merger, and so the ratio of the obtained tour length to the optimal tour length is
bounded by 2.

TRAVELING SALESMAN PROBLEM 579

We also observe that Theorem 5 is also true for both nearest addition and
nearest merger. For the examples in the proof of Theorem 5 both of these
methods produce the same approximate tour as nearest insertion and cheapest
insertion.

One possible way to improve nearest insertion, cheapest insertion, and
nearest addition is to repeat each of these methods for each possible starting node
and then take the minimum solution among these. However, for the examples in
the proof of Theorem 5, these methods produce tours of the same length for all
starting nodes. Therefore the approach of trying all starting nodes does not
improve the worst case ratio.

The methods of this section and 4 are all proven to have constant bounds
because of comparisons with the minimal spanning tree. There are also known
bounded methods which actually construct a tour by first constructing the minimal
spanning tree. One widely known but unpublished method is to construct the
minimal spanning tree, double its edges to obtain an Eulerian circuit containing
each point at least once, and then make the circuit into a tour by removing extra
occurrences of each node. This method also has an upper bound of 2.

The method of Christophides [2] also starts with the minimal spanning tree,
but this is converted into an Eulerian circuit by solving the matching problem
among the nodes of odd order. This method has an upper bound of }, an
improvement on the bounds for the methods studied here. However, the running
time of this method is n , which is slower than the n methods studied here.

7. k-optimality. One approach to obtaining approximate solutions is to first
find some tour and then perturb it somewhat to see if a better tour results. If a
better tour does result, the original tour is discarded and perturbations on the new
tour are tried. Methods of this kind are described in Croes [3], Lin 10], Reiter and
Sherman [14], Roberts and Flores [15] and Nicholson [12]. The local optimum
obtained by these perturbation methods can be further adjusted to obtain a global
optimum (Croes [3]). Lin and Kernighan [11] generalize these techniques in a
powerful way.

Define a k-change of a tour as the deletion of k edges and their replacement
by k other edges so that another tour is obtained.

Define a tour as k-optimal (Lin 10]) if no k-change produces a better tour.
Lin [10] describes a method whereby several random initial tours are

obtained, each is improved until a 3-optimal tour is obtained and the best of these
3-optimal tours is used.

In this section, we investigate how far a k-optimal tour can be from the
optimal tour.

THEOREM 6. For each n >-8 there exists a traveling salesman graph having a
tour which is k-optimal for all k <-_ n/4, and for which the length of that tour,
LOCALOPT, satisfies

LOCALOPT
2 (1--)(7.1) OPTIMAL

Proof. The example is the graph (Nn, dn) and tour T constructed in the proof
of Theorem 5. In particular, the tour shown in Fig. 4 will be shown to be 2-optimal.

580 D. J. ROSENKRANTZ, R. E. STEARNS AND P. M. LEWIS II

For each n, define the set of edges

E,,={(1, n)}U{(i,i+l) for 1-<i<n}

En is the set of edges which have length one. Because of the way function dn is
defined, each pair of points (a, b) from N, is connected by some path in E of
length equal to d,,(a, b). For each tour T, there is a circuit a(T) obtained by
replacing each edge of T by a path of equal length from E,. Circuit ce (T) has the
same length as T and visits each node at least once. Circuit a (Tn) visits node 1 and
n once and every other node twice.

For each edge e in E, and each tour T, we let COUNT(e, T) be the number of
times edge e occurs in circuit a(T). For tour T, we have

(7.2) COUNT((/, + 1), T) 2 for 1 =< < n,

(7.3) COUNT((1, n), T,)= 0.

Because the edges of E, are of unit length, the length L (T) of tour T is given by

(7.4) L(T) Y COUNT(e, T).
in En

We say that a tour T is even if COUNT(e, T) is even for all e in E,. We say
that a tour T is odd if COUNT(e, T) is odd for all e in En. We next show that any
tour must be either odd or even.

By construction, each node a is the endpoint of exactly two edges of E,
namely (a, a + 1) and (a, a- 1) (mod n). Since each occurrence of a in ce(T) is
associated with two edges of a (T)

(7.5) COUNT((a, a + 1), T)+ COUNT((a, a 1), T)= 2" ja

where ja is the number of times node a occurs in circuit a(T). Therefore,
COUNT((a, a + 1), T) and COUNT((a, a 1), T) sum to an even number and are
either both even or both odd. Since the edges in E form a connected graph, if T
were neither odd nor even, some node would have one incident edge with an odd
count and its other incident edge with an even count. This contradicts (7.5), so T is
either odd or even.

For any tour T, there can be only one edge e in E, such that COUNT(e, T)
0 since otherwise the tour could not be connected. Therefore, T, with its one edge
of count 0 and other edges of count 2 (see (7.2) and (7.3)) is the shortest even tour.
Consequently, any tour improving on Tn must be odd.

Now suppose that tour T is changed by a k-change to an odd tour. Since the
largest edges of T, are at length 2, the decrease resulting from deleting k edges is
at most 2k. Since at most 2k of the counts in a (T) are reduced, and since E, has n
edges, n-2k edges of E, do not get their counts decreased. When edges are
added to complete the k-change, the counts for the edges not decreased must in
fact be increased in order to change from an even number to an odd number.
Therefore, the increases are at least n -2k. If the k-change is to improve the tour
length, the decreases must be greater than the increases or

2k>n-2k.

This inequality is only true when k > n/4 so T is indeed k-optimal for k <-n/4.

TRAVELING SALESMAN PROBLEM 581

We already know from the proof of Theorem 5 that Tn and the optimal tour
have ratio 2. (1- l/n) so the theorem is proved.

COROLLARY. For any k and n such that 4. k <-n, the nearest insertion and
cheapest insertion methods can result in a k-optimal tour such that

INSERT (1)OPTIMAL
2. 1-

Proof. We have just shown that the example used to establish Theorem 5 is
also k-optimal if 4. k _-< n.

REFERENCES

[1] M. BELLMORE AND G. L. NEMHAUSER, The traveling salesman problem: A survey, Opera-
tions Res., 16 (1968), pp. 538-558.

[2] N. CHRISTOFIDES, Worst-case analysis of a new heuristic for the traveling salesman problem,
Symp. on New Directions and Recent Results in Algorithms and Complexity (April 1976),
Carnegie-Mellon University, Pittsburgh.

[3] G. A. CROES, A method for solving traveling salesman problems, Operations Res., 6 (1958),
pp. 791-812.

[4] R. FLOYD, Algorithm 97, Shortest path, Comm. ACM, 5 (1962), p. 345.
[5] J. GAVETT, Three heuristic rules for sequencing fobs to a single production facility, Management

Sci., 11 (1965), pp. 166-176.
[6] W. W. HARDGRAVE AND G. L. NEMHAUSER, On the relation between the traveling salesman

and the longest path problem, Operations Res., 10 (1962), pp. 647-657.
[7] L. L. KARG AND G. L. THOMPSON, A heuristic approach to solving traveling salesman problems,

Management Sci., 10 (1964), pp. 225-248.
[8] R. M. KARP, Reducibility among combinatorial problems, Complexity of Computer Computa-

tions, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.
[9] J. B. KRUSKAL, On the shortest spanning subtree of a graph and the traveling salesman problem,

Proc. mer. Math. Soc., 2 (1956), pp. 48-50.
[10] S. LIN, Computer solution of the traveling salesman problem, Bell System Tech. J., 44 (1965),

pp. 2245-2269.
[11] S. LIN AND B. W. KERNIGHAN, An effective heuristic algorithm for the traveling salesman

problem, Operations Res., 21 (1973), pp. 498-516.
12] T. A. J. NICHOLSON, A sequential methodfor discrete optimization problems and its application to

the assignment, traveling salesman, and three machine scheduling problems, J. Inst. Math.
Appl., 3 (1967), pp. 362-375.

[13] R. C. PRIM, Shortest connection networks and some generalizations, Bell System Tech. J., 36
(1957), pp. 1389-1401.

[14] S. REITER AND G. SHERMAN, Discrete optimizing, J. Soc. Indust. Appl. Math., 13 (1965),
pp. 864-889.

[15] S. M. ROBERTS AND B. FLORES, An engineering approach to the traveling salesman problem,
Management Sci., 13 (1966), pp. 269-288.

[16] S. SAHNI AND T. GONZALES, P-complete problems and approximate solutions, IEEE Fifteenth
Ann. Symp. on Switching and Automata Theory (1974), pp. 28-32.

SIAM J. COMPUT.
Vol. 6, No. 3, September 1977

FAST ALGORITHMS FOR PARTIAL FRACTION DECOMPOSITION*

H. T. KUNG AND D. M. TONG:I:

Abstract. The partial fraction decomposition of a proper rational function whose denominator has
degree n and is given in general factored form can be done in O(n log n) operations in the worst case.
Previous algorithms require O(n 3) operations, and O(n log n) operations for the special case where
the factors appearing in the denominator are all linear.

Key words, fast algorithms, partial fraction decomposition, computational complexity

1. Introduction. Let

P(x)

be a given fraction, where the P, Oi are polynomials and the li are positive integral
exponents such that

1. deg P < Y/= li deg Oi n, and
2. Ol, , Ok are relatively prime.

The general partial fraction decomposition problem (general PF problem) is to

compute the coefficients of the polynomials C,i for 1, , k and 1, , li
such that

P(x) I121Cij(x
with deg Ci, < deg O for all i, j. The existence and uniqueness of the polynomials
Ci, are well known (see, e.g., van der Waerden (1953, 29). ere are enormous
applications of partial fractions in applied mathematics and in network theory
(see, e.g., Henrici (1974, Chap. 7) and Weinberg (1962)). This paper gives fast
algorithms for solving the general partial fraction decomposition problem when n
is large.

Previous algorithms for the problem usually involve solving systems of linear
equations (see Henrici (1974, Chap. 7) lor a nice summary). Hence they take
O(n) arithmetic operations, or O(n:’8) operations if Strassen’s method (Stras-
sen (1969)) is used. For the special case that the Oi have either degree one or two,
many algorithms were known: see, e.g., Schwatt (1924, Chap. VIII), Turnbull
(1927), Hazony and Riley (1959), Pottle (1964), Pessen (1965), Brugia (1965),
Moad (1966), Valentine (1967), Wehrhahn (1967), Karni (1969) and Linn6r
(1974). But these algorithms still take O(n:) or more operations.

Recently Chin and Ullman (1975) showed that in case that all the Oi have
degree one the problem can be done in O((n log n)/a) operations. This bound

Received by the editors February 19, 1976. is work was supported in part by the National

Science Foundation under Grant MCS75-222-55 and the Office of Naval Research under Contract
N00014-76-C-0370, NR044-422.

Department of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania
15213.

Department of Mathematics, Kalamazoo College, Kalamazoo, Michigan 49001.

582

PARTIAL FRACTION DECOMPOSITION 583

was further improved by Chin in his thesis (Chin (1975)). He showed that if the Oi
are all linear, then the problem can be done in O((log k). (n log n)) operations.
However, the assumption that the Oi are all linear factors is crucial in his methods.
Hence the problem of solving the general PF problem (without assuming that the
Oi are linear) in O(n 2) operations is stated as an unsolved problem in his thesis.
Note that the general PF problem does occur frequently in practice. For example,
if we work over the field of real numbers, then the factors O certainly can have
either degree one or two. (See also Grau (1971) and Henrici (1971) for more
examples.) In this paper, we show that the general PF problem can be done in
O((log n) M(n)) operations in the worst case. M(n) is any upper bound on the
number of operations needed to multiply two n-th degree polynomials, which
satisfies some mild regularity condition (see 2). In particular, if an FFT algorithm
is used for polynomial multiplication (see, e.g., Knuth (1969, 4.6.4), Borodin
and Munro (1975)), then we have M(n) O(n log n), which satisfies the regular-
ity condition,, and hence the general PF problem can be done in O(n log2 n)
operations. Moreover, we note that for the special case where the O are all linear,
our approach will lead to Chin’s O((log k). (n log n)) algorithm.

Basic assumptions and preliminary lemmas used in this paper are introduced
in 2. In 3, the solution of the general PF problem is reduced to the solution of
two simpler problems, Problem P1 and Problem P2, and precise statements of the
main results of the paper are given. An algorithm, based on a new theorem
(Theorem 4.1), for solving Problem P1 is presented in 4. Section 5 contains an
algorithm for solving Problem P2. Finally, an important special case of Problem
P2 is solved in 6.

2. Basic assumptions and preliminary lemmas. We assume throughout the
paper that polynomials are over some field K, are denoted by upper case letters,
and are given in the form P(x) pix where p K. To compute P or P(x) means
to find all the coefficients of P. We assume that M(n) is an upper bound on the
number of operations needed to multiply two nth degree polynomials. Given
relatively prime polynomials A 1, A2 with deg A 1, deg A2 _-< n, let F(n) be an
upper bound on the number of operations to find polynomials Fa, F2 such that

F2" AI+F1 A2-- 1

with deg Fa < deg A and deg F2 < deg A2. The existence and uniqueness of F1
and F2 are well-known (see, e.g., van der Waerden (1953, 29)).

Let Z/ be the set of all nonnegative integers and let G: Z+--> Z/ be a
nondecreasing function. We say G satisfies Condition C, if

G(n n H(n

for some nondecreasing function H: Z+ -> Z+. We assume that Msatisfies Condi-
tion C. Similar regularity conditions are usually assumed (see, e.g., Aho, Hopcroft
and Ullman (1974, p. 280), Brent and Kung (1976) and Moenck (1973b)). There
are many algorithms for polynomial multiplication. For example, the classical
algorithm gives M(n) cin

2 binary splitting multiplication gives M(n) c2rt
1.585

and if the field K is algebraically closed, then FFT multiplication gives M(n)=
c3n log n, where ca, c2, c3 are positive constants (see e.g., Fateman (1974)). In all

584 H. T. KUNG AND D. M. TONG

cases M satisfies Condition C. In fact all we need in this paper are some
consequences of Condition C. Hence it is possible to weaken our assumption on
M, if one wishes to do so.

Let D(n) be the number of operations needed to divide a polynomial of
degree 2n by a polynomial of degree n. Then using Newton’s method and the fact
that M satisfies Condition C, one can show the following lemma (see, e.g.,
Borodin and Munro (1975) and Kung (1974)).

LEMMA 2.1. D(n)= O(M(n)).
Using the algorithm EGCD in Moenck (1973a), which is a generalization of

an algorithm due to Sch6enhage (1971) for integer GCDs, one can show the
following lemma.

LFMMA 2.2. F(n) O((log n). M(n)).
We shall assume that F satisfies the condition that, F(ni) <- F(Y hi)

for any ni Z/. Clearly, if F(n c (log n) M(n for some positive constant c as
in Lemma 2.2, then F satisfies the condition. In fact, the required condition in F is
satisfied as long as F satisfies Condition C.

3. Problems P1, P2 and statement of results. Consider the following two
instances of the general PF problem defined in 1.

PIOBLEM P1. (This is the general PF problem with li 1 for all i.) Given the
fraction P/[I---1 R where the R are relatively prime and

k

deg P < deg R n,
i=1

compute the polynomials C1," , Ck such that

P(x) C(x)
(3.1) [LLx R(x) =x R(x)

with deg C < deg Ri for all i.
The decomposition (3.1) is called the incomplete partial fraction decomposi-

tion by Henrici (1971), (1974, Chap. 7). Note also that efficient algorithms for
solving Problem P1 will furnish efficient procedures for factoring polynomials, as
observed by Grau (1971).

PROBLEM P2. (This is the general PF problem with k 1.) Given the fraction
p/ol where deg P < deg Q compute the polynomials CI,, o, C such that

ll(x) 1=1 oJ(x)
with deg C. < deg O for all j.

The following lemma essentially shows that fast algorithms for Problems P1
and P2 will lead to fast algorithms for the general PF problem. Define
T(k, n), Tl(k, n) and T2(1, deg O) to be the number ofoperations needed to solve the
general PF problem, Problem P1 and Problem P2, respectively.

PARTIAL FRACTION DECOMPOSITION 585

LEMMA 3.1.
k

T(k, n)<= Tl(k, n)+ Z [Tz(li, deg O,)+O(M(ti. deg
i=1

Proof. The result follows from the observation that general PF problem can
be solved in the following way"

O’(x) out for 1,..., k. Let the expansion of Ol’(x) be Ri(x1. Multiply l.

for all i.
2. Solve Problem P1 for the fraction P/I-I,= R and obtain the polynomials

Ci satisfying (3.1).
3. Solve Problem P2 for the fractions Ci/QI’, 1,..., k.

Note that each Ql’(x) can be computed in O(M(l. deg Q)) operations by an
algorithm in Brent (1976, 13). 71

We summarize our results on Tl(k, n) and T2(1, deg Q) in the following:
(i) T(k, n)<-F(n)+O((log k) M(n)). (Theorem 4.2)
(ii) Tl(k, n)= O((log k). (n log n)), when the R(x)

is given in the form (x- zi)" for all i. (Theorem 4.3)
(iii) T2(l, deg Q)= O((log l). M(l. deg Q)). (Theorem 5.1)
(iv) T2(l, deg Q) O(l log l), when deg Q -< 2. (Theorems 6.1 and 6.2)
We have the following results for the general partial fraction decomposition

problem.
THEOREM 3.1. The general PF problem can be done in F(n)+

O((log k). M(n))+ O((log l). M(n)) operations, where max (/1,""", l,).

Proof. Note that

k

Z (log l). M(li .deg Q,)
i=1

k
--< (log l)

i=1

=< (log 1). n H(n (log l). M(n).

The result follows from (i), (iii) and Lemma 3.1.
COROLLARY 3.1. The general PF problem can be done in O(n log2 n)

operations.
Proof. Note that in Theorem 3.1, k -< n and -< n. The result follows from the

theorem and Lemma 2.2 by letting M(n) O(n log n).
O(n log2 n) is the best asymptotic bound known for the general PF problem.
THEOREM 3.2. The general PF problem can be done in O((log k). (n log n))

operations, if Oi (x) x -zi, for 1,. ., k.
Proof. The result follows from (ii), (iv) and Lemma 3.1.
The bound in Theorem 3.2 was obtained previously by Chin (1975). We

include it here just to show that his result will emerge as a special case in our
general approach. See the remarks at the end of 4.

4. An algorithm for problem P1. We first assume that P(x)--- 1 in Problem
P1. Thus we want to find A1,..., Ak such that

k Ai(X)1

Zrlki= Ri (x ,= Ri (x

586 H.T. KUNG AND D. M. TONG

with deg Ai < deg R for all i. Note that

(4.1) 1 Z Ai(x) Ri(x)
i=1 i=1

Define

and for each 1,..., k, define Bi, Di by

(4.2) R (x) B, (x)R, (x) + D, (x)

where deg Di < deg Ri. Note that D(x) O, since the Ri are relatively prime.
Suppose that deg Di => 1, i.e., Di(x) is not a constant. Then (4.2) implies that Di
andR are relatively p,rime, since R and R are relatively prime. Hence there exist
unique polynomials A and E such that

(4.3) A,(x)D,(x) + E,(x)R,(x) 1

with deg < deg R and degE < deg D. The following theorem appears to be
new.

THEOREM 4.1. For 1,. , k, ifD(x) d for some constant di, then A is
the constant lids; else A A.

Proof. We classify the zeros of R according to their multiplicities. Let Zm be
the set of zeros ofR which have multiplicity m. (The zeros exist in an algebraically
closed extension field of K.) Clearly, we have that

(4.4) 2 m.]Zm[deg R, where Iz[is the number of elemc -ts in Zm,

and that if z Z, then

(4.5) R}h)(z)=O forh =0, , rn- 1.

Taking derivatives of (4.1) and (4.3), and using (4.5), one can easily show that

(4.6)

(4.7)

q=0 i=1

2 A}q(z) D}h-q)(z)= SO,h
q=O

for z Zm and h 0,. , rn- 1, where 60.h 1 if h 0 and 60,h 0 otherwise.
(Derivatives are represented by the superscripts.) Note that by (4.2) and (4.5),

(4.8)

D}h-q)(z) R(h-q)(Z)

=((z)
i=1

PARTIAL FRACTION DECOMPOSITION 587

for z Zm, h 0, , m 1 and q 0, ., h. Suppose that D (x) =- di for some
constant di. Then by (4.6) and (4.8),

(4.9) A}h)(z) di tO,h

for z Z,,, h 0, , m 1. Since d 0 and deg Ag < deg R, A is uniquely
determined by the Hermite interpolation problem defined by (4.9). Hence
Ai(x)-= 1/di. On the other hand, suppose that deg D => 1. Because the R are
relatively prime,

(4.10) Di(z) (I]=1
for z Z,. By (4.6), (4.7), (4.8) and (4.10) it is easy to see that A and are
deteremined by the same Hermite interpolation problem. This implies that
Ai Ai. ["]

By Theorem 4.1 the following algorithm can be used for computingA(x) for
i=l,...,k.

ALGORITHM 4.1.
1. Compute R(x).
2. Compute Di(x) for i- 1,..., k.
3. For 1,..., k, if Di(x)=d for some constant di then set Ai(x) 1/d

else compute A(x) by solving (4.3).
In the following we study the number of operations needed by the algorithm.

It is well known that H,=l Ri(x) can be computed by using a binary splitting
scheme, which is illustrated as follows for the case k 8:

R R2 R3 R4 R5 R6 R7 R8

8

1-I Ri
i=1

LEMMA 4.1 By using the binary splitting, H R(x) and all the intermediate
resutts such as H=I R,(x) and HT=s R(x) can be computed in O((log k). M(n))
operations.

Proof. Note that the sum of the degrees of all the polynomials at any level of
the tree is n. Hence each level takes M(n) operations, since M satisfies Condition
C. The result then follows from the fact that the height of the tree is [log2 k].

588 H.T. KUNG AND D. M. TONG

LEMMA 4.2. R(x) can be computed in O((log k) M(n)) operations.
Proof. We shall again use the binary splitting technique. We may assume that

k is a power of 2. It is easy to check that

)R R R + R/ E]-I R
i-1 j--1 j---- +1 i=1 i=k/2+1 i:k/2+l

This gives us a recursive algorithm for computing R. By Lemma 4.1, we may
 sum: p o ucts suc
algorithm have been precomputed. The result again follows from the fact that the
sum of the degrees of all polynomials at any level of the associated binary tree is
n.

LMM 4.3. D(x), ", D(x) can be computed in O((log k). (n)) opera-
tions.

Proof. We may assume that k is a power of 2. Note that if we use divisions to
obtain V and V such that

k/2
(x) U(x). a,(x) + V(x),

k

(x) U(x). fl g,(x) + V(x),
i=g/+

/where deg V (deg i: Ri and deg V(degi/+ R, then the problem of
computingD from R for
from V for 1, , k/2 and computingD from V for k/2 + 1, , k. This
again gives us a recursive procedure. Using the fact that D(n) O(M(n)) (Lemma
2.1), the lemma can be proved by the same argument as used in the proofs of
Lemmas 4.1 and 4.2.
LMM 4.4. Al(X),""", Ag (x) can be computed in F(n) operations.
Proof. Since deg D (deg R, the Ai(x) and Ei(x) satisfying (4.3) can be

computed in F(deg R) operations. Hence all the A can be computed in

2 F(deg R) Nf deg R F(n)
i=1 i=

operations.
By Lemmas 4.2, 4.3 and 4.4, we know that Algorithm 4.1 can be done in

F(n) + O((log k). M(n)) operations. After the A have been computed, we can
solve Problem P1 without assuming P(x) 1 in O((log k). M(n)) operations by
the following method: For 1,..., k,

1. compute K (x) such that

(x (x(x+g(x

with deg K < deg R, for some J,
2. compute Li (x) Ki (x) Ai (x) and G (x) such that

Li(x) Ni(x)Ri(x) + Ci(x)

with deg C < deg R, for some N.

PARTIAL FRACTION DECOMPOSITION 589

Note that

P
FIR

+E

JiAi "k-E Ni -t-E R---
Since P/I-[R is a proper fraction, Y, JiAi +, Ni must be zero. Iherefore the C are
the desired solution. Since deg P < n, by the same argument as used in the proof of
Lemma 4.3, Ki(x) for 1,..., k can be computed in O((log k). M(n)) opera-
tions. A and K have degree at most deg R, so C(x) can be computed in
O(M(deg Ri)) operations. This implies that Cl(X), , Ck (x) can be computed in
O(M(n)) operations. Therefore, we have shown the following

THEOREM 4.2. Problem P1 can be done in

F(n + O((log k). M(n))

operations.
We now consider the special case where the Ri(x) is given in the form

(x-zi)"’ for 1,..., k. In this case the A satisfying (4.3), i.e.,

Ai (x)Di (x) 4- Ei (x)(x zi)"’ 1,

can be computed easily in the following way. Let ,d,(x)=A(x +z), /)i(x)=
Di (x + zi), etc. Then

A (X)bi (X) "["/i (X)X m, 1.

This implies that

(4.11) di(x)li(x)-- 1 (rood x"’).

Hence we have the following algorithm for computing A"
ALGORITHM 4.2.
1. Compute/)i (x) such that/)i (x) Di (x + zi).
2. Compute (x) from (4.10).
3. Compute Ai (x) such that A(x) Ai (x zi).

Step 1 is equivalent to evaluating Di and all its derivatives at zi. Aho, Steiglitz and
Ullman (1975) and Vari (1974) have independently shown that this can be done in
O(m log mi) operations. Similarly, step 3 can be done in O(m log m) opera-
tions. Step 2 involves a division, which is O(mi log mi) by Lemma 2.1. Since

m log mi O(n log n) by Theorem 4.2 with M(n)= O(n log n) we have
proved the following

590 H.T. KUNG AND D. M. TONG

THEOREM 4.3. Problem P1 with Ri(x) given by (x -zi)mi for 1,. ., k can
be done in

O((log k). (n log n))
operations.

Suppose that we solve the general PF problem for 1/I]k= (x -zi)’ by solving
Problem P1 for 1/1-Ik=l Ri(x) with Ri(x)--(x-zi)l’. Then we need not perform
step 3 of Algorithm4.2 since the solution of the general PF problem is given by the
coefficients of the Ai. It turns out that this is exactly Chin’s O((log k) (n log n))
algorithm for solving the general PF problem for 1/1-I/k=a (x-zi)l’. A similar
observation can also be made for the case of solving the general PF problem for
P/IJik-_ (x zi)li with P(x) 1.

5. An algorithm for Problem P2. Note that using division, we have

P 1 P
Ql QFl/2] Q[l/21

Qrlt2l Pi + Q [//2J

Pa 1 (P2)Q filE] + Q /21 Q tt/2j

where deg P1 < [//2] deg Q and deg P2 ([//2J deg Q. Thus, to solve Problem
P2 for the fraction P/QI, it suffices to do the following:

1. Divide P by Q t/2J and obtain the quotient Pa and the remainder P2.
2. Solve Problem P2 for the fractions P1/Q ft/21 and P2/Q tl/2j.

This gives us a recursive prodedure for solving Problem P2. Assume that the
expansion of the power such as Q t/2j (x) and Q i/2 (x) required by the recursive
procedure have been precomputed. Let X(1) be the number of operations needed
to solve Problem P2. Then the recursive procedure gives

X(l)<-X([I/2])+X([I/2J)+D(l deg Q)

for > 1 and X(1)= 0. Note that

1< [I/2] <2
2-- 3

for any integer _->2, and that by Lemma 2.1, D(/ deg Q) O(M(l deg Q)). We
have

X(1) <-X(al)+X((l-a)l)+O(M(l deg Q))

where a is a variable with its values in [1/2, 2/3]. The expansion of the recurrence
corresponds to a binary tree

O(M(l. deg Q))

/
O(M(a.l .deg O)) O(M((1-c)l. deg O))

PARTIAL FRACTION DECOMPOSITION 591

such that X(l) is bounded above by the total value of the nodes inside the tree.
Using the fact thatM satisfies Condition C, one can easily show that the sum of the
values of the nodes at each level is O(M(l. deg O)). Since a [1/2, 2/3], the
height of the tree is at most [log3/2 1]. Hence

X(l) O((log l). M(I. deg O)).

Now we examine how to compute all the required powers of O. This can be
done by using a recursion based on

ol O r//2] O l//2j.

The number of operations needed here clearly satisfies the same recurrence as X,
and hence is O((log l) M(l deg Q)). We have proved the following

THEOREM 5.1. Problem P2 can be done in

O((log l). M(l. deg Q))

operations.

6. A special case for problem P2. The following theorem can be found in
Chin and Ullman (1975).

THEOREM 6.1. Problem P2 can be solved in O(l log l) operations if deg Q 1.
In this section we extend the theorem to the case that deg Q 2. Our result is

of interest when the underlying field K is the field of real numbers, for in this case
irreducible factors can have either degree one or two. We may assume that Q is
monic, since this will affect only O(l) operations. Let

Q(x) x 2 + ax + b.

By completing the square and letting y x + a/2 and c b a2/4, we have

P(x) P(y -a/2)
QI(x) (y2 +c)/

Write

P Y- Y, PlY’
i=0

(Po +P2Y 2 .+.... P2/-2Y 2/-2)
+ Y(Pl +P3Y 2 +" +Pzl-lY 2l-2)

PI(Y 9) + Y" P2(Y 2),
where deg P1 --< 1 and deg P2 --< l- 1. Then

P(x) p(y2) p2(y2)
ol (X---- (3] 2 "- C)-y" (y2 _1.. C)I"

Hence we can solve Problem P2 for P(x)/QI(x) by performing the following
steps"

1. Compute po," p21-1.
2. Form Pl(z)=po+P2z +’" "+P2l_2ZI-1 and P2(z)=pl +p3z +’" "+

l--1
pZl-Z

592 H.T. KUNG AND D. M. TONG

Solve Problem P2 for the fractions Pl(z)/(z + c) and P2(z)/(z + c)t, and obtain

(Z -I"C i=1 (Z "+’C)i’ (Z --C) (Z -I-C)i"

3. Since

QI(x) i=1 i=I QX)O’(x)
y"

--i=10i-(X) "" X -t-- i=I oi (x

l eix +]i + aei/2
/=1/- Oi (x

aeiwe set Ci(x)eix +ti +-- for 1,... ,l.

By the result of Aho, Steiglitz and Ullman (1975) and Vari (1974) step 1 can
be done in O(l log l) operations. By Theorem 6.1, step 2 can be done in O(l log l)
operations. Step 3 clearly uses O(1) operations. Thus, we have shown the
following theorem.

THEOREM 6.2. Problem P2 can be solved in O(llogl) operations if
deg Q=2.

It is an open problem whether Theorem 6.2 holds if deg Q > 2.

REFERENCES

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN (1974), The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA.

A. V. AHO, K. STEIGLITZ AND J. D. ULLMAN (1975), Evaluatingpolynomials atfixed sets ofpoints,
this Journal, 4, pp. 533-539.

A. BORODIN AND I. MUNRO (1975), The Computational Complexity of Algebraic and Numerical
Problems, American Elsevier, New York.

R. P. BRENT (1976), Multiple-precision zero-finding methods and complexity of elementary function
evaluation, Analytic Computational Complexity, J. F. Traub, ed., Academic Press, New
York, pp. 151-176.

R. P. BRENT AND H. T. KUNG (1976), Fast algorithms [or manipulating formal power series, Rep.,
Computer Sci. Dept. Carnegie-Mellon Univ., Pittsburgh, PA.

O. BRUGIA (1965), Noniterative method]’or the partial expansion ofa rational[unction with high order
poles, SIAM Rev. 7, pp. 381-387.

F. Y. CHIN (1975), Complexity of numerical algorithms]’or polynomials, Ph.D. thesis, Dept. of
Electrical Engineering, Princeton Univ., Princeton, NJ, October 1975.

F. Y. CHIN AND J. D. ULLMAN (1975), Asymptotic complexity of partial]’raction expansion, Rep.,
Computer Sci. Laboratory, Dept. of Electrical Engineering, Princeton Univ., Princeton, NJ.

R. J. FATEMAN (1974), Polynomial multiplication, powers and asymptotic analysis: Some comments,
this Journal, 3, pp. 196-213.

A. A. GRAU (1971), The simultaneous Newton improvement ofa complete set ofapproximate factors of
a polynomial, SIAM J. Numer. Anal. 8, pp. 425-438.

D. HAZONYAND J. RILEY (1959), Evaluating residues and coefficients ofhigh orderpoles, IRE Trans.
Automatic Control, AC-4, pp. 132-136.

P. HENRICI (1971), An algorithm]:or the incomplete decomposition of a rational function into partial
fraction, Z. Angew. Math. Phys., 22, pp. 751-755.

-------(1974), Applied and Computational Complex Analysis, vol. 1, Wiley-Interscience, New York.

PARTIAL FRACTION DECOMPOSITION 593

S. KARNI (1969), Easy partial fracn’on expansion with multiple poles, Proc. IEEE (letters), 57, pp.
231-232.

D. E. KNUTH (1969), The art of Computer Programming, vol. 2, Addison-Wesley, Reading, MA.
H. T. KUNG (1974), On computing reciprocals ofpower series, Numer. Math., 22, pp. 341-348.
L. J. P. LNNR (1974), The computation of the kth derivative ofpolynomials and rational functions in

factoredform and related matters, IEEE Trans. Circuits and Systems, CAS-21, pp. 233-236.
M. F. MOAD (1966), On rational function expansion, Proc. IEEE (letters), 54, pp. 899-900.
R. T. MOENCK (1973a), Fast computation ofGCDs, Proc. 5th Annual ACM Symposium on Theory of

Computing, May 1973, pp. 142-151.
(1973b), Studies in fast algebraic algorithms, Ph.D. thesis, Dept. of Computer Science, Univ. of
Toronto.

D. W. PESSEN (1965), Time-saving method]:or partial fraction expansion offunction with one pair of
conjugate complex roots, Proc. IEEE (correspondence), 53, p. 1266.

C. POTTLE (1964), On the partial fraction expansion of a rational function with multiple poles by digit
computer, IEEE Trans. Circuit Theory (correspondence), CT-11, pp. 161-162.

A. SCHONHAGE (1971), Schnelle Berechnung yon Kettenbruchentwicklugen, Acta Informat., 1, pp.
139-144.

I. J. SCHWATT (1924), An Introduction to Operations with Series, Chelsea Publishing Co, New York.
V. STrASSEN (1969), Gaussian elimination is not optimal, Numer. Math., 13, pp. 354-356.
H. W. TURNBULL (1927), Note on partial fractions and determinants, Proc. Edinburgh Math. Soc. 1,

no. 2, pp, 49-54.
C. W. VALENTINE (1967). A methodforpartialfraction decomposition, SIAM Rev., 9, pp. 232-233.
B. L. VAN DEr WAEIDEN (1953), Modern Algebra, vol. 1, Frederick Ungar, New York.
T. M. VAR (1974), Some complexity results for a class of Toeplitz matrices, Rep., Dept. of Computer

Sci. and Math., York Univ., Toronto.
L. WEIN3EIG (1962), Network Analysis and Synthesis, McGraw-Hill, New York.
E. WEHRHAHN (1967), On partial fraction expansion with high-order poles, IEEE Trans. Circuit

Theory (correspondence), CT-14, pp. 346-347.

SIAM J. COMPUT.
Vol. 6, No. 3, September 1977

LOCATION OF A POINT IN A PLANAR SUBDIVISION
AND ITS APPLICATIONS*

D. T. LEE" AND F. P. PREPARATA

Abstract. Given a subdivision of the plane induced by a planar graph with n vertices, in this paper
we consider the problem of identifying which region of the subdivision contains a given test point. We
present a search algorithm, called point-location algorithm, which operates on a suitably preprocessed
data structure. The search runs in time at most O((log n)2), while the preprocessing task runs in time at
most O(n log n) and requires O(n) storage. The methods are quite general, since an arbitrary
subdivision can be transformed in time at most O(n log n) into one to which the preprocessing
procedure is applicable. This solution of the point location problem yields interesting and efficient
solutions of other geometric problems, such as spatial convex inclusion and inclusion in an arbitrary
polygon.

Key words, planar region identification, computational geometry, point location, computational
complexity, analysis of algorithms, spatial convex inclusion, inclusion in polygon

1. Introduction. We shall consider the following problem referred to as
"point location"" A given planar straight line graph on n vertices induces a
subdivision of the plane; given a test point P, find which region of this subdivision
contains P. We shall assume that the graph is originally given as the collection of
the edge-lists of its n vertices.

To solve this problem, one must produce an algorithm and its associated data
structure, obtained by preprocessing the original data structure. Thus, from a
computational viewpoint, any solution to the point location problem should be
evaluated with respect to the following three measures: (i) the search time, that is,
the number of operations required to locate the test point in the subdivision; (ii)
the preprocessing time, that is, the number of operations required to construct the
data structure postulated by the search algorithm; (iii) the amount of storage
required by the preprocessed data structure.

Some workers have recently considered this problem. For example Ketelsen
[1] proposed an algorithm whose search time is O(n). The most recent and
interesting results are due to Shamos [2]. His approach is an adaptation of a
nearest-neighbor algorithm, also developed by him. It consists of tracing a sheaf of
parallel lines through each of the n points, thereby slicing the plane in strips, called
"slabs", each of which contains no vertex of the graph and is subdivided by
transversal segments in at most O(n) regions. Since each of these slab-regions
belongs to a unique plane region, O(log n) comparisons are sufficient to locate
the slab and additional O(log n) comparisons are sufficient to locate the region.

* Received by the editors December 11, 1975, and in revised form December 27, 1976.
This work was supported in part by the Joint Services Electronics Program (U.S. Army, U.S. Navy, and
U.S. Air Force) under Contract DAAB-07-72-C-0259.

" Coordinated Science Laboratory and Department of Computer Science, University of Illinois at

Urbana-Champaign, Urbana, Illinois 61801.
: Coordinated Science Laboratory and Department of Electrical Engineering, University of

Illinois at Urbana-Champaign, Urbana, Illinois 61801.
Here and hereafter "log" denotes logarithm in base 2.

594

LOCATION OF A POINT 595

Thus, Shamos’s search algorithm has running time O(log n), but, as is easily
realized, both preprocessing time and storage are O(n2). Shamos also outlines
another possible procedure [2], based on recursively splitting the planar subdivi-
sion by means of polygonal lines, so that at each step half of the regions to be
subdivided lie on either side of a polygonal line. Such an algorithm could achieve a
search time O((log n)2), but the polygonal lines must be "star-shaped" (in his
terminology) and the existence of such lines is an open question even for the
special case of a triangulation. In this paper we show that, if one does not insist on
recursively halving sets of regions, a suitable set of polygonal lines can be found
within a preprocessing time O(n log n); the resulting data structure can be stored
in O(n) memory locations and the search time is at most O((log n)2).

The point location problem occurs in a number of applications in operations
research, pattern recognition, job scheduling, etc. We shall show in this paper how
it can also be applied to solve a number of other problems, among which is spatial
convex inclusion.

This paper is organized as follows. In the next section we shall introduce some
useful geometric constructs, specifically, monotone complete sets of chains of a
planar graph, and justify their application to the solution of the point location
problem. In 3 we shall give a procedure for the construction of such sets of chains
for an important subclass of planar subdivisions and illustrate the resulting data
structure. In 4 we shall illustrate in detail the point location algorithm. In 5 we
shall extend the results to arbitrary planar subdivisions. Finally, in 6 we shall
describe furthe applications of the outlined algorithms to problems in computa-
tional geometry.

2. Complete sets of chains. We begin by recalling some standard geometric
definitions and introducing some useful notions.

A connected planar straight line (PSL) graph G with a finite number of
vertices subdivides the plane into nonempty regions of which exactly one is
infinite. These regions form a planar subdivision and will be also referred to as the
regions of G.

DEFINITION 1. A chain C-(Ul,’", Up) is a PSL graph with vertex set
{u, Up} and edge set {(u, Ui+l)]i 1,...,p-i}.

DEFINITION 2. A chain C=(Ul, u2,’", Up) is said-to be monotone with
respect to a straight line if the orthogonal projections {l(Ul),""", l(up)} of the
vertices of C on are ordered as (l(u),..., l(up)).

Example. The chain in Fig. la is monotone with respect to whereas there is
no straight line with respect to which the chain in Fig. lb is monotone.

It is convenient to extend a chain (Ul,"’, up) which is monotone with
respect to a line with half-lines parallel to beyond each terminal point u and Up.
Any such extended chain thus divides the plane into two regions. In the sequel, a
monotone chain will always be thought of as being extended in this manner.

DEFINITION 3. Given a PSL G, a set of chains with the properties
(i) each edge of G belongs to at least one chain of
(ii) for any two chains Ca and C2 of , the vertices of C1 which are not

vertices of C2 lie on the same side of C2,
is said to be a complete set of chains of G.

596 D.T. LEE AND F. P. PREPARATA

U=Ul

U3

U2
U5

U6

U4
v-U 8

U7

FIG. 1. Examples ofchains

u u u

c

v v

(a) (b)

FIG. 2. A PSL graph Oand two complete sets ofchains ofG
(c)

Given a set of chains of a PSL graph, it is natural to introduce a binary
relation "<" on c as follows: for Ca, C2 e c, the notation Ca < C2 means that Ca
lies on a selected side of C2 with respect to a fixed observer. It is then obvious that
condition (ii) in Definition 3 implies that < on a complete set is a total ordering,
i.e., is a sequence (Ca, C2, , Cr). As an example, in Fig. 2b and 2c we exhibit
two complete sets of chains of the PSL graph G given in Fig. 2a.

DEFINITION 4. A complete set of chains of a PSL graph G is said to be
monotone if all of its members are monotone with respect to the same straight line.

Referring to the preceding example, the set in Fig. 2c is monotone, whereas
the set in Fig. 2b is not.

We shall now motivate our interest in monotone complete sets of chains. Let
C be a chain with vertices u 1, ,us which is monotone with respect to a straight
line and let P be a test point. We shall call a discrimination (of P against C) the
operation of deciding on which side of C the point P lies. As Shamos pointed out
[2], such discrimination can be performed with O(log s) comparisons of coordi-
nates. In fact (see Fig. 3), the projections of the vertices of C on form a sequence
of points (l(Ul), , l(us)). With a binary search, i.e., with [log (s + 1)] compari-

LOCATION OF A POINT

/
/

/
p /,, Ul u

r, / ’\ \. ’, /, / ’, .(u)

597

sons of coordinates, we can determine a unique interval (l(ui), l(ui+l)) of which
contains the projection l(P) of P on 1. Next, with a fixed number of arithmetic
operations and a single comparison we can determine on which side of the straight
line containing uiui+l the point P lies. This also determines on which side of C the
point P lies. Suppose now that a complete monotone set of chains c_
(C1, C2,’", Cr) is given and let s be the maximum number of vertices in any
chain of this set. Applying binary search to the set of chains c, with [log (r + 1)]
discriminations we can determine a unique pair of consecutive chains C. and C+
of c which enclose the given point P. Since the set is also complete, by property
(i) in Definition 3 the portion of plane contained between two consecutive
members of is a concatenatiol of regions of G and (possibly) of chain segments
(see Fig. 4). Recall now that the discriminations of P against a chain C entails the
identification of a unique edge e <j) of C/. Thus, if P has been located between two
consecutive chains C and C/+1, the two edges e <j) and e <+1) uniquely identify the

p(j+l)

FIG. 4. Portion ofplane comprised between two consecutive chains C. and C.+

598 D.T. LEE AND F. P. PREPARATA

region of the graph G to which P belongs, and the point location problem is
solved.

This justifies the usefulness of monotone complete sets of chains of a PSL
graph G. The preceding discussion also indicates that at most O(log s) O(log r)
comparisons are needed for point location. Notice now that, if G has n vertices,
each chain of a complete monotone set on G has at most n vertices; moreover,
by property (i) in Definition 3, there are at most O(n) chains in % It follows that
point location requires at most O((log n)2) comparisons.

The remaining crucial question is whether an arbitrary PSL graph always
admits of a monotone complete set of chains. The answer is in general negative.
However, we shall constructively show that a PSL graph G admits of a monotone
complete set of chains, provided it satisfies a rather weak requirement. In
addition, we shall show that an arbitrary PSL graph can be easily embedded into
one to which the chain construction procedure is applicable. This embedding
creates some new "artificial" regions, with no harm, however, to the effective
solution of the point location problem.

3. Preprocessing algorithm (construction of complete sets of chains). Let G
be a PSL graph in the plane (x, y) with vertex set {vl, U2, On}. Each vertex vi is
given by a pair of coordinates (xi, yi) and the graph G is described by its edge-lists,
i.e., by a collection {L1, L2, Ln}, where Lj, the edge-list for vertex vj, is the set
of indices of vertices to which vi is connected. The set of chains we shall construct
will be monotone with respect to the y-axis.

We initially arrange the original data structure by sorting the y-coordinates
of the vertices and renaming the indices so that y -> Y2 -->" >- Y,, this processing
requires O(n log n) operations. Next we construct a two-dimensional list, called
the standard representation o]: G, representing a modified connection matrix A of
G, where A[i,]] 1 if and only if there is an edge (v, vi) in G and either y > yi or,
if y yi, then </’. Notice that the row-lists thus obtained describe a directed
graph G’, obtained from G by assigning to each edge e of G a direction so that the
projection of e on the y-axis runs opposite to this axis. For ease of reference, we
shall say that an edge of G is "incoming" or "outgoing" depending upon its
direction in G’. The construction of the standard representation of G is a simple
operation. We scan the original data structure and process each edge (v, vj) as
follows: If either Yi > Y or yi y and <, we assign the edge to the row-list of v
and to the column-list of vj; otherwise, we ignore the edge. It is clear that the
running time of this construction is proportional to the number of edges, i.e., since
G is planar, it is O(n). Finally, the edges of each row- and column-list are sorted
according to counterclockwise ascending slope: this sorting operation requires
time at most O(n log n). The two-dimensional list data structure which gives the
standard representation of the graph of Fig. 5a is illustrated in Fig. 5b, along with
the formats of the vertex and edge nodes. The denominations of the fields of the
two formats are now explained. For a vertex v, PRED[v] and SUCC[v] point to
the locations of the nodes vi_l and vi+a, respectively, while COL[v] and ROW[v]
point to the first members of the column- and row-lists, respectively; as to the
value fields, [v] and I[v], the column degree of v, is the number of incoming
edges of vi, i.e., the cardinality of its column-list. For an edge e (v, vi), with

LOCATION OF A POINT 599

(a)

Value Pointers
(’----’5 "1

Vertex Node Format

Value Pointers
f

w II o. I.c ox I." x’ml
Edge Node Format

’1-1

(b)

FIG. 5. A PSL graph and the correspondingdata structure

Yi > Yj, UP[e] and DN[e point to vi and vj, respectively, while COLNEXT[e] and
ROWNEXT[e point to the next members of the column- and row-lists, respec-
tively; W[e], the weight of e, will be used to denote the number of chains
containing the edge e.

DEFINITION 5. A vertex vi of a PSL graph G is said to be regular if there are
integers <j < k such that (v, v) and (v, v) are edges of G. Graph G is said to be
regular if each vi is regular for 1 < < n (i.e., with the exception of the two extreme
vertices v and v,).

We shall now show that a regular PSL graph admits of a complete set of
chains monotone with respect to the y-axis.

First we show, by induction, that for any j in the range from 2 to n, there is a
chain from v to vi which is monotone with respect to the y-axis. This is trivial for
j 2. Assume the statement is true for k <j. Since vj is regular, by Definition 5,
there is some i<j such that (v, vi) is an edge of G. But, by the inductive
hypothesis, there is a chain from v to v monotone with respect to the y-axis;
clearly, the concatenation of C and (vi, vj) is a chain from v to vj which is
monotone with respect to the y-axis. This extends the inductive hypothesis. To
complete the proof, we must show that a set of chains can be constructed, so that
properties (i) and (ii) in Definition 3 are satisfied. But this is achieved if we succeed

600 D.T. LEE AND F. P. PREPARATA

in assigning weights to edges so that 1) each edge has positive weight and 2) for
each vertex vi the sum Win(Vi) of the weights of its incoming edges equals the sum
Wout(vi) of the weights of its outgoing edges. In fact, condition 1) ensures that each
edge belongs to at least one chain (property (i)), and condition 2) ensures that the
Win(V) chains passing through a given vertex vg can be chosen so that they do not
cross (property (ii)).

The conditions Win(V) Wout(Vi), for 2,. , n 1, referred to as "weight
balancing", can be simply achieved with two passes over the previously described
data structure. In the first pass we proceed from vn to V and assign the edge
weights so that, for each nonterminal v, Win(Vi)=> Wout(Vg). The second pass, in
turn, proceeds from Vl to vn and modifies the weights so that, Win(Vg) =< Wout(V),
for every nonterminal v, thereby achieving the desired balancing.

During the latter pass we can also explicitly construct the chain data struc-
ture. It may appear at first glance that more than O(n) locations are needed to
store the chains, since there are O(n) chains and there is no obvious way to bound
the number of edges each of them may contain. However, we can obtain a very
compact representation of this set using the fact that the chain set is to be used in a
binary search. Indeed, it is well-known that a binary search algorithm on a totally
ordered set S induces a natural hierarchy on S as follows: each member of S is
assigned to a vertex of a binary tree T(S) through a mapping : S - T(S), and an
actual search operation corresponds to tracing a path from the root to a leaf of
T(S). Given two chains Cg and C. in we shall say that C/is higher than C, and
denote it by C > C/., if the path from the root of T() to -(C) contains -(Ci).
Assume now that C > C and that Ci and C. share an edge e. Since, when
performing binary search, the discrimination of a point P against C is preceded by
the discrimination of P against Cg, then clearly edge e may be assigned to C only.
Thus, as a general rule, an edge of the graph G will be stored only once and will be
assigned to the highest chain of the hierarchy which contains it.

With a negligible loss of search efficiency we shall adopt a standard hierarchy
for the set {C1, C2, , Cr} which is independent of the number of chains, as
follows: for j, C > C. <::>j [i 2p’ + 1, + 2p’ 1], where 2p’ is the largest
power of 2 which is a factor of the integer i. For example, for n 20 we have the
hierarchy illustrated in Fig. 6. As we shall show, the use of the standard hierarchy
will permit the assignment of edges to chains concurrently with the weight
balancing operation.

The data structure describing the set of chains will be a list representation
of the tree T(), linking the chain nodes; in turn, the node for chain C is the
header of a list L(C), which gives the sequence of the edges assigned to C
according to the previously outlined criterion. For reasons to become apparent
later (4) each edge e=(v,vj) is labeled with two pairs of integers
(Imin[e],/max[el) and (Lie], R [e]). The integers Imin[e] and/max[e] are respectively
the minimum and the maximum value of j such that e Q. The integers Lie] and
R[e] are the labels of the plane regions respectively to the left and to the right of
the edge e directed so that its y-projection is concurrent with the y-axis. The
formats of the chain and the edge nodes are illustrated in Fig. 7.

We can now give a formal description of the algorithms which accomplish the
construction of the set .

LOCATION OF A POINT 601

d
FIG. 6. Hierarchy]:or n 20

Value Pointers
f,.....’k,_.._..%.__ ,, --Chain IIDesceLeft nt

Right

INurberll nda Descendant

Chain Node

Vo lue Pointer

[’.v [v’j [Imin’[e] JIrn.x[e]JL :e]lR[e]l
Edge Node

FIG. 7. Formats ofchain and edge nodes in the chain data structure

CHAIN CONSTRUCTION ALGORITHM.

First pass. This pass accepts a PSL graph G given by its standard representa-
tion and assigns the weight of each edge so that for each nonterminal vertex v we
have Win(Vi) >- Wot(vi).

1. For each edge e in column-list of vi, for/’ 1,..., n, set W[e] 1.
2. Set -n- 1.
3 Whilel<i<ndo:

4. Set Wontsum of weights in row-list of v. (Comment: due to the
ordering of the vertices each edge considered in this step has already
the weight it will have at the end of the first pass.)

5. Set d <--first edge in column-list of vi.
6. If Wout>I[v,], set W[d] Wout-I[v,]+ 1.
7. Set ii-1.

8. Halt.
Comment. All edges are assigned weight 1 except for the first member of each

column-list, which is assigned the value Wout(Vi)- Win(V)+ 1. In this manner, the
condition Win(V)--> Wout(V) is achieved for each nonterminal vertex. Computa-
tionally, the running time is O(n), since each edge of the graph is scanned a fixed
number of times (steps 1, 4, and 5) and there are O(n) edges.

Second pass. This pass accepts the output of the first pass and performs the
following functions: 1) it balances the weight of each nonterminal vertex of G; 2)
it constructs a complete set of chains for G; 3) it labels the regions of the
subdivision induced by G. The assignment of an edge to a chain makes use of a
special arithmetic function, called PREDECESSOR(k, l), for two integers k and

602 x. T. LEE AND F. P. PREPARATA

with k _-< l, which determines the common predecessor o both k and which is the
lowest in the standard hierarchy; this unction, which will not be described in
detail, can operate directly on the binary representations o the integers k and
and is easily seen to require a number of operations proportional to log n.

Comment. Steps 1-3 initialize or the special vertex
1. SetAI_,r-2, L,-1, R-I.
2. Set Win sum o weights in row-list o v l. (Comment: This is the total

number of chains in %)
3. Set - 1.
4. While 1 _-< < n do:

5. Set Wout sum of weights in row-list of
6. Set a - Win- Wou,.
7. Set e first edge in row-list o vi.
8. While there are edges in row-list o vi do: (Comment: Steps 9-12

assign an edge to a chain; steps 13-14 label the regions separated by
an edge.)
9. Set Im,[e] - A.

10. Set Imax[e] --A + a + W[e]- 1.
11. Compute c PREDECESSOR(I,,in[e], Imax[e]).
12. Assign e to list o chain c.
13. If e is first edge o row-list, set L[e]L; else set L[e]r and

re-r+1.
14. If e is last edge of row-list, set R[e] R; else set R[e] r.
15. Set a 0, A *-/max[el+ 1.
16. Set e next edge in row-list of v.

17. Set ii+1.
18. Set Wn sum o weights in column-list of v.
19. Set d -first edge in column-list of v.
20. Set R -R [dl].
21. Set d2*--last edge in column-list o v.
22. Let L L[d2], a Irnin[dz].

23. Halt.
Comment. The second pass contains two nested loops. The primary loop

(steps 5-22) scans the vertices, the secondary loop (steps 9-16) scans the edges in
the row-list of a vertex. For each vertex vi, the weight balance is achieved by
modifying, if necessary, the weight of the first member of the row-list (steps 5, 6, 7,
9, and 10). Each edge is processed only once, but the function PREDECESSOR
requires time O(log n); thus the number o operations required is O(n log n).

In summary, since the initial sorting, the first balancing pass and the second
balancing pass run in times O(n log n), O(n), and O(n log n), respectively, the
entire preprocessing tasks can be accomplished in time O(n log n).

4. Point location algorithm (search). We shall now describe in detail the
point location algorithm which we have sketched in 2. The algorithm accepts the
chain data structure described in 3 and a test point P - (x, y) and determines the
planar region R to which P belongs in at most O((log n)2) steps. The integer rn
denotes the number of chains. The search is characterized by a pair of integers

LOCATION OF A POINT 603

(l, r), with < r, to denote that the point P is contained between chains C1 and Cr;
the algorithm terminates when r 1 and the region is determined from the data
associated with the edges.

1. If y-> y lor y =< Yn, then set R 1. (Comment: P belongs to the infinite
region of the plane) and halt.

2. Set g +- root of T(C), 0, r ,-- m + 1.
3. Set j ,-index of the chain associated with g.
4. If _-> j, set g right descendant of g and go to step 3.
5. If r <=j, set g left descendant of g and go to step 3.
6. In the edge-list headed by g, find an edge (vi, vk) such that yk _-< y =< yi and

set e (v, v). (Comment: This step is the binary search of the edge
against which P is to be discriminated.)

7. If P lies to the right of e, set Imax[e and R <-- R [e]; else set r Imin[e
and R Lie]. (Comment: This step discriminates P against the edge e and
makes a tentative region assignment; this assignment is final if r 1, as
indicated by step 8.)

8. If r-l 1, halt; else go to step 3.

5. Regularization of an arbitrary planar polygon. The preprocessing proce-
dure described in 3 is applicable to regular PSL graphs. However, a PSL graph is
not regular in general, since it may contain regions delimited by arbitrary
polygons. In this section, we shall illustrate a procedure which transforms an
arbitrary polygon with n vertices into a regular PSL graph and runs in time
O(n log n). This procedure will be referred to as regularization of a planar
polygon. With the aid of this additional procedure, our point-location algorithm
and its associated preprocessing are applicable to arbitrary planar subdivisions.

We shall briefly illustrate the idea of the regularization procedure. In a simple
planar polygon not all vertices are regular with respect to a selected line (the
y-axis): for example, in Fig. 8a, vertices marked with "" require an outgoing
edge and vertices marked with "/" require an incoming edge. Consider now in
Fig. 8a the horizontal line (orthogonal to the y-axis) through a vertex v
requiring, for example, an incoming edge. This line intersects a set of edges
{el, e2, e3, e4} in points P1, P2, P3, and P4, respectively. Therefore vertex v falls in
a unique part of the partition of determined by these points (in our example, in
segment P2P3). Associated with the pair of edges (e2, e3) there is a vertex of
minimum ordinate (in our case, vertex u): thus we can introduce an auxiliary edge
(v, u) which is guaranteed not to cross any edge of the polygon and which satisfies
the requirement of v for an incoming edge. Thus the regularization procedure will
consist of two passes: in the first pass (descending pass) we scan the vertices in
order of decreasing y-coordinate and satisfy the requirements of vertices in need
of incoming edges; in the second pass (ascending pass) the reverse process occurs.
Each stage in the execution of the algorithm is characterized by an ordered set of
edges (a sequence of edges). For every newly reached vertex v, the current edge
sequence is updated as follows: if v is regular, a new edge replaces a previous edge,
if v requires an incoming edge (an outgoing edge), two new edges are inserted (are
deleted). Therefore, the natural data structure for the edge sequence is a list,
realized by a balanced tree (an AVL tree; see I-3, 6.2.3]).

604 D.T. LEE AND F. P. PREPARATA

y/xis

e
e4

(a) (b)

FIG. 8. A simple polygon and its regularized version

We shall now give a detailed description of the regularization algorithm and,
for obvious reasons, we shall confine ourselves to the descending pass. The
polygon G is originally given as a sequence of vertices u 1, u2, , u,, correspond-
ing to the edge sequence (u l, u2), (u2, u3),"’", (u,, u 1). Preliminarily, we con-
struct the standard representation of G (see 3); that is, we sort the vertices in
order of decreasing y-coordinate, we relabel them as vl,’’ ", v, so that y(vl)=>
..=>y(v,) and associate with each vertex the row- and column-lists of its

outgoing and incoming edges, respectively. In our case, the total number of edges
in the row- and column-lists is equal to 2, since G is a closed polygon.

The data structure describing the current edge sequence is an AVL tree .
Specifically, is a sequence [e0, w0], [el, w],..., [e, w], for some integer k,
where e is an edge and wi is a minimum ordinate vertex between ei and ei/. The
algorithm described below refers to a simple polygon G surrounded by the infinite
region of the plane; there are some obvious modifications when G borders other
simple polygons.

Descending pass. This algorithm accepts the standard representation of G
and creates an auxiliary list of edges satisfying the requirements of vertices in need
of an incoming edge. We assume that standard operations" INSERT, DELETE,
REPLACE are available for the AVL tree . Use is also made of an artificial edge
eo corresponding to the line x =-. If a vertex v has two outgoing edges, the
latter are denoted as e’(v) and e"(v), with e’(v) forming a counterclockwise convex
angle with e"(v). The integer I(v) denotes the number of incoming edges of a
vertex v.

1. Set Wo- v, el - e’(vl), e2 e"(v), wa - vl, w2 va and INSERT
[e0, Wo], [el, wl], and [e2, w2] into . (g is initially empty.)

2. Set 2.
3. While < n do"

LOCATION OF A POINT 605

4. Set/" smallest integer so that vi is not to the left of ej.
5. If I(vi)=2, set W_lV,w/:vg; then DELETE [ej, wj] and

[ej+l, w+l] from g’. (Comment: This case occurs when v requires an
outgoing edge.)

6. If I(v) 1, set w -v, w-i v, e outgoing edge of v. (Comment: vi
is a regular vertex.)

7. If I(vi)=O, INSERT [e’(vi), vi] and [e"(vi), vii between [e, wj] and
[e+l, W+l] in g’. Add the edge (v, w) to the auxiliary list and set

w v. (Comment: In this case vi requires an incoming edge.)
8. Set -i + 1.

9. Halt.
The ascending pass is the same algorithm, once the signs of the ordinates

y(vl),..., y(vn) have been changed. At the completion of the two passes the
edges in the auxiliary list must be added to the standard representation and the
resulting PSL graph is regular with respect to the y-axis.

We now analyze the regularization algorithm. The initial sorting pass of the
ordinates requires O(n log n) operations. Step 4 involves tracing a path in the
AVL tree g and requires at most O(log n) operations; thus the total amount of
work involved in step 4 is O(n log n). Each update, deletion or insertion (see steps
5, 6, and 7) requires computational work of at most O(log n); however, there is a
fixed maximum number of such operations per vertex, whence the total number of
operations required by these steps is O(n log n). We conclude that the algorithm
for regularizing a simple polygon has running time at most O(n log n).

In Fig. 8b, we illustrate the result of the regularization procedure applied to
the polygon in Fig. 8a. New regions have been created, with no difficulty however
for the effective solution of the point location problem.

As a final observation, we consider the case in which we must regularize a
given general PSL graph G with n vertices and N edges. For every region of G
with s vertices, the regularization algorithm runs in time O(s log s). Assuming
that the subdivision induced by G consists of regions R,R2,’" ,Rj with
respective number of vertices s 1, s2, , sj, since s +. + sj _-< 2N, we conclude
Sl log Sl +" + sj log sj _-<2N log 2N; butN is O(n), whence the regularization of
a general PSL graph with n vertices can also be accomplished in time O(n log n).

6. Applications. As we indicated in 1, the point location problem occurs as
a subproblem in a number of important applications. Thus our fast point location
algorithm provides interesting solutions for other problems. In particular, we shall
explicitly consider"

(i) spatial convex inclusion;
(ii) inclusion in an arbitrary planar polygon;
(iii) location in the planar subdivision determined by n straight lines.

6.1. Spatial convex inclusioh. Let S be a convex polyhedron with n vertices
in 3-space (x, y, z) and let P be a test point; we must determine whether P is inside
or outside S. We shall proceed as follows. Let P1 be a vertex of S with largest z
coordinate. Clearly, the stereographic projection of S from Pa onto the plane
(x, y) is a planar graph S’. Since the regions induced by S’ are projections of faces
of S, and the latter are convex, each region of the planar subdivision is convex. It

606 D.T. LEE AND F. P. PREPARATA

follows then that S’ is regular, since the nonterminal vertices on the boundary are
obviously regular and each internal vertexhas at least three edges forming convex
angles. Thus, with the previous point location algorithm, we can identify a unique
region R’ of S’ which contains a point P’, which is the projection onto (x, y) from
P1 of a given test pointP in 3-space. Since R’ of S’ corresponds to a face R of S, the
testing for convex inclusion of P in S is accomplished by determining on which
side of R the point P lies. Since the operation of constructing the data structure for
S’ from the data structure of S runs in time O(n), we conclude that, with a
preprocessing time at most O(n log n), spatial convex inclusion can be tested in at
most O((log n)2) steps.

6.2. Inclusion in an arbitrary planar polygon. Let G be a planar polygon with
n vertices and let P be a test point; we must determine whether P is inside or
outside G. Shamos [2] provides an algorithm for solving this problem based on the
"slab" notion, which has search time O(log n), with a preprocessing time and
storage both O(n2). By contrast, our algorithm has search time O((log n)2),
preprocessing time O(n log n) and storage O(n). We initially regularize the
polygon G and transform it into a regular PSL graph G’: the regions of the
resulting subdivision are partitioned depending on whether they are inside or
outside G. Thus the point location algorithm is applied to G’ and the problem is
solved.

6.3. Location in straight line planar subdivision. Dobkin and Lipton origi-
nally suggested the problem of locating a point in the planar subdivision induced
by n straight lines in general position [4]. In this case the regions (finite or infinite)
are all convex, and therefore the planar graph on O(n) vertices is regular. Some
minor modification of the algorithms are required and it is straightforward to show
that O((log n)2) search time and O(n 2) storage can be attained, as conjectured by
Shamos [2].

REFERENCES

1] M. KETELSEN, Triangular tile identification, CS 389 course project, Dept. of Computer Sci., Univ.
of Illinois, Urbana, IL, Dec. 1973.

[2] M. J. SHAMOS, Problems in computational geometry, Dept. of Computer Sci., Yale Univ., New
Haven, CT, May 1975.

[3] D. E. KNUTH, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-
Wesley, Reading, MA, 1973.

[4] D. P. DOBKIN AND R. J. LIPTON, The complexity of searching lines in ’the plane, Dept. of
Computer Sci., Yale Univ., New Haven, CT, 1975.

SIAM J. COMPUT.
Vol. 6, No. 4, December 1977

INTERNAL FRAGMENTATION IN A CLASS OF BUDDY SYSTEMS*

DAVID L. RUSSELL?

Abstract. A general class of buddy systems is defined and the overallocation of memory due to
internal fragmentation is examined. It is shown that, for a uniform distribution of requests, the
overallocation varies between 2x1/(xl + 1) and 1/2(Xl + 1), where xl > is the largest real root of the
characteristic equation of the particular buddy system. Bounds are found for the overallocation for
request distributions characterized by a parameterization of Zipf’s law. The expected value of the
overallocation is independent of the request distribution within wide values of the parameter, and is
given by (x 1)/ln x 1. For the binary buddy system x 2; the overallocation varies between 1.33 and
1.50 and the expected value is 1.44.

Key words, dynamic storage allocation, buddy system, fragmentation, Fibonacci buddy system

1. Introduction. Buddy systems are algorithms for dynamic storage alloca-
tion. Storage is provided in fixed size blocks; an available space list is maintained
to keep track of available blocks. When a request for a block of a particular size
cannot be satisfied from an available block, then a larger block is split into smaller
blocks, called buddies. One of these buddies is used to satisfy the request, and the
others are placed on the available space list. (The request procedure may be
performed iteratively to obtain the "larger" block, if it is not already on the
available space list.) When a block is released, its buddies are examined. If all the
buddies are free, then they are recombined into the original parent block. This
recombination continues as long as all buddy descendants of a parent block are
free.

Inefficient use of memory may arise in two ways. Internal fragmentation
occurs because blocks may be allocated in fixed, predetermined sizes only; thus, a
request for memory must be satisfied by a block of the next larger size. External
fragmentation results when sufficient memory exists to satisfy a request, but it is
found in blocks which are not buddies and therefore may not be combined.

The original buddy system studied by Knowlton [2] and Knuth [3] used
blocks of size 2n, and will be referred to as the binary buddy system. Hirschberg 1]
and Sedgewick [10] studied Fibonacci buddy systems, where the block sizes are
Fibonacci numbers Fn. Hirschberg [1] and Peterson and Norman [8] have
generalized these schemes to include a wider class of block sizes.

In this paper, internal fragmentation is measured by the overallocation ratio,
(memory allocated)/(memory requested). A class of buddy systems, called simple
buddy systems, is defined and the block sizes of simple buddy systems are
characterized. An expression for the overallocation of a simple buddy system is
derived, assuming that the sizes of requested blocks are uniformly distributed.
This is generalized to request distributions described by a parameterized Zipf’s
law. Bounds for the overallocation are determined, and the expected value for the
overallocation is found.

* Received by the editors February 20, 1975, and in revised form July 16, 1976.
t Computer Science Department, University of Southern California, University Park, Los

Angeles, California 90007. This work was supported in part by the National Science Foundation under
Grant GJ41644 while the author was at Stanford University.

607

608 DAVID L. RUSSELL

2. Simple buddy systems. The buddy systems studied in this paper may be
defined by a linear homogeneous recurrence equation with constant coefficients"

(1) Un a Un-1 q- a2un-2 -4- q" arUn_r

(As is common with equations of this type, ar 0; otherwise the order of the
difference equation could be reduced.) This represents the splitting of a block of
size un into a buddies of size u,-1, a2 buddies of size u,-2, etc. The initial
conditions are

(2)
u0=l.

n<O,

DEFINITION. A simple buddy system is a buddy system where the block sizes
u, satisfy (1) and (2), the coefficients ai of (1) are nonnegative integers, and for
large enough n, the sequence un is monotonically increasing.

For example, the recurrence relation for the binary buddy system is Un
2Un-1, and the recurrence relation for the. Fibonacci buddy system is u,
u,-1 + u,-2. The recurrence relation u, u,-i + u,-2 + u,-3 would represent a
buddy system where each larger block is split into three buddies. Note that the
class of simple buddy systems does not include all useful buddy schemes. For
instance, the weighted buddy system of Shen and Peterson [11] is defined by a
system of two recurrence relations and is not a simple buddy system.

From the theory of recurrence relations (see, for example, Liu [6]) it is known
that the solutions of (1) are determined by the initial conditions and by the zeros of
the characteristic polynomial

(3) f(z)-" zr--alZr-l--a2Zr-2 ar.

LEMMA. The characteristic polynomial (3) has a real zero z > 1 of multiplicity
1, and Z is the sole dominant zero.

Proof. The sum ZlNiNr ai must be strictly greater than 1; if not, the u, would
never be monotonically increasing. But then(1) < 0. Since f(z > 0 for sufficiently
large positive z there is a zero zl > 1. The derivative f’(z) satisfies

f’(z) rzr-l-al(r 1)z r-2 ar-1
r-1 r-2> rz alrz rat-1

r[f(z)+a]
z

rf(z]
>" ’< for all z >0.

z

Thus f’(zl)>rf(zl)/zl=O, and Z is a single zero. Furthermore, since f’(z)>
rf(z)/z >-_ 0 for z > z 1, f(z) is monotonically increasing for z > z 1, and there are no
real roots of magnitude greater than zl.

INTERNAL FRAGMENTATION 609

By a simple application of inequalities for complex numbers f(z) is seen to
satisfy

[f(z)[_-> Izrl-lalzr-ll a2zr-2l- l- arl
[zrl--laazr-ll--la2zr-2[[ar[

(4)
-Izlr-la l[zlr- -la=llz[]arl

since the ai are nonnegative and satisfy]ai[- ai.
In relation (4) equality can hold only if each term aizr-i is a real number, and

this happens only when f(z)= g(zP), SO that z is a pth root of a real zero of the
polynomial g. This would imply, however, that the defining equation is really

Un apUn-p + a2pUn-2p +" + ampln-mp, mp r.

The initial conditions would then give a sequence

1, O, O, Up, O, O, U2p, O, O,

Since the sequence un is required to be monotonically increasing for large n, this
situation cannot occur, and equality never holds in relation (4) above; therefore,

Now, if a root z2 z exists, where Iz21->_z , then
since f’(z) >0 for z _>-z. But then z2 cannot be a zero of f(z), and thus z is the
sole dominant zero. Q.E.D.

COROLLARY. The block sizes of a simple buddy system satisfy

u. =czy/O(n - lz21")

where z. is the zero of next to largest modulus, p is the multiplicity o[z:, and c is an
appropriate constant.

Proof. This follows from the theory of recurrence equations (see, for example,
Liu [6]) and the fact that Zl, the sole dominant zero, is of multiplicity 1.

3. Overailocation in a simple buddy system. Suppose that a request for a
block of memory of size results in the allocation of a block of memory of size s.
Unless s for all sizes of requests i, some memory will be wasted. If blocks of
size L, may be allocated, then s Lg such thatL_ < -<Lg (assuming that the L,
are monotonically increasing). Given a distribution of request sizes, the average
overallocation may be calculated.

If a distribution of requests which is uniform from 1 to rn is assumed, then the
overallocation may be defined as b,,/a,,, where

a,, 1+2+3+-..+m =1/2m(m + 1),

bm s -Jc" S2 q" S3 q- -" Sm.
Since sj is constant for Lk-I<]<-Lk the sum bin, for L _<-m =<Lg+l, may be
expressed as

bm L + Y L, (L, L,_ 1) "[- (L, +1 Lg)Lk +

610 DAVID L. RUSSELL

where m Lk + a (Lk+ Lk), and 0 _-< a _-< 1. The overallocation is then defined as
R (a) limm_,oo bin

In a simple buddy system the block sizes Lk are determined by the numbers
Uk. Since the Uk may not be monotonically increasing for small k, it is not possible
to directly set Lk Uk.. (Consider, for example, the simple buddy system u,
u,-1 + un-3, which generates the sequence 1, 1, 1, 2, 3, 4, or the system u,,
u,-2 + u,-3 and its sequence 1, 0, 1, 1, 1, 2, 2, 3, ..) Since the Uk eventually do
become monotonic, however, it is true that Lk =clx+O(kP-llz2[k), for large
enough k, say k => k0, and for an appropriate constant Cl. Then m satisfies

m =Lk +a(Lk+l--Lk)=ClXkl(1 -I(X 1))-bO(kP-llz2lk).
Furthermore, bm satisfies

bm =BI+ L(L-Li-I)+a(Lk+I-Lk)Lk+I
ko<iNk

--B + [cx2i-(x 1-- 1)d-O(Xilip-IIz2I’)]/cxg+’(x,- 1)
ko<i<--k

/O(x k -’lz l

C2(xk+l--B2)(X- 1) +clax22k+l(x 1)+O(xkV-llz2l).=BI+ X--I
In this equation, B represents the contribution from the terms with small block
size, where the sequence of uk may not be monotonic, and/32 represents the
contribution due to the bottom limit of the summation; B and/32 are both
constant. The exact error term depends on the magnitude of z2. (It is, in fact, given
by the expression O(1 +xt’ilkp-llz2lk),) In any case, however, the limit of bm/x21k is
well-defined and

bm cXlim k X 4_1(1 +a(X-- 1)).
keo

Similarly, when am is calculated, the exact error term depends on the magnitude
of z2. The limit of amk, though, is well-defined and

am 1

The overallocation of a simple buddy system is given by

b,./X l a
(5) R(a) lim b_._ lim a"m/Xk,-,o a, ,,- x + 1 (1 +a(x 1))2.

koo

The minimum value of this function occurs when a 0 or a 1. It is easily
seen that

2x1(6) Rmin R (0) R (1) .
Xl+l

INTERNAL FRAGMENTATION 611

The function R (c) has .an extremal value at ct,, when a,, is chosen to make
R’(a,,) vanish. R’(a,,,) will be zero when

(1 / c,. (Xl- 1))2(x21 1)-(1 / a.(x- 1))(2(1 + a., (Xl- 1))(xa- 1))--=0

Upon simplification, this reduces to c., 1/(Xa + 1) and thus

(7) Rmax_R(1) 2Xl X

X / 1 Xa + 1 [1 +(Xa-- 1)/(Xa + 1)]2
2x(xa + 1) 1

(2x)2 =(x+l).
An "average" value Ravg for the overallocation of a buddy system may be

found by letting the memory size be a random variable over the positive integers.
Since every particular memory size corresponds to a particular value of a, it is
tempting to take the integral of R (a) from a 0 to a 1 as the average value
Ravg.

This implies that a is uniformly distributed in [0, 1]. However this is not true.
It is well known that the leading digits of the normalized fraction parts of random
numbers are not uniformly distributed [4]. In particular, the probability that a
randomly chosen real number written in base b has leading digits <r, where
1 < r < b, is log r. Thus the leading digits are logarithmically distributed.

In the present case, m ClX7(1 /O(X 1)) and the quantity 1 /O(X 1) acts
as a "leading digit." The probability distribution function of a is F(a)=
logx (1 /Ce(Xl--1)), and thus the probability density function for a particular
value a is given by

d
f(a) (logx, (1 + a (x 1))) (xa- 1)

(In xa)(1 +a(xa- 1))"

This may be used as a weight function and multiplied by R (a) before taking the
integral to get Ravg. The integral may be calculated using elementary calculus and
yields the following expression"

(Xl-- I)R()
Ravg

(ln x1)(1 /ff(x 1))

(8)

da

2xl(xa- 1) f01 (1 +a(Xl2- 1))

2X1(X1--1) j -1
(xl + 1)(In x a) / 2(x, 1)(1 + c (xa 1))2

-1
/(X / 1)

(Xl-- 1)(1 +a(xl- 1))

1
2(Xl-- 1)(1 +a(Xl

2X1(Xl-- 1) IX / 1 X 1]
Xl--1
In Xl

612 DAVID L. RUSSELL

An alternative derivation of Ravg can be obtained by expressing m in terms of
a parameter fl, so that m =Lk(Lk+l/Lk)/3 -ClX +/3. Then a random value of m
leads to a value of/3 which is uniformly distributed in [0, 1]. The parameter fl
satisfies x=l+a(Xl-1), and therefore a=(x-l)/(Xl-1). R(a) may be
rewritten as

2xl l+(xf- 1)(x1+ 1)
(9) R(/3) x+ 1 x
and Ravg may be calculated as

Ravg R(/3) d/3

2Xl fal+(x_l)(xl+l)
d/J0 Xl

/ x2x x -/3 i-2/3 /
x,+i +

-2

2Xl {(X +1)(1_1) 1 (1)}(X, + Y(ln xa) --Xl 1-7
xa-1
lnXl

That these two integrals are actually formally the same can be seen by noting that

x In x, d/3 (xa- 1)
(Xl- 1)

or d3 da.
(ln x)(1 + a(Xl- 1))

Thus the two expressions for Ravg are equivalent.

4. Generalized Zipf distribution. In 3 it was assumed that the sizes of
requested blocks were uniformly distributed from 1 to m. The method can be
generalized to find the overallocation of a simple buddy system with other
distributions of request sizes. Suppose that the probability of a request of size is

Pi. (Since this is a probability function, pi 1.) The quantity a Y ip gives the
mean request size, and the quantity b -ps gives the mean allocated size. The
overallocation is then given by R b/a. For the uniform distribution already
discussed, pi 1/m for 1 =< -< m, and 0 otherwise; the expressions reduce to their
previous values.

The calculations can also be easily made for a class of distributions related to
Zipf’s law. Let pi c/i for 1-<i-<m, and p 0 otherwise. If 0 0, this is the
uniform distribution; if 0= 1, it is Zipf’s law. The constant c- 1/H is a
normalizing constant chosen to make Y p- 1; H is the mth harmonic number
of order 0, defined by

1H(m)= E
l_<im

INTERNAL FRAGMENTATION 613

The mean request size is given by
1 Z ciol- cH(m -1)a E iP, E ci= <=,<-,1NiNm 1--<iNto

The mean allocated block size is calculated as

b,=L1 E Pj+ Z L, E p]+Lk+l Z
IN]NL 2NiNk Li-<jNLi Lk <jNm

bm/c=H?+ E (H-H++,(H-2.
2NiNk

The asymptotic expression forH), 0 1, is [5]

H= (0)+ m-/(1-O)+km-
where ((0) is a constant (Reimann’s zeta function). Thus, if 0 1, the following
expressions are valid:

1(O o ((cax)-o (cx]-)-o)

cl-Ox,-,l-O (xl-- 1),
(1-0)

cI--(_0 1."= (1-0)

(As before, the block sizes L are given by L cax and m satisfies m L +
a(+-)=cx(+(x-)) cx+.)

Completing the calculation for b/c (again ignoring the constant contribu-
tion from small block sizes and the bottom limit of the summation) leads to the
following expression:

bm/c ..1 -0 i= x]i-)(l-+i(xl-- 1)+x+ax(a-)(x(-- 1)

--10 X"C0--iX(1-)++1+
_c +_o xl--1
-1-0x x-+-Ix(a-)- i

The asymptotic value of am, if 0 2, is given by

a./c H-) (c’x+t)2- c----Xl2-O 2-O

Therefore, the overallocation as a function of/3 can be given by

(2- 0)x {(xl-- 1)/(x-- 1) --Xlfl(1-0)- 1}
(10) R(/3)

(1-0) xl2-)

When 0 0 this expression reduces to the previously determined formula (9)
for the overallocation under a uniform request distribution. When 0 1 or 0 2,
however, the expression is invalid.

614 DAVID L. RUSSELL

If 0 1 the expression is indeterminate and its value may be calculated by
l’H6pital’s rule"

(11) Ro=l()=xl Inx__ 1 +fl(Xl- 1)
Xl--1 XI

Alternatively, the proper asymptotic series for H(1) may be used [3]: H)=

In m +T + 1/(2m)- 1/(12m2) + -... Then the following expressions hold:

H,)-H ln (ClX)-In (ClX-1) --In xi--1

H)-H ln (ClX lk+)--ln (cxk)=/3 In xLk

Thus, bm/c and a/c are given by the following expressions"

b clxkl + In X --ClXlk+l In
C X--I
a___= ., l_:_= m c X ka+t,
C l<__i<=m

and this also leads to (11).
When 0 2, use of l’HBpital’s rule gives

Xl--i(12) g0=2(fl) --.
lnXl

Alternatively, it is easily shown that, when 0 2, the following expressions are
satisfied:

HL(2) H(2) _(ClX)-i -1)-1 1),-- /-,i-1 ’+’(ClX --’(C1X)-I(x1

Z Lt2) 2 y.. (x 1) const. + k (x 1).,a Li Li 1,]
k k

Thus, bm/c and am/c are given by the expressions

binc const. + k (x 1 x (x]-t 1),

am/C =H=ln m +y+...(k +fl)lnxi,

and these expressions lead also to (12). (Note that for 0 2 the overallocation is
not a function of/3.)

If 0 > 2 then am converges to a finite limit, and the methods of this paper are
not directly applicable; the overallocation will depend not on the asymptotic
behavior of the block sizes, but rather on the actual beginning values of the
sequence Li.

The minimum value of R (/3) satisfies R (0) R (1) Rmin and is given 15y the
following formulas:

(13)

(2-O)xa xl--1 2-0 1--X-1

emin 1-0 x--1 1-0 1-x-2’

X In xa

INTERNAL FRAGMENTATION 615

Rmin(O--2) -xl-]
lnxl

The maximum value of R (/3) is more difficult to obtain. The maximum is
obtained at a value/3,, given by R’(/3,,) 0. Evaluating this expression shows that
/3,. satisfies

1--0

2--0 2-0).
xl -1

By substituting this expression in the formula for R (/3), it is seen that Rmax is given
by

(14) Rmax =R([3")=X1/XI’= x 1-X_o
_

(2-0)
x 1

When 0 1 the following expressions are obtained:

1 1
/3"

lnXl Xl- 1’

Rmax(O=l)=Xxl/(x1-1)
e

When 0 2, Rma is independent of/3 and Rmax (X1-1)/In xl.
The integral from/3 0 to fl 1 gives an average value for the overallocation

Ravg R (/3) dfl

(2-0)xa xl-- 1 -t(2-o
(1-0) -- 1- 1 x dfl + x dfl

(2--O)x {[(X-0- 1)--(Xl-- 1)](xO1-2)(X-0-1) _x!-,! }(1-0) In X (X-0 1)(0-- 2) XI

(2- 0)(x- 1) +1}
Xl--1
lnxl

Thus the expected value of the overallocation ratio is independent of the parame-
ter O.

5. Discussion of analytic results. The overallocation in a simple buddy
system depends on the largest real root x of the corresponding characteristic
equation, on the size m of the maximum request (through the parameters a and
/3), and on the distribution of request sizes (through the parameter 0).

For a particular simple buddy system, i.e., a given value of x 1, expressions (6)
and (7) give Rmin and Rmax, the minimum and maximum amounts of overalloca-
tion due to internal fragmentation. Whether the actual overallocation is given by

616 DAVID L. RUSSELL

either of these bounds, or instead by some intermediate value, depends on the size
m of the maximum request. If the value of m is unknown, it is reasonable to
choose rn randomly; then the expected value of overallocation is given by
expression (8) for Ravg. The value of Rmin, Rmax, and Ravg are plotted in Fig. 1 as a
function of xa. Note that xa need never be larger than 2, since the binary buddy
system (u, 2u,_a, or x 2) has less overallocation than any simple buddy
scheme with x > 2.

1.5

i.4

1.3

" 1.2

(C) I.I

1.0

R R

1.2 1.4 1.6 1.8 2
X

FG. 1. Rmi,, R and Ravg vs. x

As X approaches 1, the overallocation also approaches 1. Intuitively, as Xa
approaches 1, there is a larger number of block sizes that are available to be
allocated and there is therefore a higher probability of being able to allocate a
block of exactly the requested size; the waste due to assigning a block that is larger
than requested is reduced. The expressions for Rmin, Rmax, and Ravg can be
expanded around the point x 1 to better illustrate the limiting behavior as x
approaches 1.

2XlRmin(0 0)
x+l

1 q"1/2(Xl 1)--+--(Xl--1)2 (Xl-- 1)3 (Xl-- 1)4

4 8 16

Ravg(all 0)=
lnxa

1 +1/2(x,-1)-(X1-- 1)2 (Xl-- 1)3 19(X1-- 1)4

12 24 720

Rmax(0 0) 1/2(x q-) 1 + 1/2(Xl 1).

INTERNAL FRAGMENTATION 617

The functions plotted in Fig. 1 represent the widest bounds that can be placed
on overallocation. This occurs for a uniform request distribution, when 0 0 in
the parameterized Zipf distribution. The dependence of the overallocation on the
maximum request size for different values of 0, i.e., different request distributions,
is shown in Fig. 2. Figure 2a gives a family of curves showing the overallocation for
a binary buddy system (xl 2) for various values of 0. The x-axis represents the
maximum size of a requested block and is the parameter/3; the y-axis shows the
resulting overallocation. The curve with the widest excursions is the plot for a
uniform distribution of requests; the minimum value is 1.33... and the max-
imum value is 1.5. As 0 increases the minimum value of overallocation increases
and the maximum value decreases. When 0 2 the overallocation is constant and

1.50

1.45

- 1.40

1.35

0=1

0

0 0.2 0.4 0.6 0.8

FIG. 2a. Overallocation in the binary buddy system (x 2)

is equal to Ravg. Fig. 2b shows the same function for a Fibonacci buddy system
(xl =q 1.618...). The two graphs are almost identical; note, however, the
difference in vertical scale between the graphs for the binary buddy system and the
Fibonacci buddy system.

In Fig. 3, the values of Rmi and Rma are plotted as a function of 0, for 0 in the
range 0 _-< 0 _-< 2, for three separate simple buddy systems: binary buddy, Fibonacci
buddy, and a hypothetical buddy system with xl= 1.3. (This approximates the
simple buddy system defined by un un-1 + u,_6, for which x 1.285 , and
which has block sizes 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, 34, 43, 55, .). Again it is
clear that, as 0 approaches the value 2, Rmin and Rma both approach the expected
value Ravg.

6. Conclusions. Whether or not the analytic results presented in this paper
have any practical significance depends on several factors.

618 DAVID L. RUSSELL

1.30

0-2. 1.28 0=1.5

(C) 1.26 - 0

1.24

0 0.2 0.4 0.6 0.8

FIG. 2b. Overallocation in the Fibonacci buddy system (x 1.618 ")

1.5

1.4

1.3

1.2

1.1

x =p 1.618..

1.3

0.5 1.5 2
0

FIG. 3. Rmin and RmaxfOr three simple buddy systems

One of the most important of these factors concerns the assumed distribution
of request sizes. The parameterized Zipf distribution was used in the analysis
largely because it was mathematically tractable. At the same time, it represents a
large family of request distributions with the not-unreasonable property that the
frequency of requests decreases as the size of the requested block increases. The
most remarkable aspect of the Zipf request distribution, however, is that the
expected value ofthe overallocation is independent ofthe parameter O. Regardless of

INTERNAL FRAGMENTATION 619

the rapidity with which the frequency of requests decreases with increasing block
size, the expected value of overallocation remains the same. Intuitively, this would
seem to indicate a relative insensitivity of simple buddy systems to the actual
request distribution. Furthermore, it indicates that execution time variations in
the actual request distribution may not be overly significant. Thus, in many cases it
may be possible to estimate the overallocation due to internal fragmentation
without possessing detailed information about the precise usage patterns of the
system.

University of Brigham Young

Maryland University CP-67

Size
2
8

10
15
25
30
35
40
50
70
100
200

CDF(%)
0.0

36.0
44.0
54.0
84.O
94.0
96.5
97.5
98.5
99.3
99.6
100.0

Size CDF(%) Size PDF(%)
3 0.0 11.1
16 6.4 2 0.2
32 16.8 3 3.7
48 27.6 4 24.8
64 40.0 5 21.9
80 45.8 6 0.3
96 62.7 7 0.6
112 82.6 8 11.2
128 94.9 9 2.0
144 95.3 10 4.1
160 95.7 11 0.2
176 96.1 12 0.2
192 96.4 17 0.9
208 97.0 18 1.9
224 98.3 21 0.2
256 99.4 23 0.3
272 99.6 27 0.1
304 99.8 29 15.6
352 99.9 31 0.4
511 100.0 50 0.3

FIG. 4. Actual request distributions

To test the analytic results of this paper against more practical situations,
published data for three actual request distributions was used. These distribu-
tions, listed in Fig. 4, were the distribution of buffer requests for the UNIVAC
1108 Exec 8 system at the University of Maryland [1], the distribution of partition
size requests on the IBM 360/65 OS MVT system at Brigham Young University
[8], and the distribution of memory requests on an IBM CP-67 system [7], [8]. The
Maryland and BYU distributions are described by cumulative distribution func-
tions; the probability density function is assumed to be linear between tabulated
points. The CP-67 request distribution is described by a probability density
function; the probability of a request for a block whose size is not tabulated is zero.

In each case, the actual internal fragmentation, as represented by the actual
overallocation, was calculated by the formula R Y pisi/ ipi where the prob-
abilities pi were determined by the request distributions of Fig. 4 and the si are the
block sizes for the particular buddy system. Three buddy systems were tested:

620 DAVID L. RUSSELL

binary buddy, Fibonacci buddy, and a simple buddy system defined by u,,
un-1 + un-3 (denoted F-2 below). The actual overallocation and the overallocation
predicted by the analytic approximations of this paper are shown in Fig. 5.

The predicted analytic values for the Maryland and BYU distributions are
not far from, and in fact somewhat overestimate, the actual values for overalloca-
tion. Note that the actual overallocation, as well as the predicted overallocation,
decreases as x becomes closer to 1, i.e., in the order binary buddy, Fibonacci
buddy, F-2. On the other hand, the CP-67 distribution, which does not even
approximate a decreasing probability of block request with increasing block size,
is not well described by the predicted values.

Overallocation

Predicted

Buddy system Distribution Actual Rmi Ravg Rma

Binary

Fibonacci

F-2

U. Maryland 1.38
BYU 1.29
CP-67 1.22

U. Maryland 1.25
BYU 1.28
CP-67 1.15

U. Maryland 1.18
BYU 1.19
CP-67 1.27

1.33 1.44 1.50

1.24 1.29 1.39

1.19 1.22 1.23

FIG. 5. Overallocation using actual distributions

Of course, internal fragmentation is only one aspect of the problem of
dynamic storage allocation. External fragmentation can also lead to the loss of
usable memory. Previous work by Randell [9] and Knuth [3] seems to show that
internal fragmentation is often more important than external fragmentation in
determining the memory utilization of a dynamic storage algorithm. On the other
hand, simulation studies by Peterson and Norman I-8] on buddy systems charac-
terized by u u_ + u,_p indicate that, at least in some cases, as memory lost to
internal fragmentation decreases, the amount of memory lost to external fragmen-
tation increases. According to their results, as much as 35-40% of memory may
remain unusable due to a combination of both internal and external fragmenta-
tion.

Current analyses of external fragmentation have not yet been sufficiently
developed to determine in what circumstances the above observation of constant
total fragmentation may occur. Until they are, the bounds and estimates on
overallocation due to internal fragmentation presented here will help act as
guidelines in designing buddy systems for dynamic storage allocation.

REFERENCES

1] D. S. HIRSCHBERG, A class ofdynamic memory allocation algorithms, Comm. ACM, 16 (1973),
pp. 615-618.

INTERNAL FRAOMENTATION 621

[2] K. C. KNOWLTON, A fast storage allocator, Ibid., 8 (1965), pp. 623-625.
[3] D. E. KNUTH, The Art of Computer Programming, Volume 1: Fundamental Algorithms,

Addison-Wesley, Reading, MA, 1968, pp. 111,435-455.
[4], The Art of Computer Programming, Volume 2: Seminumerical Algorithms, Addison-

Wesley, Reading, MA, 1969, pp. 219-229.
[5] ., The Art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley,

Reading, MA, 1973, pp. 397-398, 666.
[6] C. L. LIu, Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.
[7] B. H. MARGOLIN, R. P. PARMELEE AND M. SCHATZOFF, Analysis offree-storage algorithms,

IBM System J., 10 (1971), pp. 283-304.
[8] J.L. PETF.rSON AND T. A. NORMAN, Buddy systems, Comm. ACM, 20 (1977), pp. 421-431.
[9] B. RANDELL, A note on storage fragmentation and program segmentation, Ibid., 12 (1969), pp.

365-369, 372.
[10] R. SEDGEWCK, A Fibonacci buddy system, unpublished, (1972), 18 pp.
11] K. K. SHEN AND J. L. PETERSON, A weighted buddy method for dynamic storage allocation,

Comm. ACM, 17 (1974), pp. 558-562.

SIAM J. COMPUT.
Vol. 6, No. 4, December 1977

A NEW ALGORITHM FOR MINIMUM COST BINARY TREES*

ADRIANO M. GARSIA AND MICHELLE L. WACHS]"

Abstract. A new algorithm for constructing minimum cost binary trees in O(n log n) time is
presented. The algorithm is similar to the well-known Hu-Tucker algorithm. Our proof of validity is
based on finite variational methods and is therefore quite different and somewhat simpler than the
proof for the Hu-Tucker algorithm. Our proof also yields some additional information about the
structure of minimum cost binary trees. This permits a linear time implementation of our algorithm in a
special case.

Key words, algorithms, binary trees, minimum cost trees

Introduction. We shall be concerned here with the class ff of binary trees with
positive real numbers appended at their terminal nodes. Examples of such trees
are shown in Fig. 1.

2

3 4

A C

2 3

B
FIG.

The class can be defined as the smallest class which satisfies the following:
1) Each positive real is in -.
2) If T1 and Ta are in then Tlx/Ta is in -.
To each tree T in " we associate a weighted path length or cost which we will

refer to as w(T) and which is defined by the formula

w(T)= hp

where pl, Pa," , P are the numbers appearing at the terminal nodes of T and
h, ha,’", h, are their respective levels". More precisely h is by definition
equal to the number of nonterminal nodes we encounter in the path leading from
the root of T to the terminal node of p.

For instance, for the trees in Fig. 1 we have

w(A)=2.3+2.4+l. 1=15,

w(B) 1.2+1.3=5,

w(C) =2.5+3.1+3.2+1.3=22.

* Received by the editors December 15, 1975, and in final revised form December 27, 1976.

" Department of Mathematics, University of California, San Diego, La Jolla, California 92037.
See [6] for definition.

622

MINIMUM COST BINARY TREES 623

A problem which occurs in applications is that of constructing a tree which is of
minimum cost among all T ff which have given positive reals pl, P2," , p, (in
the given order) at their terminal nodes. We will refer to these minimum cost trees
as minimal trees.

Several algorithms have been devised for constructing such minimal trees
(see [1], [2] and [4]). The most widely accepted of these is due to Hu and Tucker
(see [5, pp. 433-447]).

In this paper, by a systematic use of the "variational" technique we obtain
some information about the structure of minimal trees. As a consequence we
derive a new algorithm closely related to the Hu-Tucker algorithm but easier to
justify. To do this we develop a language that is somewhat more amenable to
computations than drawings of trees.

The paper is divided into five sections. In the first section we describe the
algorithm. In the second we introduce the language and some of the notation. In
the third section we state the main results. In the fourth section we give the proofs.
Finally, in the last section we derive some further consequences, including a few
comments on how the algorithm can be implemented.

1. The algorithm. The algorithm is composed of two parts. In the first part
starting from the given numbers

Pl, P2, Pn

we construct a binary tree TB which has a permutation

of the given numbers at the terminal nodes. In general this permutation is not the
identity, so TB is bad (not a solution).

In the second part we construct the good tree T -which has pl, p2, , p,
at its terminal nodes (in the right order) and where each p appears in Ta at the
same level it appeared in T.

The reader familiar with the Hu-Tucker algorithm will find that this second
part is the same in both algorithms. In addition, it can be shown that the tree T
produced by the first part of our algorithm is very closely related to that given by
the first part of the Hu-Tucker algorithm. The tree T is obtained in steps and
each step is identical. We start with a list of given numbers

Pl, P2, Pn

and produce a new list of n 1 numbers by the following procedure.
1) We locate the right-most minimal sum pair of adjacent entries. Let that be

2
Pi-1, Pi.

2) We next locate the first entry (if any) to the right of pg that is greater than
or equal to p_x +pg. Let that be Pi+k+l. Then the new list is

Pl, P2," Pi-:2, Pi+I, Pi+k, (Pi-1 +Pi), Pi+k+l, Pn.

Actually any of the R.M. pairs defined in (3.1) will do; however, here we mean the one that is
farthest to the right.

624 ADRIANO M. GARSIA AND MICHELLE L. WACHS

3) If no such entry exists then the new list is

Pa, P2, Pi-2, Pi+l, Pn, (Pi-1 +Pi).

Each of these steps generates a node of TB. After n 1 steps we are left with
just one number in the list and the first part of the algorithm is completed. To
obtain the desired tree TB from these lists, assuming that we do it by hand, we
draw dotted lines joining our entries (to keep track of them as they move about)
and solid lines joining pi-1 to pi- + pi, and pi to pi- +p.

Once we are finished the tree Tn can be immediately read off the resulting
picture. This is best understood when carried out on a specific example. For
instance, if we start with the numbers

53322234

and follow our recipe we end up with Fig. 2.
This is actually a badly drawn picture of the binary tree T which is to be the

result of the first part of our construction.
Our tree T is, indeed, none other than the one obtained by untangling the

lines in Fig. 2, i.e. Tn is the tree:

The good tree To we are seeking is then the unique tree whose terminal
nodes labeled

(1.1) 53322234

appear at the same level as they do in TB. (It is part of the burden of proof that such
a tree does indeed exist).

To obtain these levels we need not (in fact, it is better not to) draw the
untangled picture of Tn. They can simply be read off the Fig. 2 by counting for
each entry the number of solid lines encountered as we go along the tree from that
entry down to the root.

In the present example, for the entries in (1.1) we obtain the respective levels

(1.2) 23334433.

A simple construction then yields that in this case the desired tree To is Fig. 3.
Perhaps the simplest way to obtain To from the list of levels is to draw dotted

lines to represent each of the levels. Then place the entries one after the other at
their respective levels. Then level by level, (starting from the highest level, and

MINIMUM COST BINARY TREES 625

proceeding on down) from left to right we join pairs of roots of previously
obtained subtrees until we are left with just one tree. Thus Fig. 3 can be viewed as
the end product of the following sequence of figures (Figs. 4-6).

2. The |anguage. To simplify our presentation we shall represent our trees as
words of a language whose syntax follows very closely the syntax of our family
of binary trees.

The precise definition of can be given as follows"
1) Alphabet. (a) The 3 symbols "(", "A" and ")" are in the alphabet.

(b) Every positive real is in the alphabet.
2) Syntax. (a) Every positive real is a word in .

(b) If T1 and T2 are words in then (TIA T2) is a word in 5.

FG. 2

626 ADRIANO M. GARSIA AND MICHELLE L. WACHS

2 2
level 4

3 3
level 3 ,

5
level 2 N,,N /
level "N
level 0

FIG. 3

4

3 3 2

2 2

5

FIG. 4

2 2

3 4

FIG. 5

2 2

3 3__2 3 4___

FIG. 6

MINIMUM COST BINARY TREES 627

For instance, if this language is used the trees A, B and C of Fig. 1 are
represented by the words in :

A ((3A4)A1), B (2A3), C= ((5A(1A2))A3).

Sometimes it will be convenient to use an abbreviation in writing paren-
theses. To this end the symbol "h [", where h is a nonnegative integer, is to mean a
string of h consecutive left parentheses "(".

Similarly "]h" is to mean a string of h consecutive right parentheses ")".
For instance, instead of

((3A(1A2))A((5A6)A3))

we can also write

DA(1A2]A[SA6)A3],
2 2 2 2

Before we can state our results we need to introduce some further notation.
DEFINITION 2.1. If T1, T2,’" ", Tn are words in 5f, by oW(T1, T2," ", Tn) we

mean the set of all words in Sf that can be obtained by inserting the symbols "(",
"/" and ")" in between T1, T2,..., Tn.

For instance,

(T1, T2) {(T1/ T2)};

oCP(T1, T2, Z3) {(Zl/(Z2/ Z3)), ((T1/ T2)/ T3)};

(T1, T2, T3, T4)={(((T1/T2)/T3)/T4), ((T1/k(T2/T3))/T4),

((T1/T2)A(T3AT4)), T1/((T2AT3)/ T4)),

T,A T2A T3A T4)))}.

DEFINITION 2.2. If T is a word, the sum of all the reals appearing in T will be
denoted by "l rl".

DEFINITION 2.3. If T is a word in the "weight" of T will be denoted by
w(T) and is recursively defined as follows:

1) If T is a real then w(T)= 0.
2) If T- (T1/kT2) then w(T)= ITI+ w(T1)+ w(T2).
It is not difficult to see that the weight of a word Tin is precisely the same as

the weighted path length of the tree corresponding to T, As a matter of fact, from
our definition we can easily derive that if pa, p2,"’, Pn are positive reals and
TE,J(Pl, P2, Pn) then

(2.1) w(T)= L hp,
i=1

where hi is equal to the number of left parentheses minus the number of right
parentheses that are to the left of pi in T.

Here and in the following we shall refer to the integer hi appearing in (2.1) as
the "level" of p in T.

628 ADRIANO M. GARSIA AND MICHELLE L. WACHS

DZFNITION 2.4. Let U and V be words in (pl, p2,"’,pn) and
ow(ql, q2, , qn) resectively. Let hi be the level of pi in U and ki be the level of qi

in V. We shall say that U is a "rearrangement" of V if and only if there is a
permutation (rl, r2,""", o’,) of (1, 2," ", n) such that

pi q,, hi k,, 1, 2,... n.

Finally, if ow is a set of words we shall set

w (ow) min w (T).

We shall also say that T is "minimal" for ow if and only if

w(T)=w().

We are now ready to state our results.

3. The Iasie theorem. Let pl, p2, , p be given positive reals. We shall say
that the pair pg_, p is "right minimal" (briefly R.M.) if and only if we have

(3.1)
(a) Pi-2q-Pi-l>Pi-lq-Pi (when > 2),

(b) pi-1 +p < Pi-a + Pi Vj > i.

In particular we see that if + 1 -<_ n we must also have

(3.2) pi-2 +pi+ >pi- +pi.

Here and in the following we shall set, for a fixed i,

=(p,p2,""" ,p),

5Fo ct(Pl, P2, Pi-2, (Pi-1/Pi), Pi+l, Pn),

OWk oW(Pl, P2, ", Pi-2, Pi+l,’" ", Pi+g, (P-/Pi), Pi++I, ", P,).

Our basic result can be stated as follows’
THEOREM 3.1. Let the pair p-l, p be right minimal and k >= 0 be such that

(3.3)

Then, if
(3.4)

we have

pi+j < Pi-1 q- Pi for 0 <-- j <--_ k.

+ k n or Pi+k+l >--Pi-lq-Pi

w() w(&)

and every minimal word in 5k has a rearrangement in 5L
This theorem is an immediate consequence of the following four lemmas.
LFMMA 3.1. Let P-I, Pi be R.M. and k >-_ 0 be such that

(3.5) Pi+j < Pi-1 q-Pi for 0 <=] <- k

MINIMUM COST BINARY TREES 629

then
(3.6) w(5) >= w(5).
Furthermore, when equality holds, every minimal word in has a rearrangement
in 5L

LEMMA 3.2. Let p_, p be R.M. and for some k >= 1,

(3.7) pi+k < Pi-1 -t- Pi.

Then,/f W(k-) < W(,) we must have:
(a) i+k+l<=nandp+g+<pi_+pi.
(b) Every minimal word ofk- is of the form

T= a(p,_lAp,)]A[(p,+kApi+k+l)fl,
h h

where h >-_ O.
LEMMA 3.3. Let pl, P2, ",Pn be positive reals such that for some

(a) Pi-2 +pi- >= Pi-1 q- Pi,

(3.8) (b) pi_l+p<-p+p+ (ifi+l<-n),

(C) Pi_l-t-pi <=Pi+l +Pi+2 (if + 2 <=n)

and

(3.9) w(oW) < w (0).

Then we must necessarily have + 1 <= n, pi+l < pi- +Pi and every minimal word in
5(p, p2, p,) is of the form

T= ce(A
h h

LEMMA 3.4. Let Pi-1, P be R.M. and k >- 1 be such that

then

Pi+i < pi-1 d- pi forO<=j<=k;

(3.10) w(Se) {min W(ofJgk_l), W(k)}.

Assume that pl, p2,""", pn satisfy the hypotheses of Theorem 3.1. Then"
1) For k _-> 1, Lemma 3.2 gives that we cannot have W(k-) < W(5k). Thus

Lemma 3.4 gives w(oW)= W(5k). But then Lemma 3.1 gives that every minimal
word in oWk has a rearrangement in

2) For k =0, Lemma 3.3 gives that we cannot have w(oW)< w(oW0). Thus
w(Se) w(50) and since ow0 ow there is nothing to add in this case.

We therefore only need to establish the four lemmas to prove Theorem 3.1.
This will be done in the next section.

Here a and/3 represent whatever is needed to complete the expression into a word in .

630 ADRIANO M. GARSIA AND MICHELLE L. WACHS

4. Proofs.
1) Proof of Lemma 3.1. The result is trivially true for k 0 since 5%

5"(pl," , Pi-E, (Pi-I/P)," ", Pn) is a subset of 9’ 5"(p, , pn). By induc-
tion, let us then assume it to be true up to k- 1.

Let T be a minimal word in 5. Then

Case A. If h2 hi set

It is easy to see that

(4.1)

h h

T’ a (Pi-lPP)]/[P+k.
h h

w(T)- w(T’) (hE- h)[pi-1 + pi -pi+:] >= O.

Since T’ -1 we get (using the induction hypothesis)

(4.2) w(Se,) w(T) >-_ w(T’) >- W(5k-) >--_ W().

Furthermore, if w (9) w(9’) the equality sign must hold in (4.1) and (4.2). But,
in view of (3.5) this can only happen if h h:. But then T’ is a rearrangement of T
and the induction hypothesis gives that T’ has a rearrangement in 5.

Case B. Let hi > h: or equivalently h _->h + 1. In this case we can write T in
the form

T= o’(QAPi+k) A (Pi-IAPi)
h-I h2

where O is a word in w and a’ is whatever is needed to complete T.
We then let

T’=a’O A
h-I h2

Since T’ e 6e and T is minimal for 6ek we must have w(T’)>= w(T). This gives

0 >- w(T)- w(T’) IOI + (hi- h2- 1)p,+ -(pi-1 +Pi).

Now O must have an entry equal to pi+:-I if k > 1 and to p-2 if k 1. Thus we get
(a) (if k > 1) Pi+k-1 +(hi-h2-1)p+ -<p_ +pi <p+_l +p+,

4(b) (if k= 1) Pi_2+(hl-h2-1)pi+l<=pi_l-bp<p_2+pi+l.
We see then that in either case we must have h h2 + 1, and Q must be equal

to Pi/k-1 for k > 1. In other words, we have

(a) (if k > 1) T= a’(Pg+k-1/Pg+k)]/k[(pg-/kp)3,
h h

(b) (if k 1) T= a’(Q/kp+l)]/k[(pg-1/kpg).
h2 h

See (3.2).

MINIMUM COST BINARY TREES 631

In the first case we note that the word

T"=
h h

is a rearrangement of T in ,JC’0k-2, SO the induction hypothesis yields w(oWg >_--

W(oWk_2) _--> W(5) as well as the statement about the rearrangements. The second
case is even simpler because the word

T’"=
h h

is already the rearrangement of T in 9’. Q.E.D.
2) Proof ofLemma 3.2. Let T be a minimal word in 9_. Then

T= a (pg-lApi)]A[pg+kfl.
h h

Note then that the word

T’=
h h

is in 5, so if w (o%) > w (5,_) we must necessarily have w (T’) > w (T). Thus

0 > w(T)- w(T’) (hx- h2)[p,-x +p,-p,+t,],

and (3.7) then gives us that h2 > h. Since this implies that h2 1 we must conclude
that + k < n and that T can also be written in the form

T o (pi-lAp,) A (p,+ AR)fl
hi h2-1

where R is a word in whose first numerical entry is Pi+k+l. This given, let

T’ a (pg +k/k(Pi-1Ap)) A gfl ’,
hi h2-1

and note that

w(T)- w(T’) [R[+ (h2- hi- X)pi+k -pi-x-pi.

Since again T’ 5 we must have w (T) < w (T’); thus

Pi+k+l + (h2- hi- 1)pg+ -[Rl+(hz-h- 1)p,+ <pi-1 +Pi.

The right minimality of pi-1, Pi implies that Pi-l+Pi<Pi+k+l+Pi+k. Thus

h2-hx- 1 >_- 1 is impossible and we must conclude that
(a) h2=h1+1,
(b) R Pi+k+l,
(C) Pi+k+l <Pi- +Pi.
All this brings T to the desired form

T=
h hl

and the proof of the lemma is complete.

632 ADRIANO M. GARSIA AND MICHELLE L. WACHS

3) Proof ofLemma 3.3. Let T be a minimal word in S. Then

T= cepi-1]A[pifi.
hi h

Clearly we cannot have h h2 0 for otherwise T 90, and this would contradict
(3.9).

Case A. Say hi => 1. Then T can be written in the form

T= o’(A /pi-1) / p
hi-1 h2

where A is a word in 5f whose last numerical entry is pi-2. Let

T’= a’A / (pi-1/pi).
hi-1 h2

Since T’ oW0 we must have w (T’) > w (T); thus

(4.3) 0 > w(73- w(T’) IAI+ (h- h2-1)p/_l-pi,

and IAl>=p_2 gives (using (3.8) (a))

pi-2 + (h h2-1)pi-1 < pi <= pi-2.
This means h < h2 + 1; thus h =< h2. In particular also h2 -> 1.

Case B. Say h2_>- 1. Then T can be written in the form

c p_, A (p A/)cs’.
hi h2-1

Let

hi h2-1

Again, since T’ 5eo we must have w(T’)> w(T). This gives (using (3.8) (b))

(4.4) IBI + (/e- hi- 1)p, <pi-1Npi+l

from which we easily deduce h N h 1. So again h N 1. Combining the results of the
two cases with (4.3) and (4.4) we deduce that we must have

(a) h=hl,
(b) IA[<p-+

The last of these inequalities (with (3.8) (c)) then forces B Pi+I leaving T in the
form asserted by the lemma.

We can now proceed to the proof of our last lemma. This will be carried out
by induction on k. Indeed, the result just shown gives us the first step in the
induction argument that will prove (3.10). For under the hypotheses of Lemma
3.4 if w()< w(0) every minimal word in must be of the form

T= a(A Ap-)]A[(pAp+I)B.
h h

But then the word

r’ a(A +)]A[(pi-Api)B
h h

MINIMUM COST BINARY TREES 633

is a rearrangement of T in oqZ)l This gives

w(5) w(T) w(T’) >- w(l).

So Lemma 3.1 gives w(oW)= w(51).
Assume that we have carried this through up to k- 1 (->1). This given, if

w() < w (o%_1)

then we must have

W (o’O9k-2)"-" W(,-o) < W (,-k-1).

So Lemma 3.2 gives that every minimal word in owk_2 is of the form

Z-- ol(pi_lApi)]A[(pi+k_lAPi+k).
h h

But then the word

T’ ce (pi+,-1/pi+)]/[(pi-i/pi)
h h

is a rearrangement of T in ow. This gives

w(5) w(T) w(T’) >- w(5)

and Lemma 3.1 gives

w(0) w().

This completes our proofs.

5. Further consequences. There are some interesting consequences of our
arguments that are worthwhile mentioning here. To this end given a pair Pi-, p
we shall say that "i + k" is in the "right range" of p_, p if and only if we have

(5.1) P- +P ->Pi for/" + 1, + 2,. , + k.

Similarly we shall say that "i h" is in the "left range" ofp_, pi if and only if

Pi- +Pi >=Pi for/" i- 1,. , i-h.

Now, the arguments of the last section yield also the following remarkable

(5.2)

fact.
TI-IEOREM 5.1. Let h and + k be in the left and right ranges ofpi-1, pi, where

h > 2 and k > 1, and suppose that

(5.3) pi_l+p<=pj_+pi fori-h<f<-_i+k.

Then there is a minimal word in S(pa, p2, ",pn) with pi_l, pi at the same level and
each pj (i-h <-] <-i +k) falling at the same or one level below that of pi-1, Pi.

Proof. Let us assume first that pl, p2, , pn have the following properties for
some h >2, k >1 and i>l.

(a) pi-l+p>pi fori-h<=f<--i+k,

(5.4) (b) pi-1 +p <p-i +p for h <f -< + k (f i),

(C) T1, Z2oqP(pl,""" ,Pn), w(TI)w(T2).

634 ADRIANO M. GARSIA AND MICHELLE L. WACHS

This given, it is not difficult to check that the proofs of Lemmas 31, 3.2, 3.3
and 3.4 remain valid also under these assumptions.

Thus, with the notation of 3, we must have

(5.5) w(Se) min {w (0%_1), w (6e)}

for u=l,2,...,k.
Consequently, if for a given u

w(e) w(e)

then the proof of Lemma 3.1 gives that a minimal word in ow has to be of the form

T= otpi +,]/[pi-1/pi fl
h h

or

(5.6)

(a)

(b)

(if u > 1) T=
h h

(if u 1) T= o(O/Pi+l)]/[(pi-xApi)fl.
h h

We see that in the first case Pi+ is one level below the pair pi-1, pi and in the
second case pi/ is at the same level as the pair pi-, pi.

On the other hand, if

w(e) > w(e)

then by (5.5) we must have

w(Se) w(Se_,)< w().

But then Lemma 3.2 gives that a minimal word for 5e_ has to be of the form

T= o (pi-lApi)]A[(pi+,, /pi+,,+),
h h

in which case pi+, is at the same level as the pair pi_, p.
Because of Lemma 3.1 and the uniqueness of the minimal word in 5e (given

by (5.4) (c)) all of these words are rearrangements of the same word in
6e(pl, p2, , Pn). This proves that the minimal word in 6e(pl, P2, , Pn) has the
desired properties to the right of the pair p_, pi. By symmetry the same must hold
to the left.

We shall complete the proof by reducing the general case to the case so far
considered. Note that every result so far proved holds not only for pj which are
positive real numbers, but also for p. selected from a real finite-dimensional vector
space with lexicographic ordering on vectors. By the hypothesis of the theorem we
have the following inequalities’

(a)
(5.7)

(b)

pi_x+pi>--pi for i-h <-j<=i+k,

pg-+pg<=pi-+pj fori-h<j<-i+k (fi).

This is essentially due to the fact that the right minimality of Pi- 1, Pi was never fully used there.

MINIMUM COST BINARY TREES 635

By replacing the positive reals p. with appropriately defined vectors p;, we can
make these inequalities strict and also satisfy condition (5.4) (c).

Let R,/2 be the real (n + 2)-dimensional vector space with lexicographic
ordering of vectors. For 1 <_-/" <_- n, let p R,/2 be defined as follows:

P=(Pi, I,O,’",I,O,’",O) ifj<i-1,

position j + 2

p (pj, 1, 0,..., 0, 1, 0) ifj i- 1,

p= (p., 1, 0,..., 0, 1) ifj=i,

p;=(p.,1,0,...,1,0,...,0) if/’>/.

position j

Note the following facts"
1) Any word T minimal for vectors p; is also minimal for reals p..
2) The definition of the first two components of the vectors p implies, using

(5.7) (a), that

(5.8) pg-l+pl>pi fori-h<-_j<-i+k.

3) The definition of the first component and the last n components the
vectors p; implies, using (5.7) (b), that

p: fori-h<j<i+k(]#i).(5.9) Pi-1 +Pi < 1-1 +P
4) The weight of any word T for vectors p is a vector which encodes, in the

last n components, the levels of all p! in T. Thus any two distinct words have
different weights with respect to the vectors p.

It follows that the unique minimal word for vectors p satisfies the theorem,
and since this word is minimal for reals p, the theorem holds for reals p.

It is interesting to note that we can also prove Theorem 5.1 by varying all the
numbers p. by some small e to make (5.4) (a), (b), (c) hold and then taking the limit
as e tends to zero. In the proof we have actually given, the unit vectors
(0, , 0, 1, 0,. , 0) behave essentially as infinitesimals of various sizes.

LEMMA 5.1. Suppose pg <- pg+ for all 1 <= < n. Then some minimal word in
has theproperty that the level ofpg is at least as large as the level ofpg/ 1, for 1 <= < n.

Proof. We assume pi < p/l for all 1 <= < n and prove that any minimal word
has the desired property. The lemma then follows by using a suitably defined
collection of vectors in place of positive reals, as in the proof of Theorem 5.1.

Let T be a minimal word. Then

T= ap,]A[p+.
h k

If k ---" 0 the lemma holds for i; thus assume k > O. That is

T= apg]/[(pg+/a).
h k-1

Consider
T’ a (pg/pi+,)]/ [Aft.

h k-1

636 ADRIANO M. GARSIA AND MICHELLE L. WACHS

Since T is minimal, w (T) w (T’) <_- 0, that is,

-p, + (k h 1)p,+l + [A[-< 0.

But IAl>-pi+2>pi; thus (k-h-1)<0, and k <_-h. Thus the lemma holds for i.
To complete the proof, suppose pi -<- pi+l for all 1 <_- < n. Let R2 be the real

two-dimensional vector space, with vectors ordered lexicographically. For 1 _<-] _-<
n, let p e R2 be defined by

p; (p;, i).

Then pi <P+I for all 1-<i <n, and any minimal word for vectors Pi satisfies the
lemma. But such a word must also be minimal for reals p.. Q.E.D.

Now we present a linear-time algorithm to construct a minimum cost tree for
the case when the minimum sum pair p_, p satisfies p-I + pi -> Pi for all/’.

Let u n- 2k, where 2k is the largest power of two no greater than n.
The algorithm consists of two steps.
Step 1. Find the largest such that pi-2 +pi- >=pi-1 +pi. Delete the pair p-l,

p. Repeat this step until either all elements are paired or only a singleton remains.
Step 2. Select the smallest u pairs among those pairs found by Step 1. Place

the elements in these pairs at level k + 1 of the minimal tree and place the
remaining elements at level k.

Proofofcorrectness. To verify that the algorithm is correct, we must show that
a tree with levels as specified by the algorithm actually exists and that such a tree is
minimal. The proof depends mainly on Theorem 5.1 and Lemma 5.1. To deal with
ties, we must introduce vectors as in the previous two proofs.

Suppose we run the algorithm. Let (PI, Ph),’"", (P,,, Pi,,) be the pairs (in
increasing order of p, + PJl) found by Step 1 of the algorithm; here m [n/2]. Let
(P,, Ph), ", (Pi,, Pi) be the pairs selected by Step 2 of the algorithm. Let Rn+2 be
the real (n +2)-dimensional vector space, and let pRn+2 for l<=k<-_n be
defined as follows:

p,= (pk, 1, 0,..., 0, 1, 0,..., 0),

where the position of the last 1 in p , depends on the value of k. Values of k from 1
through n are associated with components 3 through n + 2 of the vector space as
follows: if k i for some 1 -< -< m, k is associated with component m + 3 I. The
remaining values of k are associated with components m + 3 through n +2 in
increasing order of k.

The following facts imply the validity of the algorithm.
1) Pi- +P->-Pi for all i,] by hypothesis, so p-i +pi>pj, considering vector

components one and two.
2) The cost of any tree with respect to the vectors p , encodes the levels of all

terminal nodes, so each tree has a distinct cost.
3) By 1), 2), and Theorem 5.1, the unique minimal tree for vectors p, has at

most two levels. This tree is also minimal for reals pk.
for4) Pil +Ph <----Pi,+ +Ph+ for 1 <-l <m byhypothesis, sopi,+pi,<p,+

1 <_- < m, considering vector components one through m + 2.
5) Consider the first pair pi-1 +p found by Step 1 of the algorithm. Note that

we must have p, <p,+2 for i-l<-k<-n-2 and p_2>-p. Thus p,Kp,+2 for

MINIMUM COST BINARY TREES 637

i- 1 -<_k -_<n-2; and pi-2>pi, since pi is not the left half of some pair found by
Step 1.

6) It follows from 5) by induction that Step 1 applied to vectors p, finds
exactly the same pairs as Step I applied to reals pk. From 4) it then follows that the
algorithm selects exactly the same u pairs when applied to vectors p , as it did when
applied to reals pk.

7) Suppose we apply the original algorithm to the list of vectors p ,. , p’,
and let the algorithm run until at most one of the original vectors p, is not yet
combined with other items. It is easy to see that the result will be the list
qa Pll +P}I, q2 Pi2 +PJ2, ", qr Pm+P, if n 2m, and the list q0, ql Pi
p," ", q,, =p,,+p,, if n 2m + 1, where qo is a unique unpaired vector p.

8) By 1) and 4), qk <qk+l for l_<-k <m ifn is even, q <qk+l for 0<-k <m if
n is odd. By Lemma 5.1, the unique minimal tree T’ for vectors q has the levels of
the terminal nodes in nonincreasing order. But substituting (Pik fi,Pjk) for each qg
must give a rearrangement of the minimal tree T for the original vectors p ,. This
tree has only two levels. It follows that, in T, items from the pairs
(Pi, Pi), ", (Piv, Pv) must be at the higher level, and the remaining items must
be at the lower level. But T is also a minimal tree for reals Pk. T is the tree
constructed by the algorithm for vectors p,, and by 6) T is also constructed for
reals Pk. Thus the algorithm is valid.

One of the interesting consequences of this result is that, at least when the
minimal pair sum exceeds every N, finding a minimal word in oqP(pl,""", Pn)
depends essentially on selecting the smallest v of a given list of numbers. Using the
techniques in [5, pp. 216-218] an algorithm for producing such a minimal tree can
be implemented on the computer in linear time. This is carried out in full detail in
the Appendix.

It is easy to show that if we apply this linear time algorithm to arbitrary
pl,..., p, we will construct a word of minimum weight among all the words in
which the levels of the p;’s differ by at most one.

Since there are O(4") possible words in 6e(pa, Pc, , P) it is quite plausible
that a linear time implementation is possible in general. To this end some further
results of the type given in Theorem 5.1 might be helpful. Indeed, by studying the
"local" minimum pair sums pi-1, pi and how their "right" and "left" ranges
overlap additional information concerning minimal words may be obtained. This
suggests some interesting directions for future research.

Using the results of the present paper it is not difficult to put together an
algorithm for the general case which requires no more than O(n log n) compari-
sons.

This can be roughly described as follows. Given p, p2,..., p we first find
the last such that pi-2 -t- Pi- >= Pi- q- Pi. Next we locate the first p with j > such
that pi >Pi-l+Pi. Finally we remove pi-., pi and insert pi-, +Pi immediately
before p. (or at the end if such p. does not exist).

Then proceed in the same way on the new list of numbers. Note now we will
have

Pl--2 < Pi

for/" + 1, , n. Thus the second step using binary insertion [5, pp. 406-414]

638 ADRIANO M. GARSIA AND MICHELLE L. WACHS

requires only O(log n) comparisons. Since in n- 1 passes the procedure termi-
nates and the total number of comparisons required by the first step is O(n) it is
easy to see that no more than O(n logn) comparisons are needed by this
procedure.

Quite recently R. Tarjan has put together an implementation of our
algorithm which requires O(n log n) total time including data manipulations. This
is presented in the following Appendix.

Finally, we would like to mention that using Lemmas 3.1, 3.2 and 3.3 an
entirely new proof of the Hu-Tucker algorithm can be obtained. However, this
proof is not significantly simpler than the more recent one derived by Hu in [3] and
thus will be omitted.

Appendix. Implementation (by R. E. Tarjan). In this Appendix we present
implementations of the algorithms discussed in the paper. We implement
algorithms for the following problems.

1) Given a binary tree, compute the depth d(i) of each leaf i, 1 <= <= n.
2) Given a set of depths d (i), 1 <= =< n, construct a binary tree whose leaves

have depths d(i).
3) Given a list of weights p(i) satisfying the conditions of Theorem 5.1,

divide the weights into sets which are on the higher and lower levels of some
minimal tree of two levels.

4) Given an arbitrary list of weights p(i), construct a binary tree which is a
rearrangement of a minimal tree for weights p(i).

Using algorithms for 3) and 2), we can construct a minimal tree if the
conditions of Theorem 5.1 are satisfied. Using algorithms for 4), 1), and 2), we can
construct a minimal tree for an arbitrary list of weights.

We represent a binary tree of n leaves by using integers 1 through 2n 1 to
label the vertices. If is a vertex, l(i) is the left child of and r(i) is the right child of
i. We assume that vertices 1 through n are the leaves, n + 1 through 2n- 1 the
internal vertices, and 2n- 1 the root.

Let T be a tree represented in this fashion. Algorithm DEPTH below will
compute the depth of each leaf in T. DEPTH uses a recursively programmed
depth-first search to explore T and compute depths as it goes. For further
discussion of the depth-first search technique, see [7].

We present the algorithm in AraGon-like notation. The algorithm is simple
enough that its working should be obvious. Variable "b" stores the current value
of the depth. The algorithm requires O(n) running time and storage space.

DEPTH: begin
procedure DFS 1 v

ig v <-n then d(v) := b
else begin

b:=b+l;
DFSI(I(v));
DES l (r(v))
b :=b-l;

end DFS 1;

MINIMUM COST BINARY TREES 639

b:=0;
r := 2n-l;
DFS(r);

eml DEPTH;

To construct a tree with leaves at particular depths, we can also use a
depth-first search. This search builds the tree from the root, stopping the
construction process for a particular leaf when the correct depth is reached.
Algorithm TREE below carries out this construction. The algorithm is
straightforward. Variable b keeps track of the depth, of the last constructed leaf,
and w of the last constructed internal vertex. The algorithm requires O(n) time
and space. It is interesting to compare this algorithm (efficient for the computer)
with the algorithm of 1 (efficient for hand computation).

TREE: begin
procedure DFS2(v); begin

b:=b+l;
if b d (i) then begin

!(v)=i;
i:=i+1;

end else begin
w := w-l;
l(v) := w;
DFS2(w);

end;
if b d (i) then begin

r(v) := i;
i:= i+1;

end else begin
w:=w-1;
r(v) := w;
DFS2(w);

end;
b:=b-1;
end DFS2
for := 1 until n do l(i) := r(i) := O;
i:=1;
r:=w:=2n-1;
b:=0;
DFS2(r)

end TREE;

The next algorithm, TWOLEVEL, implements Steps 1 and 2 of the
algorithm based on Theorem 5.1. The algorithm examines the weights p(k) from
right-to-left looking for the rightmost minimal sum pair. As weights are
examined, they are moved into an array q(i) (to avoid gaps caused by the deletion
of minimal pairs). The variable index(i) records the position of q(i) in the original
list of weights p(k). The/th minimal pair Pil, Pt deleted by Step 1 is represented in

640 ADRIANO M. GARSIA AND MICHELLE L. WACHS

arrays LH, RH, SUM by LH(1)= il, RH(l)= jl, SUM(l)= pi, + pj,. The algorithm
assumes that a special entry p(0) exists satisfying p(0) > p(i) for all 1 -<_ -<_ n. The
selection of the p smallest-sum pairs requires O(n) time using techniques dis-
cussed in [5, pp. 209-219]. The rest of the algorithm clearly requires O(n) time
(and space).

TWOLEVEL: begin
/:=i:=0;
k:=n;
while k -> 0 do i (i -> 2 and p (k) => q (i 1)) then begin

/:=/+1;
LH(1) := index (i);
RH(l) := index(i-1);
SUM(l) := q(i 1) + q(i);
:= i-2;

end else begin
i:=i+1;
q(i):=p(k);
index := k;
k :=k-l;

end;
k:= [logznJ;, := n-2k

select the smallest u values of SUM(l);
assign depth k + 1 to the corresponding leaves LH(1), RH(l);
assign depth k to all remaining leaves;

end TWOLEVEL;
The last program implements the main part of the algorithm for arbitrary

weights. It is the most complicated algorithm we consider, and it requires a special
data structure. We need a data structure in which to store lists il, i2,"’, ik
satisfying the property

(*) p(ij)<p(ij+2) for 1=</’-< k-2.

If this property holds, note that q(ij) < q (i-1) for 1 <_-/" _-< k 1, where q(il) p(i),
q(ii) max {p (ii_), p (ii)} for 2 _-< j _-< k. By storing the list in a balanced binary tree,
we can carry out each of the following operations in O(logn) time [5,
pp. 451-470).

(a) If each item in list 1 satisfies p(i) < p(j) for each item j in list 2, form a
new list by concatenating list 1 and list 2. (If list 1 and list 2 satisfy (,), then so does
the new list.)

This operation includes the operation of adding a new element to the front or
back of any list. We denote the operation by "list := list 1 list 2".

(b) Given a value x, split a list into the two lists list 1 and list 2 such that every
element in list 1 satisfies p(i)<x and the first element j of list 2 satisfies p(j)>=x.
We denote this operation by "split list on x into list 1, list 2".

(c) Locate the jth element of a list.
(d) Delete the first element of a list.

MINIMUM COST BINARY TREES 641

Algorithm MINTREE below computes a rearrangement of a minimum
binary tree using the algorithm discussed in this paper. For convenience, the
algorithm assumes that p(0) and p(n + 1) are special values such that p(n + 1)>
p(O) > p(i) for 1 <_- <_- n. When the algorithm locates a new rightmost minimal sum
pair p(i), p(j), it deletes and j from the list of items and forms a new item k with
weight p(k)=p(i)+p(j).

MINTREE" begin
procedure COMBINE(x, list 2); begin

let be the second element of list (if any);
while exists and (x >= p(i)) do begin

let f be the first element of list;
delete], from list;
k := k+l;
p(k) := p(f)+p(i);
l(k) := f; r(k):= i;
split list on p(k) into list 3, list;
add k to end of list 3;
COMBINE p k list 3);
let be the second element of list (if any);

end;
list := list 2 list 1;

end COMBINE
list := (n, n + 1);
k:=n;
for j := 1 until n do l(j):= r(f):= 0;
for j := n- 1 step-1 until 0 do COMBINE(p(j), (j));

end MINTREE;

The crucial observation which validates this algorithm is the following. After
the rightmost minimal pair pi-1 q- Pi is found and inserted in front of some Pi+k, the
new rightmost minimal pair is either pi/k/l +pi/k/2, pi/l +p/2, or involves some

Pi with/" < i-1. Procedure COMBINE, after inserting p_l +p in front of p,
checks all these possibilities, calling itself recursively to check p;++ +pi+/2 for
minimality. Since only O(n) rightmost minimal pairs are ever formed, MINTREE
requires O(n) time plus time for O(n) operations on lists, or O(n log n) time total.
The storage required is O(n).

Acknowledgment. The authors are indebted to S. G. Williamson and
J. Evans; to the former for introducing us to the subject and to both for several
stimulating conversations. Finally, last but not least we are grateful to R. E. Tarjan
for carefully reading the original version of the manuscript and suggesting
substantial improvements. Indeed, the last section has been almost entirely
rewritten by Tarjan himself.

REFERENCES

[1] E. N. GILBERT AND E. F. MOORE, Variable length binary encodings, Bell Systems Tech. J., 38
(1959), pp. 933-968.

642 ADRIANO M. GARSIA AND MICHELLE L. WACHS

[2] T. C. Hu AND C. TUCKER, Optimum computer search trees, SIAM J. Appl. Math., 21 (1971),
pp. 514-532.

[3] T. C. Hu, A new proof of the T-C algorithm, Ibid., 25 (1971), pp. 83-94.
[4] D. E. KNUTH, Optimum binary search trees, Acta Informat. (1971), pp. 14-25.
[5], The Art of Computer Programming, Vol. 3. Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.
[6], The Art of Computer Programming, Vol. 1. Fundamental Algorithms, Addison-Wesley,

Reading, MA, 1973.
[7] R. TARJAN, Depth-first search and linear graph algorithms, this Journal, (1972), pp. 146-160.

SIAM J. COMPUT.
Vol. 6, No. 4, December 1977

DETERMINING THE STABILITY NUMBER OF A GRAPH*

V. CHVfiTALt

Abstract. We formalize certain rules for deriving upper bounds on the stability number of a graph.
The resulting system is powerful enough to (i) encompass the algorithms of Tarjan’s type and
(ii) provide very short proofs on graphs for which the stability number equals the clique-covering
number. However, our main result shows that for almost all graphs with a (sufficiently large) linear
number of edges, proofs within our system must have at least exponential length.

Key words, random graphs, stable sets, independent sets, vertex packings, binary trees

1. Introduction. By a graph, we shall mean what is sometimes called a
Michigan graph: one that is finite, undirected, without loops and multiple edges. A
set S of vertices in a graph G is called independent or stable if no two vertices in S
are adjacent; the largest cardinality a (G) of a stable set in G is called the stability
number of G. Now, let G be a graph and let be a positive integer such that

(1.1) a(G)<=t;

how laborious is it to verify a proof of (1.1)? Of course, this question has a direct
bearing on the conjecture that P NP; in particular, the celebrated theorem of
Cook [2] suggests that it is extremely time-consuming to verify proofs of (1.1). We
shall refrain from elaborating on this interesting point; instead, we direct the
reader to [2], [14] and [1]. As for evaluating a(G), the best available algorithm is
due to Tarjan and Trojanowski [20]: its running time on a graph of order n is
0(2n/3).

The framework of the present paper is quite modest: restricting the intuitive
notion of a proof rather drastically, we shall study the resulting system of
"recursive proofs". This system remains powerful enough to

(i) encompass a certain class of algorithms that includes the Tarjan-
Trojanowski algorithm,

(ii) provide very short proofs of (1.1) for every graph G whose set of vertices
can be covered by a (G) cliques.

Nevertheless, we shall show that there are valid inequalities (1.1) whose proofs
must be excessively long. More explicitly, for every sufficiently large d there is a
positive e with the following property: for an overwhelming majority of all graphs
G with n vertices and dn edges there are valid inequalities (1.1) whose recursive
proofs must have length at least (1 + e)n. (The assumption that the number of
edges of G grows linearly with n is crucial: in fact, the conclusion fails as soon as d
is allowed to grow beyond every bound. For details, see Proposition 4.1.)

* Received by the editors December 3, 1976.
f Computer Science Department, Stanford University, Stanford, California 94305. This research

was supported in part by National Science Foundation Grant MCS 72-03752 A03 and by the Office of
Naval Research at Stanford University, and by National Research Council Grant A9211 at University
of Montreal.

643

644 v. CHV.KTAL

At this moment, it may be worth pointing out two shortcomings that
practitioners sometimes find in results on computational complexity: the worst
case criterion and the asymptotic point of view. The first of these objections does
not apply to our result at all but the second one certainly does: the numerical
values of e are very small. (One could improve on them by taking a little more care
in the computations but even then they probably would not be very impressive.)

In 2, we point out those properties of random graphs which appear in the
proof of the main result: looking at small subgraphs of G, and then extrapolating
in a straightforward way, one would expect a (G) to be much larger than it actually
is. In that sense, c (G) is very much a "global parameter". And it is precisely this
global character which makes the proofs of (1.1) so long. In 3, we describe a
certain class of crude algorithms for evaluating a (G) and then touch briefly upon
the more sophisticated algorithm of Tarjan and Trojanowski. That section
provides the motivation for the definition of a recursive proof presented in 4.
The exponential that appears in our main result originates from an upper bound
on the tail of the hypergeometric distribution; it finds its way into the theorem via
a lemma on binary trees which we set aside in 5.

In the context of another NP-complete problem (namely, that of satisfiability
of Boolean expressions), there are many results similar in spirit to ours; most of
them can be found in [3]. In particular, the proof system investigated recently by
Galil [11] is very much like ours; however, the similarity does not extend beyond
the superficial level.

2. Random graphs. In this section, we shall deal with graphs whose vertices
are labeled as v, v2,’", v,. Two such graphs may be distinct even if they are
isomorphic; hence their total number is 2""-)/2. If P is a property which a graph
may or may not have then we shall denote by t(P, n) the number of those graphs
with n vertices which do have the property. Finally, we shall say that almost all
graphs have the property P if the ratio t(P, n)/2"-/2 tends to one as n tends to
infinity. A typical statement of this kind appears in the following lemma. The
lemma itself seems to be a part of the graph-theoretical folklore. It appears at least
implicitly in a 1947 paper by Erd6s [5]; further refinements can be found in works
of Matula [17], Grimmett and McDiarmid [12], Erd6s and Bollobfis [7] and
perhaps others.

LEMMA 2.1. Almost all graphs G of order n have the property that ce(G)<
2 log n/log 2.

Proof. Denote 2 log n/log 2, rounded up to the nearest integer, by k(n).
Clearly, the number of those graphs of order n for which a=> k, divided by the
number of all graphs of order n, does not exceed

By elementary estimations, (2.1) is at most

STABILITY NUMBER OF A GRAPH 645

For all sufficiently large n, we have

en 2-(k-l/2 <e21/2/k < .99
k

and so (2.1) tends to zero as n tends to infinity.
In the theory of random graphs developed by Erd6s and R6nyi [8], [9], [10],

one investigates graphs with n vertices and m edges. Clearly, the number of such
graphs is

(2.3) (m)).
We shall denote by t(P, n, m) the number of those graphs with n vertices and m
edges which have some property P. If m is a function of n such that each m (n) is a
nonnegative integer not exceeding n(n 1)/2 and if the ratio of t(P, n, m) to (2.3)
tends to one as n tends to infinity then we shall say that almost all graphs with n
vertices and m edges have the property P. The following lemma has been used by
Erd6s in [6] and elsewhere. (Throughout the paper, log denotes the natural
logarithm.)

LEMMA 2.2. Ifm (n >-_ 16n for all sufficiently large n then almost all graphs G
with n vertices and m edges have the property that

2n m
(2.4) a(G) <--log--

m n

Proof. Denote the right-hand side of (2.4), rounded up to the nearest integer
by k (n); note that k (n)- as n - o. Clearly, the number of those graphs with n
vertices and m edges for which a _-> k, divided by the number of all graphs with n
vertices and m edges, does not exceed

(2.5)

i(m)
By elementary estimations, (2.5) does not exceed

In addition, we have

k
exp < exp log

m
n (n n log (m/n) n

Since the last quantity becomes smaller than .99 for all sufficiently large n, we
conclude that (2.5) tends to zero as n tends to infinity, l-I

646 v. CHV,,iTA.L

Next, let us digress a little. When m, n, s are nonnegative integers such that
m =< n and when t is a positive real number, we shall set p m/n, denote byY* the
summation over all integers/" => s (p + t) and define

B(m,n,s,t)=* n-m

H(m, n, s, t) Y.*

m n-m

Thus B is the familiar "tail of the binomial distribution" and H is the "tail of the
hypergeometric distribution". The well-known interpretation of these quantities
goes as follows. Imagine a barrel containing n apples, exactly m of which are
rotten; take a random sample of s apples. Technically, the sampling can be done in
at least two ways. We might pick and examine the apples one by one, each time
throwing the apple back into the barrel before reaching in again: this is called
sampling with replacement. Or we might just grab the s apples at the same time:
that is called sampling without replacement. Whichever method we use, we should
expect about ps rotten apples in the sample. The quantities B and H give the
probability that at least (p + t)s rotten apples will appear in the sample with and
without replacement, respectively.

An elegant argument (apparently due to S. N. Bernstein) shows that

B(m,n,s,t)<((p_)p+t(1-p)-p-t)1-p -t

A similar bound for H seems to be far more difficult to establish. A special case of
a theorem of Hoettding ([13, Thm. 4]) states that

(2.6) H(m,n,s,t)<((p_)p+’(1-p)l-p-t)s1 -p -t
It is a routine matter to convert (2.6) into weaker but more tractable bounds; we
are about to do that for p.

LZMMA 2.3. H(m, n, s, m/n) <= e-ms
Proof. If p > 1/2 then the left-hand side vanishes. If p< 1/2 then (2.6)

implies

1-1gH(m’n’s’P)<-2Ps log-+(1-2p)log 1+
1 2p

1 p
-<2plog+p< 4

which is the desired conclusion, fi
Upper bounds on H are useful in proving statements about random graphs,

such as the following one.

STABILITY NUMBER OF A GRAPH 647

LEMMA 2.4. Almost all graphs G with n vertices and rn edges (m >= 3n have
the following property: every subgraph of G induced by s vertices such that

4n 2 m
(2.7) s ->log-

m n

has fewer than 2ms2/nZ edges.
Proof. Clearly, the number of those graphs which do not have the property,

divided by the number of all graphs with n vertices and m edges, does not exceed

(2.8) (sn)H((), (), m, ()/()).
By Lemma 2.3, this quantity does not exceed

4n(n-
< exp

4n

By (2.7), we have

enexp(re(s-I))__<s 4n 2 4n log (re
exp log < .99.

Hence (2.8), being bounded from above by

Y (.99) < 100(.99)4n2g(m/n)/m,

tends to zero as n tends to infinity.

3. Algorithms. In this section, .we shall first describe a class of crude
algorithms for finding a largest stable set in a graph and point out that by the use of
appropriate data structures, the running time of these algorithms can be cut down
considerably. Then we shall briefly outline a class of more sophisticated
algorithms which we shall call Tarjan algorithms.

Let us suppose that, given a graph G (V, E) and a subset S of V, we wish to
find a largest stable subset A of S. We may begin by choosing a vertex v e S; the
desired set A either does not contain v or it does contain v. In the first case, A is a
largest stable subset of the set $1 S {v }; in the second case, A {v} is the largest
stable subset of the set $2 obtained from S by deleting v with all of its neighbors in
S. We shall denote S by S-v and $2 by S v; with this notation, we have

a(S) max (o(S-v), 1 +a(S v)).

Thus we have reduced the original problem into two similar, but smaller,
subproblems" one for S-v and the other for S v.

Now, an algorithm for finding a largest stable set in G suggests itself: begin
with S V, do what we have just done and then simply iterate away. One may
visualize a binary tree with nodes labeled by subsets of V. The root is labeled by V
itself; if a node is labeled by a nonempty set S then its left son is labeled by S-v
and its right son is labeled by S v for some v e S. If G has n vertices altogether
and if each vertex has fewer than d neighbors then the tree will have at least 2
nodes. Of course, that does not mean that the algorithm will create at least 2

648 v. CHV.TAL

subproblems: different nodes of the tree may have the same label. (To take an
extreme example, note that all the leaves of the tree will be labeled by .)

We shall describe a possible implementation of the algorithm. For definite-
ness, let us assume that we have a fixed "choice function" f which assigns to each
nonempty subset S of V a vertex f(S)eS. Such a function gives rise to an
algorithm which we shall call the f-driven algorithm.

In its first phase, the algorithm creates a list of certain subsets of V, which will
be called subproblems. It will be convenient to keep the list ordered, with larger
subproblems preceding the smaller ones; within each group of subproblems of the
same size, the order may be lexicographic. At each moment, we shall have a
partial list of subproblems, with a pointer at one of them. At the very beginning, V
will be the only subproblem on the list; the first phase will terminate as soon as the
pointer gets to . When the pointer is at a nonempty set S, we define S S -f(S)
and $2 S * f(S). Then we add Sa and $2 on the list (unless they are already
present), shift the pointer to the successor of S and iterate.

In the second phase, we pass through the list in a reverse order (from G to V)
and evaluate c(G) for each subproblem S. To begin with, we have cr () 0; for
each nonempty subproblem S, we have c(S)= max (c (Sa), 1

In the third phase, we shall find a largest stable set A in G. To begin with, let
us set A and S V. With each iteration, the set S will shrink; when it will
become empty, A will be the desired largest stable set in G. Each iteration is
simple. If a(S) =c(S1) then we replace S by S1; otherwise c(S) 1 q-c(82) in
which case we add f(S) to A and replace S by $2.

It is crucial to use the appropriate data structures when implementing the first
phase. Trivially, the number of subproblems on the list never exceeds 2. If we
implement the list as a balanced tree (see 15] or 1]) then each of the look-ups and
insertions can be handled within a number of set-comparisons proportional to n. If
eachf(S) can be evaluated within a steps and if the total number of subproblems is
b then the running time of the algorithm is O(abn2). For at least a few choices of f
that come to mind, a is polynomial in n. In that case, b threatens to be the decisive
factor in the upper bound.

Needless to say, the number of subproblems depends on the choice function
f; for most functions f, that number seems difficult to estimate. To simplify the
situation, we shall restrict ourselves to very special choice functions: when the
vertices of G are ordered as v , v2, , v,, the function f chooses that vertex of S
which has the smallest subscript. The resultingf-driven algorithm will be called an
order-driven algorithm.

The following proposition and its corollaries (Propositions 3.2-3.5) are due
to Szemer6di. In its statement, N(k) denotes the number of stable subsets of
{v 1, v2, , v}. Here and later on, we shall find it convenient to denote by S T
the subset of S resulting when all the vertices in T and all their neighbors are
deleted.

PROPOSITION 3.1. The order-driven algorithm applied to a graph with vertices
131 U2 Un creates at most

1 + Y min (N(k), 2"-k-a)
k=0

subproblems.

STABILITY NUMBER OF A GRAPH 649

Proof. For each subproblem S, let k be the largest subscript such that
{vl, v2,"’, Vk}f-IS . It is not difficult to see that

S={v+,v+," ", v.}*B

for some stable subset B of {v l,/22," ", Vk}. Hence for each fixed k, there are at
most N(k) subproblems S. In addition, if k < n then there are only 2n-k- subsets
S of {v+a,. , v,} such that v/

PROPOSITION 3.2. The order-driven algorithm applied to a graph G o" order n
such that a(G) <=n/2 creates at most

n

subproblems.
Proo[. Trivially, we have

N(k)<= <-n
i=0 a(G)

for each k; the rest follows from Proposition 3.1. I3
PROPOSITION 3.3. For almost all graphs G of order n, the order-driven

algorithm creates at most
2(1 +log n/log 2)

subproblems.
The proof follows immediately from Proposition 3.2 and Lemma 2.1.
PROPOSITION 3.4. Ifm (n)/n oo then almost all graphs G with n vertices and

m edges have the following property: for every constant c > 1, the order-driven
algorithm on G creates o(c) subproblems.

Proof. By Lemma 2.2, we have a(G)=o(n) for almost all graphs with n
vertices and m edges; the rest follows from Proposition 3.2.

PROPOSITION 3.5. For every graph with n vertices, the order-driven algorithm
creates at most 3 2(n-1)/2-1 subproblems.

Proof. We have

--1 n--1

Y, min (N(k), 2n-k-l) --< min (2k, 2n-k-a) =< 3.2(n-)/2- 2;
k =0 k =0

the rest follows from Proposition 3.1.
Note that the bound of Proposition 3.5 is sharp: it is attained by the

graph with vertices v, v2," ", v2,,+ and edges
Nevertheless, if we can choose the ordering of the vertices then the bound can be
improved.

PROPOSITION 3.6. Every graph with n vertices can be ordered in such a way
that the order-driven algorithm creates O(n 23n/7) subproblems.

Proof. We shall first describe the ordering and then we shall show that it has
the desired property. Suppose that we have already constructed the initial
segment va, v2, , Vnt for some -> 0. If the graph H G-{v1, v2, , I)4t}
contains a path WlW2W3W4 then we set l)4t+i--’W for 1-<i-<4 and iterate.
Otherwise each component of/4 is a star or a triangle. In that case, we denote 4t
by m and enumerate the vertices of H as v,,/l, v,,/2, ., v, in such a way that

650 v. CHVATAL

(i) the vertices of each component of order] are enumerated as
Vi+l, v+2, , v+i for some i,

(ii) if that component is a star then v+ is its center.
It is not difficult to verify that N(k)<-2(3’+1/4 for each k= 1,2,...,,m. If
rn >- 4n/7 then

n--1

Z min (N(k), 2"--a) O(n 23"/7).
k=0

If m < 4n/7 then we resort to another argument: note that each subproblem has
the form {v/a, v/2,. , v,} B such that 1 _<-k -< n and B is a stable subset of
{va, v2,’" ,v,,}. Since N(m)<--2(3m+)/4, the total number of subproblems is
0(n23/7).

It is not unlikely that the bound of Proposition 3.6 can be improved. Let us
call a number c admissible if every graph with n vertices can be ordered in such a
way that the order-driven algorithm creates O(c")subproblems; let Co denote the
infimum of all admissible c. By Proposition 3.6, we have Co_-< 23/7", on the other
hand, the main result of this paper implies that Co > 1. What is the exact value of
Co? Similar questions apply to the wider class of f-driven algorithms and to the
even wider class of Tartan algorithms which we are about to outline.

As pointed out at the beginning of this section, every [-driven algorithm
applied to a graph gives rise to a binary tree whose nodes are labeled by
subproblems: if a node x is labeled by a nonempty subproblem S then the left son
of x is labeled by S-v and the right son of x is labeled by S v for some v S.
Elimination Of duplications on the list of subproblems amounts to pruning the
tree: we simply omit nodes whose presence would result in duplicated labels. The
idea of Tarjan [19] leads to pruning of a different kind. In an/-driven algorithm,
each subproblem S is generated in the form (V-A) B such thatB is a stable set;
eventually, such a subproblem yields a stable set of size c(S)+ IBI. If another
subproblem S is generated in the form (V-A). B such that Sa_S and
IBa] =< IBI then Sa can be discarded: in a sense, Sa is dominated by S. In terms of the
binary tree, we might index each node x by the number r of right-hand turns on
the path from the root to x; a branch rooted at a node x (labeled by S and
indexed by r) may be pruned off whenever there is another node x (labeled by S
and indexed by r) such that S

_
S and ra =<r.

Now we have arrived at two kinds of pruning: these might be called
"duplication pruning" and "dominance pruning", the former being (in a sense) a
special case of the latter. An [-driven algorithm with the option of using both
duplication pruning and dominance pruning to eliminate subproblems will be
called a Tartan algorithm. Of course, systematic use of dominance pruning may
shorten the list of subproblems quite considerably. In terms of running time,
however, the means could defeat the purpose: in general, it may take a very long
time to decide whether the subproblem that has been just created is dominated by
at least one of the subproblems already on the list. Thus it may be wise to pass up
the option of (possible) dominance pruning in most cases, resorting to it only in
those simple situations where the dominating subproblem is almost staring at us.
Such a strategy led Tarjan [19] to an algorithm whose worst-case running time for
a graph with n vertices is O(1.286"). Later on, Tarjan and Trojanowski [20]
designed an improved version of that algorithm with running time 0(2"/3). It may

STABILITY NUMBER OF A GRAPH 651

be worth pointing out that these upper bounds come out of rather rudimentary
applications of dominance pruning only: the argument does not take duplication
pruning into account at all. Thus, it is not inconceivable that (with the subprobo
lems kept in a balanced tree, so that duplication pruning is easy to implement) the
worst-case running time of the Tarjan-Trojanowski algorithm is even better than
O(2n/3). Nevertheless, the main result of this paper implies the existence of a
constant c > 1 and arbitrarily large graphs G with n vertices such that every
Tarjan algorithm applied to G must create at least c" different subproblems. (In
fact, almost all graphs with n vertices and dn edges have this property as long as d
is sufficiently large.)

One more comment: from the practical point of view, the Tarjan-
Trojanowski algorithm might be preferable even to (hypothetical) f-driven
algorithms creating c" subproblems for c fairly close to 1. The point is that the
space requirements of such algorithms would be roughly nc" whereas the space
required by the Tarjan-Trojanowski algorithm is only polynomial in n.

4. Recursive proofs. For the moment, let us deal with an arbitrary but fixed
graph G (V, E). By a statement, we shall mean an ordered pair (S, t) such that S
is a subset of V and is a nonnegative integer. (Such a statement is to be
interpreted as the inequality a (S) =< which, of course, may be true or false.) By a
recursive proof of a statement (S, t) over G, we shall mean a sequence of
statements

(4.1) (Si, ti), i=0, 1,-.-,m,

such that (So, to)= (, 0), (S,,, t,,)= (S, t) and such that each statement (Sk tk)
with k >- 1 can be derived from the previous statements (Si, t), 0 =< -< k, by at least
one of the following two rules.

1. The dichotomy rule: from (S-v,t) and (S. v, tj) we can derive
(S, max (t, 1 + t)).

2. The monotone rule: from (S, t) we can derive (S’, t’) whenever S’
_
S and

t’>__t.
Clearly, if (4.1) is a recursive proof of (S, t) then a(S)-<t for every i; in

particular, a (S) _-< t. Conversely, if a (S) _-< then there is a recursive proof of (S, t).
In order to see that, consider the family F of subproblems created by some

f-driven algorithm that has just found a largest stable subset of S. Enumerate all
the ordered pairs (S*, ct (S*)) with S* F as (4.1)in such a way that IS, l_-< IS,+,l for
every i. Clearly, the resulting sequence constitutes a recursive proof of (S, a (S)); if
t >a(S) then one additional application of the monotone rule completes a
recursive proof of (S, t).

It will be convenient to define the length of (4.1) as m. Now, Propositions
3.1-3.6 yield direct corollaries in terms of recursive proofs. We shall state
explicitly only one of them.

PROPOSITION 4.1. If C > 1 and if m(n)/n then, for almost all graphs
G (V, E) with n vertices and m edges, there are recursive proofs of (V, a(G)) of
length o (c).

In addition, every Tarjan algorithm applied to G (V, E) yields a recursive
proof of (V, a(G)). Hence for every graph G (V, E) of order n, there is a
recursive proof of (V, a(G)) of length O(2’/3).

652 v. CHV,TAL

Now, we shall .show that for a certain class of graphs G (V, E), there exist
very short recursive proofs of (V, a(G)). This class consists of all those graphs G
for which a(G) equals O(G), the smallest number of cliques whose union is V.
(Trivially, we have a (G) <- O(G) for every graph G.) It may be instructive to split
the argument into three easy propositions.

PROPOSITION 4.2. If G V, E) is a complete graph of order n then there is a
recursive proof of V, 1) whose length is n.

Proof. Enumerating the vertices of G as v,Vz,’",v,, define S
{v, v2,’’’, v}. Trivially, the sequence (, 0), (S, 1),..., (S,, 1) constitutes a
recursive proof. [-1

PROPOSITION 4.3. Let G1--(V1, E) and G2 (V2, E2) be graphs such that
V1 (3 V2 let G1U G2 denote the graph (V t0 V2, E U E2). If there are
recursive proofs of (V, a(G)) of length mi for each j 1, 2 then there is a recursive
proof of (V1 (3 V2, o(Ga) + a(G2)) whose length does not exceed ml + m2.

Proof. If (S, t) with 0, 1,. , rn is a recursive proof of (V2, (G2)) then a
recursive proof of (V1, a(G1)), followed by the sequence

(ViUSi, a(G1)+ti), i= 1, 2,... ,m2,

constitutes a recursive proof of (V1 kJ V2, a(G1)+a(G2)). [-]

PROPOSITION 4.4. Let F be a subgraph of G and let (4.1) be a recursive proof
over F. Then there is recursive proofof (S, t over G whose length does not exceed
2m.

Proof. We shall create the desired proof over G from (4.1) by inserting a new
statement immediately before each (Sk, tk) that has been obtained from the
previous statements by the dichotomy rule. For every such (Sk, tk), there are
subscripts i,j and a vertex v Sk such that <k, j <k, tk =max (t,l +ti) and
S Sk--v, Si Sk * v in F. The statement to be inserted immediately before
(Sk, tk) is (S’k, tk 1) such that S, Sk * v in G. Clearly, (S’k, tk 1) follows from
(Si, ti) bythe monotone rule whereas (Sk, tk) follows from (S, t) and (S’k, tk 1) by
the dichotomy rule.

PROPOSITION 4.5. For every graph G (V, E) of order n there is a recursive
proof of (V, O(G)) whose length does not exceed 2n.

Proof. Consider the subgraph F of G consisting of O(G) cliques whose union
equals V. By Proposition 4.2. and by repeated applications of Proposition 4.3,
there is a recursive proof of (V, O(G)) over F whose length equals n. The rest
follows from Proposition 4.4.

We shall close this section with another easy observation which will be handy
later. The proof can be left to the reader.

PROPOSITION 4.6. If (4.1) is a recursive proof over G (V, E) and if W
_
V

then

(Si(3 W,t,), i=0, 1,. , m,

is a recursive proof over the subgraph of G induced by W.

5. A lemma on binary trees. Let a, b, r, s be nonnegative integers. A binary
tree whose nodes are colored red and blue will be called (a, b, r, s)-constrained if,
along each path from the root to a leaf,

STABILITY NUMBER OF A GRAPH 653

(i) exactly a nodes are followed by their left sons and exactly b nodes are
followed by their right sons,

(ii) at most r nodes are red,
(iii) at least s red nodes are followed by their right sons.
If, for some choice of integers a, b, r and s, there is at least one (a, b, r, s)-

constrained tree then we denote by f(a, b, r, s) the largest possible number of
leaves in such a tree; otherwise we set f(a, b, r, s)= 0. Trivially, we have

f(a, b, r, s)<(a +b)b
and

f(a, b, r, s) 0 whenever s > b or s > r.

The purpose of this section is to derive the following upper bound on]’(a, b, r, s).
LEMMA 5.1. If s >-2br/(a + b- 1), s >= r-a + 1 and s >= 1 then

[(a, b, r, s)<(a + b) ab --br/(4(a+b))

b a/b e

First of all, we shall establish a simple recursive bound.

1, b, r, s)+f(a, b 1, r, s)
FACT 5.2. f(a,b,r,s)<-_maxf(a_l,b,r_l,s)+f(a,b_l,r_l,s_l)"
Proof. Let T be an (a, b, r, s)-constrained tree. If its root is blue then the left

subtree is either empty or (a 1, b, r, s)-constrained and the right subtree is either
empty or (a, b- 1, r, s)-constrained. If the root is red then the left subtree of T is
either empty or (a 1, b, r- 1, s)-constrained and the right subtree of T is either
empty or (a, b- 1, r- 1, s- 1)-constrained; hence the desired conclusion.

Next, for every choice of nonnegative integers a, b, r, s such that

s <-_b, s <-_r, s >-r-a + l
we define

F(a,b,r,s)=s(r+)(a+b-r-l-i)
i--0 s + b-s-i

It is easy to verify that

F(a, b, r, 0)=(a+b)b

F(a,b,r,b)=
b

F(a’b’r’r)=(a+b-r)
F(a,b,r,r-a+l)=(a+b) (ra)a
F(a 1, b, r, s) + F(a, b 1, r, s) F(a, b, r, s),

F(a 1, b, r 1, s) +F(a, b 1, r 1, s 1) F(a, b, r, s)

whenever the left-hand side terms are defined.

654 v. CHVATAL

FACT 5.3. We have f(a, b, r, s) <= F(a, b, r, s) whenever the fight-hand side is

defined.
This inequality can be proved by induction on a + b in a straightforward way;

we omit the tedious details. It is not unlikely that there is a direct combinatorial
proof of Fact 5.3. Furthermore, it is not difficult to show that ’(a, b, r, s)=
F(a, b, r, s) whenever the right-hand side is defined; however, that is irrelevant for
our purpose.

Proof o[Lemma 5.1. We may assume s _<-b and s _-<r for otherwise the
left-hand side vanishes. Then, by Fact 5.3,

(a, b, r, s) <-F(a, b, r, s).

Since r >=s >-2br/(a +b- 1), we have 2b/(a +b- 1)_-< 1 and

r+i
s +i >=2b--

a+b-1

for every nonnegative i. Hence, with the notation of 2,

(2+i)(a+b-r-l-i) <H(r+i,a+b-1 b, (r+i)/(a+b-1)). (a+b-1)+i b-s -i b

By Lemma 2.3, we have

f(a, b, r,s)<-bs (a +b)a a

i=o b +b
e

which implies the desired result.

-br/(4(a +b))

6. The main result. A graph G of order n will be called (d, e)-sparse if
(i) every vertex of G has degree less than d,
(ii) every subgraph of G induced by m vertices such that m >-en has fewer

than dm2/n edges.
THEOREM 6.1. Let n, be positive integers and let d, e be positive reals such that

n <-lOtd,

n >- 500t2/3d,
n >-- lOOta/4d3/4,
n _-> 2000t,

e < n/(181Otd2);
let G (V, E) be a (d, e)-sparse graph of order n. Then every recursive proof o]
(V, t) has length at least

(6.1) 90d exp
n

n 20d2"

Proof. We shall set

a [n3/(45000td)], b Ln/(9OOtd)J

STABILITY NUMBER OF A GRAPH 655

and show that every recursive proof of (V, t) has length at least

(6.2)
a + b b 2

ab
exp--.

a+b

The reader may easily vdrify that a _-> b _-> 200 and so

200 n 3 200 n 2

a > 20---J-" 45000tZd2’ b > 20---]-" 900td---Then it follows that (6.2) is at least (6.1).
Let us outline our strategy. With each recursive proof of (V, t), we shall

associate a binary tree T whose nodes will be labeled by statements from the
proof. The assignment of labels to nodes will not be one-to-one (to take an
extreme example, all the leaves of T will be labeled by) and so the number of
nodes of T may be much greater than the length of the proof. We shall find a node
z with a certain convenient property and then we shall construct a new binary tree
T*. Even though T* will not be a subtree of T in a strict sense,its nodes will come
from T; in particular, z will be the root of T*. Finally, we shall show that within
the set N of leaves of T*, no label is repeated too often. More precisely, for each
subset S of V we shall define

and prove that

N(S) {x N’x is labeled by (S, t’) for some t’}

ab (b 2

)(6.3) IN(S)] =< INI" -+ b exp
a + b

Since N will be nonempty, (6.3) will imply the desired result: indeed, the number
of those sets S for which N(S)# must be at least (6.2).

Before going into the details, the reader may welcome a preview of the idea
behind the proof of (6.3), however vague such a preview may have to be. Let
(W, t*) be the statement that labels z. In the absence of the monotone rule, the
tree T* is constructed in such a way that every subproblem S labeling a leaf of T*
is obtained from W by simply deleting a vertices and by deleting b vertices with
their neighbors. If we had our way, the subgraph H induced by W-S would
consist of a isolated vertices and b disjoint stars" in that case, we could reconstruct
the two sets of vertices, proving that IN(S)] 1. Actually, we shall be content even
if things are not all that clear-cut, as long as we can approximately reconstruct the
two sets. That will be the case as long as H is reasonably large. (If H is large then
most of the b vertices must have large degrees. At the same time, the second
defining property of a (d, e)-sparse graph implies that the average degree in H is
rather small. Hence the vertices of large degrees are quite conspicuous.) In order
to guarantee that H will be large, we have to choose z appropriately. In general,
the rules for constructing T* are designed to neutralize the desultory effects of the
monotone rule. Now that the poor reader is properly confused, we can proceed to
the details.

Constructing T, we shall find it convenient to call certain statements in the
proof eligible: a statement will be called eligible if it is (, 0) or if it follows from

656 v. CHV,TAL

some two earlier statements by the dichotomy rule. Only the eligible statements,
with a possible exception of (V, t), will be used to label the nodes of T. The
construction of T is recursive; the root of T is labeled by (V, t). Suppose that we
have constructed a node x labeled by a statement (Sk, tk) and having no sons at this
moment. If (Sk, tk) (, 0) then x will be a leaf of T. Otherwise there are eligible
statements (Si, ti), (Sj, tj) and a vertex v Sk such that

i, j <- k, S
_
Sk V, S

_
Sk * v, t >- max (t, l + t).

In that case, we shall create both sons of x, label the left one by (Si, ti) and label the
right one by (S, ti). For further reference, we shall set S(x)= Sk, t(x)= tk and
v(x) v. It will be useful to note that

(6.4) ti <- tk and tj <--_ tk 1.

Next, we shall find the special node z. A node y will be called a descendant of
a node x if there is a path Xo, x, , Xk such that x Xo, y Xk and each x+ is a
son of x. If, in addition, exactly b nodes x are followed by their rightsons xi /1 then
y will be called a b-descendant of x. Repeated applications of (6.4) show that

(6.5) if y is a b -descendant of x then t(y _-< t(x) b.

We claim that

there is a node z such that S(z)>-_n/2 and such that(6.6) IS(y)l < IS(z)l-bn/(2t) for every b-descendant y of z.

A node with this property can be found by constructing a certain sequence
yo, y 1,"" of nodes of T such that y0 is the root of T. If the most recently
constructed y, has a b-descendant y such that IS(y)l>-iS(y)l-bn/(2t) then set
y/1 y; otherwise stop. By (6.5) and by the construction of the sequence, we have

IS(yi)]>-n(1-bi/(2t)), t(y,)<-_t-bi

for every i. Since t(y)-> 0, we must have <-_t/b and so IS(y)l>=n/2 for every i. In
particular, the very last yi in the sequence has the properties required of z. We
shall denote S (z) by W.

With each descendant x of z, we shall associate two subsets A (x), B (x) of V:
considering the path Xo, Xl, , Xk from Xo z to Xk X we shall define

A(x)={v(x):O<-_i <k and Xi+l is the left son of xi},

B (x) {v (x) 0 _-< < k and x/ is the right son of x}.

Clearly, we have

(6.7) IS(x)f’) Wl>-lWl-I(A(x)-B(x))fq Wl- E (+d(v))
vB(x)

for every descendant x of z. In particular,

(6.8) ifl(A(x)-B(x))fl Wl<-_a and lB (x)l <= b then S(x):
just observe that

a +b(1 +d)-< 2a +bd <3bd <n/2.

STABILITY NUMBER OF A GRAPH 657

Before proceeding to construct T*, we shall associate a node x* with each
descendant x of z such that

I(A (x) B (x)) fq WI =< a and IB (x)l =< b.

Consider the path Xo, xl, , xk such that Xo x, xk is a leaf of T and each xi+l is
the left son of xi. Note that B(x)= B (x) for every i. There must be at least one
such that 0 _<- < k and

(6.9) v(xi) W, v(x,)A(x)UB(x)
for otherwise

(A (x) B (x)) t3 W (A (x) B (x)) W and B(x) B (x)

but S(Xk)= , contradicting (6.8). We shall denote the first x satisfying (6.9) by
x*" note that

(A(x*)-B(x*)) W=(A(x)-B(x)) IV.

At last, we are ready to construct T*. Each of its nodes x will come from T
and satisfy

v(x) W, v(x)_A(x)UB(x),

I(A(x)-B(x))f-I W;<-a, IB(x)l<-b, B(x) W.

The construction of T* is recursive; the root of T* is z. Suppose that we have
already constructed some node x of T*; let XL denote the left son of x in T and let
XR denote the right son of x in T. If I(A (x) B (x)) f-I WI a then x will have no left
son in T*; otherwise we shall make X*L the left son of x in T*. If IB (x)l b then x
will have no right son in T*; otherwise we shall make X*R the right son of x in T*. It
will be useful to make note of the following property of T*:

along each path from the root to a leaf,

(6.10) exactly a nodes are followed by their left sons,
exactly b nodes are followed by their right sons,
and these a + b nodes x give rise to distinct vertices v (x).

Finally, we shall prove the inequality (6.3). Without loss of generality, we
may assume that N(S) and so S S(y) for some y N. Denote by H the
subgraph of G induced by W-S(y) and denote by rn the order of H. Since y is a
b-descendant of z in T, (6.6) implies that

rn > bn/(2t).

On the other hand, (6.7) implies that

m _-<a +b(1 +d) =<2a +bd <3bd.

Enumerate the vertices of H as ul, ue," , Um in such a way that

du(u 1) >= du(u2) >="" >- du(u,,).

Since bn/(2t)> n3/(1809t2d2) and since G is (d, e)-sparse, the graph H has fewer

658 v. CHV,TAL

than dm2/n edges. That is,

Z dH(ui) < 2dmZ/n.
i=1

It is now easy to see that, for every positive integer r, we have

(6.11) di(ui)<2dmZ/(nr) whenever > r.

We shall use (6.11) with

r [am/(4bd)].
Let us note at once that r -> 200 and so

200 am

201 4bd

It will be also useful to note that

2rbd m

a 2’

2dm2b 201 8bZd2
nr 200 an

(201] 4m
m <=\d-d] 9

(6.12) r<-_a,

(6.13)
2br >_br>_l

a+b-l-a

And while we are at it, let us also verify that

201 bn 201 m
a<.<.--

200 50t 200 25’

1 bn m
b<=.

1000 2t 1000"

So much for high-school algebra. Now, we shall set R {u 1,/12, Ur} and prove
that

(6.14)
2rb

a+b-1

for every x eN(S). To begin with, (6.7), (6.11) and B(x)_ W imply

m <=a +b +dlB(x)VIRl+2dm2b/(nr).
If (6.14) failed then we would have

m <-_ a + b + 2rbd/a + 2dm2b/(nr).
However, the right-hand side of this inequality is at most

(201 1 1 +1+m
200 25 i000 \2- <m.

STABILITY NUMBER OF A GRAPH 659

Hence (6.14) must hold.
The rest is easy. Consider the subtree of T* consisting of all the paths from

the root z to leaves in N(S); color each of its nodes x red if v(x)R and blue
otherwise. By (6.10) and (6.14), this tree is (a, b, r, 2br/(a +b- 1))-constrained.
Because of (6.12) and (6.13), Lemma 5.1 applies and shows that

[N(S)[<_ (a + b) ab (b2)b "a+bexp -a+b
By virtue of (6.10), this is the desired inequality (6.3).

THEOREM 6.2. Let m be a function of n such that re(n)= o((n/log n)) but
m (n) >- lOan]:or all sufficiently large n. Then,]:or almost all graphs G (V, E) with
n vertices and m edges, every recursive proof of (V, a(G)) has length at least

2360m n
2 exp

n m(3501ogm/n)3"

Proof. By Lemma 2.2 and by Lemma 2.4, almost all graphs with n vertices
and m edges have the following two properties:

2n m
(P1) a(G) <-- log--,

m n

(P2) every subgraph induced by s vertices such that

4n 2 m
s -> log--

m n

has at most 2ms2/n 2 edges.
We shall show that all sufficiently large graphs with these two properties

satisfy the conclusion of Theorem 6.2. Let us define
2

d(n)=4km/n,
4n m

e(n) =mlg--
n

Firstly, we shall show that every graph with n vertices and m---101n edges
satisfying (P2) contains an induced (d, e)-sparse subgraph of order k. To begin
with, 2k(n)_-<n. Next, an easy averaging argument shows that G contains an
induced subgraph Ho with 2k vertices and at most 4ink/n edges. Beginning with
Ho, we shall construct a sequence Ho, H,.. of induced subgraphs of Ho as
follows: if the last constructed has a vertex v of degree at least d then set
/-// -v, otherwise stop. Clearly, if an gets constructed then Ho had at
least di edges and so _-< k. In particular, the very last in the sequence has at
least k vertices; in/-/, we shall choose an induced subgraph H of order k. Let W
denote the set of vertices of H. By (P2), every subgraph of H with s >-_ek

4nlog(m/n)/m vertices has at most 2ms/n<ds/k edges. Hence H is
(d, e)-sparse.

660 v. CHVATAL

Next, by (P1), we have

On the other hand, we have

2

a(G) <-- log--
m ?/

a(G) >=a(H) >=k/(d + 1).

For all sufficiently large n, Theorem 6.1 asserts that every proof of (W, a(G)) has
length at least

290d k 360m n

k exP20dS> 2 exp)3.n m(3501ogm/n

By Proposition 4.6, this is also a lower bound on the length of every recursive
proof of (V, a(G)). [-1

Let us state a special case of Theorem 6.2 in a compact form.
THEOREM 6.3. For every sufficiently large integer d there is a constant c > 1

with the following property" for almost all graphs G (V, E) with n vertices and dn
edges, every recursive proof of (V, a(G)) has length at least c.

In closing, two remarks may be in order. Firstly, it would be interesting to
construct an infinite class of graphs for which there is a constant c > 1 with the
following property: for every graph G (V, E) in and with n vertices, every
recursive proof of (V, a(G)) has length at least c. Secondly, it is somewhat
frustrating that Theorem 6.2 does not apply to graphs with cn edges. Perhaps the
following is true.

CONJECTURE 6.4. There is a positive constant c with the followingproperty" for
almost all graphs G (V, E) with n vertices, every recursive proof of (V, a(G)) has
length at least n logn.

7. Concluding remarks. There are many "natural" proof systems which
extend our system of recursive proofs; we shall mention just a few. It would be
interesting to strengthen our results by proving their analogues for the extended
proof systems.

To begin with, one might adjoin the following inference rule:

from ($1, tl) and (S2, t2) we can deduce (Sa U S2, t + t2).

Proposition 4.3 shows that, to some extent, this rule is implicit in the system of
recursive proofs. Nevertheless, its addition just might make the system considera-
bly more powerful. Along this line, further extensions lead to the system of cutting
plane proofs which we are about to describe briefly. Let us consider a graph
G (V, E) with vertices v 1,)2, On none of which is isolated. A cutting plane
proof of (V, t) is a sequence of inequalities

aqxi <=bi 1, 2,..., m,
y=l

such that
(i) all the numbers ai and b are nonnegative integers,
(ii) for every k 1, 2,. , m, either the kth inequality reads x +x, _-< 1 for

STABILITY NUMBER OF A GRAPH 661

some edge I.)rV or else there are nonnegative multipliers y 1, y2, Yk-1
such that

yiaq >- ak], yibi < bk,
i=l i=l

(iii) the last inequality reads. x -< t.
It is not difficult to see that a(G)<-t whenever there is a cutting plane proof of
(V, t). The converse is easy as well: in fact, every recursive proof of (V, t) can be
converted into a cutting plane proof of (V, t). (The details are left to the reader.)

An inference rule which strengthens the monotone rule and is not subsumed
in the notion of a cutting plane proof goes as follows. Let us write $1 < $2 if there is
a one-to-one mappingf: $1 -> $2 such that f(u) andf(v) are adjacent only if u and
v are. Clearly,

from (S, t) we can derive (S’, t’) whenever S’ < S and t’_-> t.

Again, it would be interesting to find out whether the addition of this inference
rule makes the system of recursive proofs considerably stronger.

Colin McDiarmid 18] investigated a proof system, similar to our system of
recursive proofs, for deriving lower bounds on the chromatic number of graphs.
We shall describe his system very briefly. Let G be a graph whose vertices are
labeled by nonempty and pairwise disjoint subsets of {1, 2, , m}; let u and v be
two vertices of G. We shall denote by G’ the graph obtained from G by adding the
edge uv; we shall denote by G" the graph obtained from G by identifying u with v
(in which case the label of the new vertex is the union of the labels of u and v), As
usual, to(G) denotes the order of the largest clique in G. By a recursive proof of
[Gin, tm], we shall mean a sequence

[Gi, ti], i=1,2,...,m,

such that, for each k, either tk <--to(Gk) or else there are subscripts i,] <k such that
Gi G,, G---G and tk =min (ti, tj). Clearly, if there is a recursive proof of
[G,,, tm] then X(Gm) >-- tin. McDiarmid has proved that, for almost all graphs with n
vertices, every recursive proof of [G, x(G)] has length at least

exp (.157 n (log rt)l/2).
His result implies that the average running time of the Corneil-Graham algorithm
for finding the chromatic number of a graph[4] grows faster than every exponen-
tial. On the other hand, Lawler [16] has designed an algorithm for finding the
chromatic number of a graph of order n within O(2.45n) steps. (Of course, these
facts are of an asymptotic nature and imply nothing about the relative merits of the
two algorithms applied to graphs with, say, 200 vertices.)

Acknowledgment. Finally, I wish to thank several friends for their help with
my work on this paper. To Colin McDiarmid and Endre Szemer6di I am indebted
for many stimulating conversations. Persi Diaconis told me about Hoeffding’s
paper [13]. David Avis, Don Knuth, Ivo Rosenberg, and Bob Tarjan read various
versions of the manuscript and made many helpful suggestions to improve the
presentation.

662 v. CHVtiTAL

REFERENCES

[1] A. E. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.

[2] S. A. COOK, The complexity of theorem-proving procedures, Proceedings of Third Annual ACM
Symposium on Theory of Computing, Association for Computing Machinery, New York,
1971, pp. 151-158.

[3] S. A. COOK AND R. A. RECKHOW, On the lengths of proofs in the propositional calculus,
Proceedings of Sixth Annual ACM Symposium on Theory of Computing, Association for
Computing Machinery, New York, 1974, pp. 135-148.

[4] D. G. CORNEIL AND I. GRAHAM, An algorithm for determining the chromatic number of a
graph, this Journal, 2 (1973), pp. 311-318.

[5] P. ERDtS, Some remarks on the theory of graphs, Bull. Amer. Math. Soc., 53 (1947), pp.
292-294.

[6],On circuits and subgraphs of chromatic graphs, Mathematika, 9 (1962), pp. 170-175.
[7] P. ERD(S AND B. BOLLOBAS, Cliques in random graphs, Math. Proc. Cambridge Philos. Soc.,

80 (1976), pp. 419-427.
[8] P. ERD(S AND A. RINYI, On random graphs, I, Publ. Math. Debrecen, 6 (1959), pp. 290-297.
[9],On the evolution ofrandom graphs, Magyar Tud. Akad. Mat. Kut. Int. K6zl., 5 (1960), pp.

17-61.
10], On the strength of connectedness of a random graph, Acta Math. Acad. Sci. Hungar., 12

(1961), pp. 261-267.
11] Z. GALIL, On enumeration procedures for theorem proving and for integer programming, IBM

report RC 5719 (# 24648), 1975.
[12] G. R. GRIMMETI" AND C. J. H. MCDIARMID, On colouring random graphs, Math. Proc.

Cambridge Philos. Soc., 77 (1975), pp. 313-324.
[13] W. HOEFFDING, Probability inequalities for sums of bounded random variables, Amer. Statist.

Assoc., 58 (1963), pp. 13-29.
[14] R. M. KARP, Reducibility among combinatorial problems, Complexity of Computer Computa-

tions, R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-104.
[15] D. E. KNUTH, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-

Wesley, Reading, MA, 1973.
[16] E. L. LAWLER, A note on the complexity of the chromatic number problem, Information

Processing Lett., 5 (1976), pp. 66-67.
17] D. W. MATULA, On the complete subgraphs of a random graph, Proc. 2nd Conf. Combinatorial

Theory and Appl., Chapel Hill, NC, 356-369.
18] C. J. H. MCDIARMID, Determining the chromatic number of a graph, this Journal, submitted.
[19] R. E. TARJAN, Finding a maximum clique, Tech. Rep. 72-123, Computer Science Dept.,

Cornell University, Ithaca, NY, 1972.
[20] R. E. TARJAN AND A. E. TROJANOWSKI, Finding a maximum independent set, this Journal, 6

(1977), pp. 537-546.

SIAM J. COMPUT.
Vol. 6, No. 4, December 1977

MINIMIZING GARBAGE COLLECTION AS A FUNCTION OF REGION
SIZE*

RICttARD G. LARSON]"

Abstract. Under a virtual storage operating system, the time spent by a list processing language on
garbage collection varies in a complex manner with the amount of memory allocated. This dependence
is investigated and strategies for minimizing the time spent on garbage collection are given.

Key words, garbage collection, computation time, optimal storage allocation, list processing
languages

1. Introduction. Higher-level list processing languages such as SNOBOL4
permit the convenient solution of relatively complex problems. However, prog-
rams written in such languages usually require large amounts of storage. If a
virtual storage operating system is used, careful programming can produce
programs with good locality, especially if the language uses a compacting garbage
collection algorithm [2], [3]. However, the process of garbage collection necessar-
ily has poor locality. One factor that the programmer often can control is the
amount of virtual storage allocated to the program. A small region results in many
fast storage regenerations; a large region results in a few slow storage
regenerations.

It is possible to estimate the amount of time taken by garbage collection [3, p.
419]. If some simple assumptions are made about the average time needed to
access a randomly chosen memory location as a function of region size (this is not
constant with a virtual storage operating system), an estimate can be made of the
total time required for garbage collection. This estimate is given in Proposition 1.
The estimate is adequate to suggest strategies for choosing the amount of storage
which minimizes garbage collection time. Such strategies are suggested by Prop-
ositions 2 and 3. These strategies depend on the amount of active data which must
be preserved during the garbage collection, and on the amount of real memory
available.

2. Garbage collection time. In this section we give an estimate of the number
of garbage collections and the total time of garbage collection which is needed for
a given computation.

One way to measure the course of a computation is by the amount of time
spent computing since the beginning of the computation. Another way is by the
amount of data produced. For example, in LISP one could count the number of
CONSs. For the next proposition, the second method is used. At the point in a
computation where X units of data have been produced, denote the amount of
active data which must be preserved by garbage collection by A (X). A garbage
collection in a region of size R with amount of active data A takes aA + bR time
units [3].

The term aA in this expression is the time necessary for the garbage
collection algorithm to mark the active nodes; in the case of a compacting garbage

* Received by the editors January 23, 1976, and in revised form August 15, 1976.

" Department of Mathematics, University of Illinois at Chicago Circle, Chicago, Illinois 60680.
This work was supported in part by the National Science Foundation under Grant MPS71-02790 A05.

663

664 RICHARD G. LARSON

collection such as described in [2], it also includes the time necessary to move the
active data and to adjust the pointers. The term bR is the time necessary to make a
sequential pass through memory, collecting the unmarked nodes. Because mark-
ing and moving the active data are rather complicated procedures, in general the
quantity a will be substantially larger than b.

PROPOSITION 1. Suppose a computation is done which produces amount of
data D, using a region for storing data of size R. Then the number of garbage
collections needed for this computation is approximately

dX
R A (X)

The total time spent doing garbage collection during this computation is approxi-
mately

(aA (X) + bR dS
R A (X)

hR.

Pro@ Let X0 O, and let Xi be the amount of data which have been produced
by the time of the ith garbage collection. Since R -A (X) is the amount of storage
recovered by the ith garbage collection, we have the following relation:

X+I Xi R -A (X).

The computation continues until X_-> D. Let n be the smallest integer such that
Xn +1 > D. Then n is the number of garbage collections necessary for the computa-
tion. Let

Note that

AXi X+ Xi R A Xi

i=0 i=o R A (Xi

The sum on the right-hand side of this equation is a Riemann sum for the integral

Therefore

D dX
U A (X)"

dX
n

R -A(X)

The time spent on garbage collection is

Y (aa(X)+bR)= Z (aA(X)+bR)-bR,
i=1 i=0

MINIMIZING GARBAGE COLLECTION 665

since A (X0) A (0) 0. But

aA(X)+bR= ’, (aA(Xi)+bR)
=o =o R -A(X)

D (aA (X) + bR dX
R -A(X)

This completes the proof of the proposition.

3. Strategies. In this section we use Proposition 1 to study the effect on
garbage collection time of varying region size. We first consider the case where a
and b are independent of R.

PROPOSITION 2. Suppose that a and b do not depend on R. Then garbage
collection time for a given computation is a decreasing function of R.

Proof. Since

(aA + bR dX
T=

R-A
bR,

it follows that

dT Io (a + b)A dX
d-: (R -A)2 b

which is negative. This completes the proof of the Proposition.
The situation where a and b vary with R is much more complicated. Suppose

that there is a fixed amount H of fast memory, and that a and b depend on the
proportional amounts of fast and slow memory available. That is, assume

ao,
a

aoH/R +al(1-H/R),

bo,
b

boH/R +bl(1-H/R),

R<-H,
R>H,

R<_H,
R>H.

We assume that al >a0 and that bl >b0. At the beginning of 2 we gave a
justification for the assumption that a >> b. This allows us to assume that a >> b 1.

We also assume that D is large, so that the term -bR is negligible compared to the
integral in the time estimate in Proposition 1.
Denote d al-ao and b b-bo. Note that our assumptions imply that

((t + b)/(a + bl) is a positive number somewhat less than 1, and that b/(aa + bl) is
a positive number substantially less than 1. Assume that b < ti. In the following
proposition we consider conditions on A A (X). These are to be interpreted as
requiring that A be in the indicated range for all values of X.

PROPOSITION 3. Under the above assumptions,
(a) if

A/H>(a +b)/(a +bl),

then the garbage collection time is a decreasing function of R;

666 RICHARD G. LARSON

(a +b)/(al +bl)>A/H>>b/(aa +bl),

then the garbage collection time is a decreasing function of R]:or R <H and for
R > 2H-A/2;

(c) g
A/H)>b/(al +bl)

is false, then the garbage collection time is a decreasingfunction ofR forR <Hand
is an increasing function of R for not excessively large R >H.

The strategic implications of this Proposition are as follows: if A is not
substantially less than H, then garbage collection time is minimized by taking R as
large as possible; if A is very small compared with H, then garbage collection time
is minimized by taking R H. Of course, in practical situations, other considera-
tions such as possible charges for space as well as time and scheduling priorities
will influence the choice of R.

Proof. It follows from Proposition 2 that garbage collection time is a decreas-
ing function of R for R < H. Note that

and

We consider

da
dR

aH/R R >H,

db
dR

bH/R 2 R > H.

d Io(aA+bR)dX Io d(aA+bRdR R-A R2X /dX.
The integrand on the right-hand side equals

(b-H- (a + b)A)R 2 + 28AHR 8A2H
R2(R -A)2

This has the same sign as

((R) (b-H- (al +b)A)R 2 + 2aAHR -dA2H

=C2R2+C1R +Co.
To find the sign of Q(R), we first find the roots. The discriminant is

c-4CoC
(2AH)-4(H-(a +b)A)(-aA 2H)
4A2H(aH+H- (al + b)A)

(4eAH 1 +

MINIMIZING GARBAGE COLLECTION 667

Note that the discriminant is negative if and only if

A/H>(a +b)/(a +b).

We see that O(O)< O. If the discriminant is negative, O(R) cannot change sign.
Therefore, if

A/H>(a +b)/(al +bl),

the derivative is always negative. This proves part (a) of the proposition.
To prove parts (b) and (c), we consider the location of the roots of Q(R).
Suppose now that

A/H<(a +b)/(aa +bl).

This implies that
bH- (a + b)A

The assumption that b < d implies that

bH- (a + b)A
dH

Therefore

bH (a + b1)A

Use the Taylor series expansion for x/1 + x to get that- 2dAH(1 +
bH- (a + b1)A

 3-7)
Therefore the roots of Q(R) are

-Ca + x/S A
2C2 2’

22"--

If A/H >> b/(a + b), then

Z2

2dAH A
(a + b)A bH 2

2dH A
(al+ ba) 2

Since C2 bH-(al +ba)A is negative in this case, Q(R) is negative for R a large
positive or large negative number. The fact that C2 is negative also implies that
z < z2. Since

668 RICHARD G. LARSON

it follows that 2’ 2 < 2H-A/2. Since Q(R) is negative for R > z2, and since dT/dR
has the same sign as Q(R) for R > H, it follows that T is a decreasing function of R
for R > 2H-A/2. Part (b) of the proposition follows.

The proof of part (c) breaks down into two subcases"
(cl) Suppose A/H is slightly larger than b/(al/bl). The argument in the

proof of part (b) shows that the derivative is positive for

H<R<
2AH A

(al +bl)A-bH 2

Since A/H is only slightly larger than b/(a + b), the denominator of the first term
on the right-hand side of the inequality is small, so the right-hand end of the
inequality is large.

(c2) Suppose A/H<b/(aa +bl). Then C2 is positive. The argument in the
proof of part (b) shows that the two roots are approximately

2AH A
bH-(a +bl)A 2

which is negative, and A/2 which is <H. Therefore the derivative is positive for all
R > H. This completes the proof of the proposition.

Acknowledgment. Computing services used in this research _were provided
by the Computer Center of the University of Illinois at Chicago Circle. This
assistance is gratefully acknowledged.

REFERENCES

[1] P. J. DENNING, Virtual memory, Comput. Surveys, 2 (1970), pp. 153-189.
[2] R. E. GRISWOLD, The Macro Implementation of SNOBOL4, W. H. Freeman, San Francisco,

1972.
[3] D. KNUTH, The Art of Computer Programming, Vol. I, Addison-Wesley, Reading, MA, 1968.
[4] J. MCCARTHY, P. W. ABRAHAMS, D. J. EDWARDS, T. P. HART, AND M. I. LEVIN, LISP 1.5

Programmer’s Manual, MIT Press, Cambridge, MA, 1965.

SIAM J. COMPUT.
Vol. 6, No. 4, December 1977

ON THE WORST-CASE BEHAVIOR OF
STRING-SEARCHING ALGORITHMS*

RONALD L. RIVEST’

Abstract. Any algorithm for finding a pattern of length k in a string of length n must examine at
least n k + of the characters of the string in the worst case. By considering the pattern 00 0, we
prove that this is the best possible result. Therefore there do not exist pattern matching algorithms
whose worst-case behavior is "sublinear" in n (that is, linear with constant less than one), in contrast
with the situation for average behavior (the Boyer-Moore algorithm is known to be sublinear on the
average).

Key words, string-searching, pattern matching, text editing, computational complexity, worst-
case behavior

1. Introduction. Let s sls2""sn denote a string of length n over some
finite alphabet E, and similarly let p PlP2""Pk denote a pattern of length k
over the same alphabet. The "string-searching problem" is to determine if the
pattern occurs in the stringmthat is, if

(! j)(1 =<j _<-n- k + 1)A(pp2 p s.isj+l"" Sj+k-1).

We denote this occurrence as p _-< s.
Several efficient algorithms exist for determining whether p _-<s, given a

pattern p of length k and a string s of length n. For example, the algorithm of
Knuth, Morris and Pratt [3], [4] first constructs (in time O(k)) a finite state
automaton to recognize the regular set Z*pZ* (see [1] also). Then p _-<s iff the
automaton accepts s, which can be determined in time O(n), The entire algorithm
runs in time O(n + k). As an example (which we shall use later), for p 0101 the
automaton of Fig. 1 would be constructed. Here we assume that Z {0, 1}. State 1
is the initial state and state 5 is the only accepting state.

FIG.

Recently, Boyer and Moore published an algorithm [2] which is significantly
faster than the Knuth-Morris-Pratt algorithm on the average. The latter
algorithm examines every character in s exactly once, whereas the Boyer-Moore
algorithm looks at only some fraction c < 1 of the characters on the average; a

* Received by the editors June 15, 1976, and in revised form October 5, 1976.
f Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Mas-

sachusetts 02139. This report was prepared with the support of the National Science Foundation
Grant GJ-43634X, Contract DCR74-12997-A01, and Grant MCS76-14294.

669

670 RONALD L. RIVEST

typical value for c might be .24 when p is a five-letter English word. The
worst-case behavior of the algorithm is nonlinear in n and k, although a slight
modification of their algorithm due to B. Kuipers results in a linear worst-case
time algorithm as well. (Knuth [5] has shown that the average number of times a
character in s is examined by the modified algorithm is bounded above by 6; the
proof, however, is very complicated.) The Boyer-Moore algorithm requires that
the string s be stored in some sort of random-access memory in order to achieve
any savings. Their procedure examines Sk, then sk-1, and so on, until an sj such that
s. pi is found. Then some of the initial characters of s may be deleted and the
process repeated with the shorter string s. If the examined (matching) subsection

si+l sk of s occurs nowhere else in p, the first k characters of s may be skipped,
even though only k -] + 1 of them have been examined. Otherwise some smaller
number may be discarded, reflecting the next possible alignment of Si+I"’’Sk
with some subsection of p. Another heuristic is also used: the latest occurrence of
sj in p (hopefully preceding p.) is used to determine how many characters from s
can be deleted before si aligns with some character in p. In the best case we find
that sk Pk and that sk occurs nowhere in p; then k characters of s can be skipped
at the cost of examining just one.

The focus of this paper is on the worst-case behavior of such pattern-
matching algorithms. We answer (in the negative) the conjecture that a pattern-
matching algorithm can exist whose worst-case behavior is "sublinear" in the
same sense that the Boyer-Moore algorithm is sublinear in its average behavior.
More precisely, we show that for every pattern p and for every correct algorithm
A which determines if p _-< s for arbitrary strings s, there exists a string s which
causes A to examine at least Isl-Ipl / 1 characters of s. This result is given in 2 of
this paper. In 3 we show that this lower bound is the best possible by considering
an algorithm for the pattern p 00. 0.

2. The worst-case lower bound. The approach models the method Rivest
and Vuillemin used to prove the Aanderaa-Rosenberg conjecture [5]. Fix the
pattern p and let A, be any algorithm for determining whether p -<_ s for any string
s. Let w(Ae, n) denote the maximum number of characters in s examined by
algorithm Ap for any string s in En; w(Ap, n) is the worst-case cost function for
algorithm A.

We assume that w(Ap, n)<-_ w(Ap, n + 1) for all Ap and all n. Otherwise if
w (Ap, n) > w (Ap, n + 1) for some n an improved algorithm A can be derived
from Ap by letting A behave on inputs s just as Ap does whenever Is n and
lettingA, behave on the strings s of length n just as Ap would behave on the string
sz where z Pk (simulating the query of the (n + 1)st character z). Since (p _-< s)
(p =< sz), we have that w (A ’p, n) <= w (Ap, n + 1), and w (A’p, m)= w (Ap, m) for
m n. Thus w(A’p, n) < w(A’p, n + 1); repeating this procedure as necessary

such that w (Ap, n) < w (Ap, n) for all n andyields an improved procedure Ap

w(Ap, n) =< w (A, n + 1) or all n.
THEOREM 1. (p)(VAp)(n)(w(A, n)>=n-k + 1), where k
Proof. We shall in fact prove that w (Ap, n) n for infinitely many n, such that

these values of n occur not more than k apart. Using our assumption that
W (Ap, n) w (Ap, n + 1) then yields the theorem.

STRING-SEARCHING ALGORITHMS 671

Let f(p, n) denote [{s Is Zn/k P -< s }[, the number of strings of length n which
contain p as a substring. The following result is immediate from [5].

LEMMA 1. Ill(P, n)0(mod]E[), then w(Ap, n)= n.
The proof of Lemma 1 will not be given here; we only remark that it follows

from a calculation of f(p,n) using a decision-tree representation of Ap. If
w(ap, n)< n then f(p, n)-= 0 (mod [El) follows.

In order to calculate tip, n) we make use of the finite state automaton (fsa)
constructed by the Knuth-Morris-Pratt algorithm for recognizing Z*pE*. Let the
states of this fsa be numbered so that state 1 is the initial state, state (for 1 -< -< k)
is arrived at whenever a string ending in plP2 Pi-1 has been read (and this is the
largest such i), and state k + 1 is the accepting state. There is a transition labeled Pi
from state i- 1 to state (for 1 <-i =< k); all other transitions leaving state i- 1
arrive at some state numbered strictly less than i.

Let gp(n,i) denote [{slsE" and the fsa on s ends in state i}l. Then
gp(n, k + 1)=f(p, n). The fsa will be used to derive a set of linear recurrences for
the vector gn (gp(n, 1), gp(n, 2),. ., gp(n, k + 1)). In fact g+l T. gn, where T
is a k + 1 by k + 1 matrix whose (i,]) entry is the number of symbols in E which
cause a transition from state j to state i. For example, for p 0101 the correspond-
ing matrix T= {tij} is

1 0 1 0 0

1 1 0 1 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 2

In general, the sum of each column is IN], ti,i_ --1 for 2_-<i-<k +1, and
tij 0 if j <i-1. Also, tk+l,k+l IEI. To initialize the recurrence we have g0
(,o,o,...,o).

Since we are interested in f(p, n) gp (n, k + 1) only with respect to its residue
Wmodulo I.EI, we consider the reduced recurrence gn+l "gn (mod 151), where

the entries of T’ are those of T reduced modulo 11. In fact T’ is just T with the
(k + 1, k + 1) entry replaced by 0. We now observe that gp (n, k + 1) -= gp (n 1, k),
so we will concentrate on the parity of gp (n, k) from now on. The k by k upper left
submatrix T" of T’ maps (gp(n, 1) (mod Ixl),,,,, g (n, k) (mod I 1)) onto tn+1.

Now T" induces a mapping from F {0, 1,...,]1-1}k to itself. Further-
more, T" is easily seen to be invertible; sequentially adding row to row + 1 for

1, 2,. , k will reduce T" to an upper triangular form with IE]- 1 along the
main diagonal (we assume that IE] > 1).

Since T" is invertible, the directed graph G, whose vertices are elements of F
and whose edges (x, y) are present whenever T"x y, consists of a set of disjoint
cycles. We need to show that the cycle containing; (1, 0, 0, , 0) has a vertex
whose kth coordinate is nonzero at least once every k steps.

We first observe that the all-zero vector 0k is not an element of tlie cycle,
since it belongs to a one-element cycle (it is fixed by the linear mapping T"), and
is not the zero vector.

672 RONALD L. RIVEST

Next we observe that for any vector x F such that xi 0 and x. 0 for j > i,
the vector y (T")k-ix has Yk 0. In general, if x 0k, xk 0 and is the largest
integer such that xi 0, then (T"x)/l x since the lower diagonal portion of T" is
zero except for the subdiagonal, which consists entirely of ones.

This completes the proof of
LEMMA 2. (Vr/)> k)(=:] j)(O<-j <k)(w(Ae, n-j)= n-j).
Theorem 1 now follows directly from Lernma 1 and our assumption. [’1

3. An upper bound on the worst-case. The lower bound of [s l-]P[+ 1 proved
in the last section may seem weak at first; one’s first guess might be that
w(Ap, n)=n as long as n->[p[. This, however, turns out to be false, as we
demonstrate in this section by a careful analysis of an algorithm for the pattern
p Ok.

THEOREM 2. (p ok):(:l Ap)(w(Ap, n) n-p,(n)), where

/z(n)={0 if nP=-O (mod k + l) or n =-k (mod k + l),
n (mod k + 1) otherwise.

Proof. The algorithm Ap works in a fashion similar to the Boyer-Moore
algorithm. It is given below.

ALGORITHM Ap for p 0k.
Input: a string s ls2" sn.
Local variables: r, i, j
Procedure:

r:=O;i:=O;j:=O;
repeat if r + k > n then

begin print ("p s"); exit end;
if Sr+k-i 0 then j: j + 1
else begin r := r + k j;

i:=j;
j:=0

end;
until +] k;
print ("p =< s at position", r + 1).

Inductively the algorithm knows at the top of the repeat loop that positions
S,.+l, Sr+2,’’’,Sr/i and positions Sr+k-j+,’’’,Sr+k are all zero; it next tests
position sr/k-j and adjusts r, i, and j accordingly. Let c(m, i, j) denote the
maximum number of characters in s that Ap needs to examine, starting from some
instant when m n -r and and j define the state of Ap’s knowledge about s as
above. Thus w(Ap, n)= c(n, 0, 0) by definition. Furthermore, we have by con-
struction that

0 ifi+j=korn<k,
(,) (n,c i, j)

max(c(n,i,j+l),c(n-k+j,j,O))+l otherwise.

Define for integers m and i, 0-< _-< k 1, 0 -< m -< k,
0 ifm =k,

/3(m,i)= m+l ifi>mandm<k,

m -i ifi_--<m and m <k.

STRING-SEARCHING ALGORITHMS 673

c(n,i,])={O ifi+]=korn<k,
n -i-j-fl(m, i) otherwise, where m n (mod k + 1).

Proof. By induction, as in the definition (.) of c(n, i, j). The lemma is clearly
correct if +] k or n < k. Henceforth, assume +] < k <= n. There are two cases
to consider.’ Let m denote n (mod k + 1).

Case 1. c(n, i,]) =c(n, i,] + 1)+ 1. Here the lemma follows directly as long as
i+j+ 1 k; otherwise c(n,i,j+ 1)<-c(n-k +j,], 0), so here we can appeal to
Case 2.

Case 2. c (n, i, j) c (n k +],], O) + 1.
Case 2a. n k +] < k. Here we know that c(n, i,j + 1) >-c(n k +],/’, 0) so the

lemma holds by Case 1. (If both n- k +] < k and +j + 1 k then the lemma
follows by the definition of fl).

Case 2b. n-k +j>-_k.
Case 2b(1). +] + 1 k. Here we need to show that

n-i-j-Ct(m,i)=n-k+l-Ct(n-k+j (mod k + 1), j),
or

fl(m, i) [3(n 1 (mod k + 1), k 1 i).

Case 2b(1)i. m =k. Here both sides of (**) are 0, since n-i-l=
k- i- 1 (mod k + 1).

Case 2b(1)ii. i>m and m<k. Both sides of (**) are m+l, since
n-i-I (modk+l)>k-i-1.

Case 2b(1)iii. i<=m and m <k. Both sides of (**) are m-i, since 0=<

m-i-l<k-i-1.
Case 2b(2). +j + 1 < k. Here it suffices to show that

n-i-j- 1-/3(m, i)>-n-k +j-h-fl(n-k +j (mod k + 1), j),

that is, that c(n, i, j + 1) >_- c(n k +],], 0), so that we may appeal to Case 1. Since
rn + 1 --- n k (mod k + 1), this is equivalent to

k-i-j>-l+(m,i)-8(m+j+l (modk + 1), j).

Note that the left-hand side of (***) is strictly greater than one, since we are in
Case 2b(2).

Case 2b(2)i. m k. Here the right side of (***) is at most one.
Case 2b(2)ii. i>m. The right side of (***) equals 1 since m +/’+ 1 <

i+f+l<k.
Case 2b(2)iii. -< m. If m + + 1 < k, then the right hand side of (***) is -i. If

m+]+l=k then it is l+m-i=k-i-j. If m+j+l>k then if m<k it is
1 +(m-i)-(m +] + 1-k 1 + 1)= k -i-i; otherwise it is one.

This completes the proof of the lemma. Theorem 2 follows since
/3 (n (mod k + 1), 0) (n). U

We conclude from Theorem 2 that when searching for the pattern 0 in a
string s Z, we only need to examine at most n-k + 1 characters of s if
n --- k 1 (mod k + 1). The uniform lower bound of theorem 1 can therefore not
be improved. Note that the use of the pattern 0 in Theorem 2 means that
Theorem 1 is best possible even for a binary alphabet.

674 RONALD L. RIVEST

Conclusions. We have shown that pattern matching in strings is inherently
linear (with constant 1) in the length of the string. An open problem is to prove the
equivalent of Theorem 2 for all patterns"

(Vp)(l Ap)(n)(w(Ap, n)= n-Ipl+ 1).

Acknowledgment. I would like to thank Donna Brown for several helpful
discussions, during one of which a weak version of Theorem 2 was observed. I
would also like to thank Leo Guibas and Robert Floyd for communications
regarding improved proofs of Theorems 1 and 2, respectively.

REFERENCES

A. V. AHO, AND M. J. CORASICK, Fastpattern matching; An aid to bibliographic search, Comm.
ACM, 18 (1975), pp. 333-340.

[2] R. S. BOYER AND J. STROTHER MOORE, A fast string searching algorithm, Tech. Rep. 3,
Stanford Res. Inst., Mar. 1976. To appear, Comm. ACM.

[3] D. E. KNUTH, J. H. MORRIS AND g. 1. PRAT/’, Fast pattern matching in strings, Computer
Science Department Tech. Rep. CS-74-440, Stanford Univ., Stanford, CA, 1974.

[4],Fast pattern matching in strings, this Journal, 6 (1977), pp. 323-350.
[5] R. L. RIVEST AND J. VUILLEMIN, A generalization and proof of the Aanderaa-Rosenberg

conjecture, Proc. 7th SIGACT Symp. on Theory of Computing, pp. 6-11.

SIAM J. COMPUT.
Vol. 6, No. 4, December 1977

COMPUTATIONAL COMPLEXITY OF PROBABILISTIC
TURING MACHINES*

JOHN GILL"

Abstraeto A probabilistic Turing machine is a Turing machine with the ability to make decisions
based on the outcomes of unbiased coin tosses. The partial function computed by a probabilistic
machine is defined by assigning to each input the output which occurs with probability greater than 1/2.
With this definition, only partial recursive functions are probabilistically computable. The run time and
tape of probabilistic machines are defined. A palindrome-like language is described that can be
recognized faster by one-tape probabilistic Turing machines than by one-tape deterministic Turing
machines. It is shown that every nondeterministic machine can be simulated in the same space by a
probabilistic machine with small error probability. Several classes of languages recognized probabilis-
tically in polynomial time are defined and compared with NP.

Key words, probabilistic Turing machines, probabilistic algorithms, probabilistic computation,
computational complexity, Turing machines, Markov chains, crossing sequences, polynomial reduci-
bility, polynomial-complete languages

1. Introduction. Probabilistic methods in computation have usually been
used for problems arising from probabilistic considerations [5]. Monte Carlo
methods are often used to obtain qualitative information about the behavior of
large systems, especially for systems subject to random disturbances. As another
example, Monte Carlo integration techniques are most applicable to multi-
dimensional integrals, which typically are the probabilities of events that are
complex combinations of simpler events.

Recently certain problems have been shown to be solvable by probabilistic
algorithms that are faster than the known deterministic algorithms for solving
these problems. Rabin [20] describes a probabilistic algorithm for finding the
nearest pair of a set of n points in k-space that executes in average time O(n),
which is faster than the n log n steps required by the best known deterministic
algorithms. Solovay and Strassen [26] and Rabin [20] present probabilistic
algorithms for recognizing prime numbers in polynomial time with a small
probability of error. These results suggest that probabilistic algorithms may be
useful for solving other deterministically intractable problems.

In this paper we study a formal model for probabilistic algorithms, the
probabilistic Turing machine. A probabilistic Turing machine is a computer with
the ability to make random decisions. The output of a probabilistic machine is not
in general uniquely determined by the input, but we can define in a natural way the
partial function computed by a probabilistic machine (Definition 2.1). It has been
shown that the ability to make random decisions does not increase the ultimate
computational power of Turing machines [4], [23], [8]. However, it is natural to
ask if probabilistic machines can be proven to require less time or tape than
deterministic machines. This paper provides a partial answer to this question.

In 2 we define probabilistic Turing machines (PTMs) and the functions
computed by probabilistic machines. We show that every probabilistically com-
putable function is partial recursive, and in fact that any standard enumeration of

* Received by the editors June 1, 1976, and in revised form February 18, 1977.

" Department of Electrical Engineering, Stanford University, Stanford, California 94305. This
research was supported in part by National Science Foundation under Grant GK-43121.

675

676 JOIqN GILL

PTMs yields an acceptable G6del numbering of the partial recursive functions.
We discuss briefly the relationship between our definitions of PTMs and the more
general notion of Santos [23].

In 3 we show that maximum and average run time are unsuitable as
complexity measures for the entire class of PTMs. We introduce a more conve-
nient concept of probabilistic run time, and show that every probabilistic machine
can be simulated deterministically in at most exponentially more time.

In 4 we exhibit a palindrome-like language that can be recognized by a fixed
one-tape probabilistic Turing machine faster for infinitely many inputs than by
any one-tape deterministic Turing machine.

In 5 we prove elementary facts about several classes of languages recogniz-
able probabilistically in polynomial time. Simon [25] has shown that the largest of
these classes, PP, contains NP and is identical with the class of languages accepted
by polynomial bounded threshold machines. The set of formulas of propositional
calculus satisfied by a majority of interpretations is proven to be a polynomial
complete language for PP.

In 6 we define tape for probabilistic machines and prove that it is a Blum
complexity measure. We show that the output length of a PTM is at most an
exponential of the tape; that the run time is at most a double exponential of the
tape; that every PTM can be simulated deterministically in at most exponentially
more tape; and that every language accepted by a nondeterministic machine can
be recognized probabilistically using the same amount of tape.

2. Probabilistie Turing machines. The model of probabilistic computation
studied in this paper, the probabilistic Turing machine, is obtained from the usual
Turing machine model by allowing machines access to the simplest type of
randomness. A probabilistic Turing machine is a coin-tossing computer which can
make decisions based on the outcomes of fair coin tosses.

We assume a standard Turing machine model [11]. A multitape Turing
machine consists of a finite control unit equipped with a read-only input tape, a
write-only output tape, and a finite number of read-write worktapes. A Turing
machine is deterministic if the current state of the machine uniquely determines
the next action of the machine; otherwise the machine is nondeterministic.

DEFINITION 2.1. A probabilistic Turing machine (PTM) is a Turing machine
with distinguished states called coin-tossing states. For each coin-tossing state, the
finite control unit specifies two possible next states. The computation of a
probabilistic Turing machine is deterministic except that in coin-tossing states the
machine tosses an unbiased coin to decide between the two possible next states.

Formal definitions of PTMs in terms of state-transition functions are given in
[8] and [23] and are omitted here.

The probabilistic Turing machine model can be extended by relaxing the
requirement that unbiased random decisions are made. It can be shown that the
resulting model has the same computational power as the PTM defined by Santos
[23]. At the end of this section, we state a result characterizing the functions
computable by PTMs with unrestricted coin biases.

The computation of a PTM is determined by its input and the outcomes of the
coin tosses performed by the machine. It will be convenient to describe probabilis-
tic machines in terms of partial functions of two variables. One variable is the

PROBABILISTIC TURING MACHINES 677

usual input to the machine. The other variable is the random input, a binary
sequence representing the outcomes of the coin tosses. For simplicity we suppose
that the machine tosses a coin at each step of its computation, although the result
of the coin toss is ignored except when the machine is in a coin-tossing state. The
possible computations of a probabilistic machine M with tape alphabet 5; are
represented by a partial function b: Y_,* x {0, 1}* Y_,*. The value of b(x; a) is the
output of the computation of M/on input x with coin tosses specified by the binary
sequence a. By convention, &i(x;a) is undefined if the computation requires
more than lal steps, where Ice] denotes the length of a.

In the remainder of this paperM(x) will denote either the possible computa-
tions of M with input x (a random process) or the output of the computation (a
random variable). We assume a standard enumeration {M} of the probabilistic
Turing machines.

In general, a PTM computes a random function [23]; for each input x, the
machine M produces output y with probability Pr {M(x)= y}. We define the
deterministic partial function computed by any PTM as follows.

DEFINITION 2.2. The partial function b computed by probabilistic Turing
machine M is defined by

y

undefined

if Pr {M(x)= y} > 1/2,
if no such y exists.

A partial function is probabilistically computable if it is computed by some PTM.
PROPOSITION 2.3. Every function computed by a probabilistic Turing machine

is partial recursive. Therefore the class ofprobabilistically computable functions is
the same as the class ofpartial recursive functions.

Proof. Every partial recursive function is probabilistically computable, since
deterministic Turing machines are special cases of probabilistic Turing machines.
Conversely, letM be a PTM. To compute bi (x) it suffices to find an output y such
that Pr {M/(x)= y} > 1/2. For any n we can compute Pr {Mi(x)=y in time n}, the
probability that Mi(x) outputs y in some computation of at most n steps. This
probability equals m 2-", where m is the number of coin toss sequences a of length
n such that li (X O) y. If Pr {M (x) y } > 1/2 for some y, then Pr {M/(x) y in time
n} > 1/2 for all large enough n. Therefore to compute b(x), we systematically
evaluate Pr{M(x)=y in time n} until we find some y and n such that this
probability exceeds 1/2. We then set bi(x)= y. [3

The next two propositions imply that {bi} is an acceptable G6del numbering
[21] of the partial recursive functions. We assume a standard computable pairing
function (i, x).

PROPOSITION 2.4 (Universal PTM). There is a universal probabilistic Turing
machine Mu such that qbu((i, x); c)= qbi(x or) for every binary string a. In particu-
lar, Pr {Mu (i, x) y } Pr {Mi (x)-- y } for every i, x, and y, and therefore &u (i, x)

PROPOSITION 2.5 (S-m-n Theorem). There is a recursive function s such that
bs(e,)(X; a)=Cbe((i,x); a)]’or every binary string a. In particular, Pr {Ms(e,)(x)=
y} Pr {Me(i, x)= y}]’or every e, i, x, and y, and therefore C(e,i)(X)= Ce(i, X).

The proofs of Propositions 2.4 and 2.5 use simulations essentially identical to
those used for deterministic Turing machines. As a corollary of these two

678 JOHN GILL

propositions, the recursion theorem holds for {bi}. In fact, the standard proof of
the recursion theorem [22, p. 180] can be modified to yield the following stronger
result.

PROPOSITION 2.6 (Recursion Theorem). For every total recursive function f
there is an index e such that te(X Ol)-" t/(e)(X a) for every binary string a. In
particular, Pr {Me (x)= y } Pr {Mr(e)(X)= y} for every x and y, and therefore Ce
)f(e).

In the later sections of this paper we shall be interested in the time and tape
used by probabilistic machines. Another important aspect of a PTM is its
reliability.

DINITION 2.7. The error probability of Mi is the function ei defined by

Pr {Mi (x) (i (X)} if (i (X) is defined,
ei (x)

undefined if bi (x) is undefined.

Clearl ei (x) < 1/2 whenever ei (x) is defined. In general ei (x) is not computable,
as can be shown using the recursion theorem of Proposition 2.6. However, ei(x)
can be effectively approximated from above.

A useful probabilistic algorithm should have small probability of error. At
the very least, the error probability should be uniformly bounded below 1/2 for all
inputs.

DEFINITION 2.8. M/computes ti with bounded error probability if there is a
constant e < 1/2 such that ei(x)<= e for every e in the domain of &i.

A PTM which computes with bounded error probability corresponds to a
probabilistic automaton with an isolated cutpoint at 1/2 [16], [18].

The probabilistic Turing machine model of Definition 2.1 restricts the
randomness accessible by the computer to be of a very simple typeindependent
equiprobable bits. The more general probabilistic Turing machines of Santos [23]
can be simulated by coin-tossing machines, provided that coins with arbitrary
biases are allowed. The computational power of coin-tossing machines with
biased coins is characterized by the following proposition, part of which appears
implicitly in [24].

PROPOSITION 2.9. Letpl, P2, Pk be real numbers such that 0 <- pi <- 1. The
partial functions computable probabilistically by PTMs which make random deci-
sions with biases drawn from {p, p2,’", Pk} are exactly the functions partial
recursive in the binary representations of pl, p2, Pk.

3. Time. In the last section we showed that only partial recursive functions
are probabilistically computable, and so no new functions can be computed by
probabilistic algorithms. The natural question is whether probabilistic machines
can compute more efficiently than deterministic machines, that is, using less time
or tape. We study time in this and the following two sections and tape in the final
section.

First we must agree on the definition of run time for PTMs. The obvious
measure of probabilistic run time is the average time. (In some situations the
maximum running time is more appropriate.) Although average run time is the
first choice as measure of computation time for PTMs, it has theoretical draw-
backs. Average run time is not a Blum complexity measure for the entire class of
PTMs.

PROBABILISTIC TURING MACHINES 679

We recall that {li (I)i} is a Blum measure of computational complexity if
is an acceptable G6del numbering and {i} is a sequence of partial recursive
functions satisfying the two axioms [1]"

(B1) bi(x) is defined iff @i(x) is defined;
(B2) i(x)<= n is a decidable predicate of i, x, and n.

Suppose that bi denotes the partial recursive function computed by the prob-
abilistic Turing machine M. Let us write T (x) for the least integer greater than or
equal to the average run time ofM(x). Then {bi, T} is not a complexity measure
for several reasons:

(i) T is not in general a computable function. However, Ti is approximable
from below; that is, there is a recursive function g(i, x, n), nondecreasing in n, such
that T/(x)= limn_, g(i, x, n). In fact, every partial function such that O(x)=>3
and (x) limn_, g (x, n) for some recursive function g nondecreasing in n is the
average run time of some probabilistic algorithm.

(ii) {bi, /} does not satisfy axiom (B 1). On the one hand, i (x) may be finite
even if 4)i(x)is undefined, for example, if Pr {M/(x)= 0}= Pr {Mi(x)= 1}=1/2. A
similar situation occurs for tape and tape reversal measures for deterministic
Turing machines. This difficulty could be removed by redefining Ti(x) to be
infinite whenev’er bi(x) is undefined. However, (x) may be infinite even when
4)i(x) is defined.

(iii) {b, T} does not satisfy axiom (B2). This can be shown directly using the
recursion theorem as in [8], or it can be inferred from the following result.

PROPOSITION 3.1. Every recursively enumerable set is accepted by some
probabilistic Turing machine with finite average ruri time.

Proof. By definition, the set accepted by a Turing machine (deterministic or
probabilistic) is the domain of the function computed by the machine. Let W be
any r.e. set, and suppose that W is accepted by a deterministic Turing machine
M. A probabilistic machine M’ accepting W executes the following program"

1 repeat
2 simulate one step of M(x);
3 it M(x) accepted at last step then accept;
4 until cointoss()=heads;
5 ii cointoss()= heads then accept else reject.

Here cointoss is a Boolean function that returns the result of an unbiased coin toss.
For x not in W, the domain of M, the above procedure can terminate only at

line 5, and so it rejects and accepts with probability 1/2; thus x is not in the domain of
M’. On the other hand, if x is in W, then M’ accepts on line 3 with positive
probability, and so M’ accepts x with probability greater than 1/2. Therefore M’
accepts W. A straightforward calculation bounds the average run time of M’ by
5.

Suppose that we modify the flowchart in the proof of Proposition 3.1 by
changing line 3 to

3’ iM(x) accepted at last step then loop forever;

Let T(x) denote the average run time of M’ with input x. Then T(x) oe for x in W
and T(x)-< 5 for x not in W. Thus x belongs to W itt T(x)> 5. We conclude that
{bi, T} does not satisfy axiom (B2), since otherwise every r.e. set would be
recursive.

680 JOHN GILL

The proof of the following result is similar to that of Proposition 3.1.
COROLLARY 3.2. Every O, 1-valued recursive]’unction can be computed

probabilistically with nite average run time.
A relatively simple diagonalization shows that the restriction of Corollary 3.2

to 0, 1-valued functions in necessary.
PROPOSITION 3.3. (i) For every recursive function h there is a O, 1, 2-valued

recursive]’unction f requiring average run time more than h (x) a.e.
(ii) Every recursive]’unction [requires average run time .more than 1/2]f(x)l on

input x.
The procedure described in Proposition 3.1 is not a useful method for

accepting r.e. sets, since the error probability is very nearly 1/2. According to
Proposition 3.7 below, average run time is a more reasonable cost measure when
restricted to PTMs with bounded error probability.

Maximum run time is also inadequate for measuring the time of probabilistic
computations, primarily because maximum run time can be infinite even for
algorithms with finite average run time. We are thus led to the following
"theoretical" definition of probabilistic time. Recall that Pr{Mi(x) y in time n} is
the probability thatM with input x gives output y in some computation of at most
n steps.

DEFINITION 3.4. The Blum run time T of probabilistic Turing machineM is
defined by

least n such that

T (x)= Pr{M(x)= O (x) in times} > 1/2 if $i (x) is defined,
oo if Oi(x) is undefined.

This definition, which also appears in [30], is analogous to the definition of
the run time of a nondeterministic Turing machine as the length of the shortest
accepting computation.

PROPOSITION 3.5. {i, T/} is a Blum complexity measure.

Proof. To verify the first axiom, we must show that T(x)<oo iff &(x) is
defined. By definition, T(x)= oo if &(x)is not defined. Conversely, suppose that
&i(x) is defined. Then Pr {Mi(x)= Oi(x)}>1/2, and so Pr {M/(x)= $i(x) in time
n } > 1/2 for all large enough n. Therefore T,.(x)<

The second axiom is also easily verified. For any i, x, and n, we show how to
decide deterministically in time O(n22") whether T(x)<-n. As in the proof of
Proposition 2.3, we can calculate Pr {M(x)=y in time n} by a straightforward
simulation of all possible computations of M(x). Similarly we can calculate the
probability that y is a prefix of the output ofM(x) in time n, which we denote by
Pr {M(x) y in time n}. These probabilities can be computed in time O(n 2").
Now we proceed by induction on m to determine if the output ofM(x) in time n is
of length m. For m 0 we merely check if Pr {M(x)= A in time n } > 21-. Suppose
that for some m < n we have found y of length m such that Pr {M (x) y in time
n } > 1/2 but Pr {Mi (x) y in time n } <_- 1/2. We compute Pr {Mi (x) y’ in time n } and
Pr{Mg(x)y’ in time n} for each y’ of length m+l that extends y. If
Pr {M/(x) y’ in time n } > 1/2 for some such y’ then T/(x)_-< n. Otherwise either
Pr {M(x) y’ in time n } > 1/2 for some y’ of length m / 1 or & (x) is undefined and

PROBABILISTIC TURING MACHINES 681

therefore T(x)> n. Thus either for some rn -< n we find the output &i(x) of length
m and conclude that T (x)-<_ n or we verify that T (x)> n. The entire procedure
can be performed in time O(n). O(n 2")= O(n 22n). [-I

PROPOSITION 3.6. IfMis a probabilistic Turing machine with Blum run time T,
then Mcan be simulated by a deterministic Turing machine in time O(TZ2r).

Proof. For n--1, 2, 3,... we use the procedure outlined in the proof of
Proposition 3.5 to decide if T(x)<-n. For n T(x) the procedure produces the
output of M(x). The total computation time is at most O(12. 2)+ 0(22. 22)+

+ 0(T(x)22r()) O(T(x)22r()).
The next result gives evidence that Definition 3.4 is a reasonable notion of

probabilistic run time.
PROPOSITION 3.7. IfM is a probabilistic Turing machine with bounded error

probability, then there is a constant c > 0 such that T (x <-_ cT (x) whenever cbi (x) is

defined.
Proof. IfM has bounded error probability then there is a constant e < 1/2 such

that eg(x)< e for every x in the domain of bi. Let c 1/(1/2-e).
If T(x)-o then there is nothing to prove. So suppose that.T/(x)<

Obviously Pr {run time of M/(x)> ci(x)}< 1/c =1/2-e, or equivalently, Pr {run
time of Mi(x)<-ci(x)}>1/2+e. Since Pr{M(x)(x)in time c(x)}<_-
Pr {M/(x) bi (x)} < e, it follows that Pr {M/(x) bi (x) in time c (x)} > 1/2. There-
fore Ti(x)<=cTi(x).

No reverse inequality is true in general; there are PTMs with bounded error
probability for which T.(x)- and T(x)<. Proposition 3.7 states that for
PTMs with bounded error probability, the average run time cannot be much less
than the Blum run time, and therefore the average run time does not assign too
small a cost to computations. The pathology of Proposition 3.1 cannot occur for
PTMs with bounded error probability.

COROLLARY 3.8. IfM is a probabilistic Turing machine with bounded error
probability and average run time T, then M can be simulated by a deterministic
Turing machine in time 2.

Proof. Let e < 1/2 be a uniform error probability bound for M. Then by
Propositions 3.6 and 3.7, if c 1/(1/2- e), then M can be simulated deterministi-
cally in time 0((c)22c) 2(.

To conclude this section, we list fundamental open problems about the
computational power of probabilistic Turing machines. We state these problems
as positive conjectures.

Conjecture 1. There is a function computable probabilistically in polynomial
time but not computable deterministically in polynomial time.

Conjecture 2. There is a function computable probabilistically with bounded
error probability in polynomial time but not computable deterministically in
polynomial time.

Conjecture 3. There is a function computable probabilistically with zero error
probability in polynomial bounded average running time but not computable
deterministically in polynomial time.

Conjecture 2 obviously implies Conjecture 1, and it can be shown, as in
Proposition 5.2, that Conjecture 3 implies Conjecture 2. In 5 we observe that
Conjecture 1 is true if P NP; thus Conjecture 1 is quite plausible.

682 JOHN GILL

A function satisfying the conditions of Conjecture 2 would be much more
interesting. One candidate is PRIMES, the characteristic function of the set of
prime numbers. Solovay and Strassen [26] and Rabin [20] have described efficient
Monte Carlo tests for primality, thus showing that the primes can be recognized
probabilistically in polynomial time with bounded error probability. (However,
there is also the possibility that the primes can be recognized deterministically in
polynomial time, which is the case if the extended Riemann hypothesis is true
[14].) We suggest that other difficult (but not NP-hard) problems might be
solvable probabilistically in polynomial time, such as graph isomorphism, linear
inequalities, and optimum trees with unequally weighted branches.

In the next section we give an affirmative answer to a much weaker version of
Conjecture 2.

4. An example o[probabilisti speedup. In this section we exhibit a language
that can be recognized more rapidly by one-tape probabilistic Turing machines
than by one-tape deterministic Turing machines. The advantage of restricting
ourselves to one-tape machines is the availability of crossing sequence techniques
[19], [10], [28] for establishing lower bounds on the complexity of some simple
computational problems.

We denote the ith symbol of a string w by w[i]. For any string w of even
length 2n, let r(n) be the fraction of symbols in the first half of w which equal the
corresponding symbols in the latter half of w; that is, r(w)= re where m is the
number of indices between 1 and n such that w[i]= win +i]. For any real
number A let Px be the palindrome-like language of binary strings w of even
length such that r(w)>-A. In particular, P1 {ww: w is a binary string} is a subset of
Px for every , < 1. We denote by pn the strings of P1 of length 2n.

THEOREM 4.1. Suppose that is a rational number such that 0 < A < 1. There
is a one-tape probabilistic Turing machineMthat recognizes Px with bounded error
probability and runsfasterfor infinitely many inputs than any one-tape deterministic
Turing machine that recognizes Px. That is, if M’ is any one-tape deterministic
Turing machine that recognizes Pa, then the (maximum) run time ofM& less than
the run time ofM’ for infinitely many inputs.

Proof. In Lemma 4.2 we describe a one-tape probabilistic Turing machineM
which recognizes Px in time O(n log n) for inputs in P1. In Lemma 4.3 we prove
that for every one-tape deterministic Turing machine M’ that recognizes Px there
is a constant c > 0 such that the maximum run time of M’ on inputs in pn is at least
cn 2. Therefore Lemmas 4.2 and 4.3 provide the proof of the theorem, fi

LEMMA 4.2. For every rational numberA such that 0 < A < 1 there is a one-tape
probabilistic Turing machine M that recognizes Px with bounded error probability
and maximum run time O(n log n) for inputs in P1.

Proof. For any error probability bound e > 0 let m be an integer large enough
that ((1 + A)/2) < e. Suppose that M0 is any standard one-tape deterministic
Turing machine that recognizes Px. (Straightforward one-tape Turing machine
programming techniques yield a machine Mo with run time O(n2).) Let M be a
one-tape probabilistic machine that with input w operates as follows:

(i) M checks that the input length is even, say 2n, and calculates r, the
binary representation of n. (By the usual one-tape machine method for converting

PROBABILISTIC TURING MACHINES 683

a unary input to binary [15, p. 123], this stage can be performed in O(n log n)
steps.)

(ii) M randomly selects m numbers il, i2," i, such that 1 -<_ ii-<-n. M
selects the index ij by letting ij 1 + (ai mod n), for a randomly chosen bit string ai
of length Irl. Note that i, assumes values of numbers between 1 and n with
probabilities 2-lal or 2-I’l+l. (Obtaining these random samples requires only
O(log n) steps.)

(iii) M compares w[ii] and w[n + ii] for/" 1, 2,..., m. If w[ij] win + ii]
for every/’, then M accepts w. (Each comparison of w[ii] with w[n + ii] can be
made in O (n log n) steps, using a familiar technique for selecting the ith symbol of
the tape. In this technique, we load into a counter stored on the tape, then while
decrementing the counter advance the tape head and simultaneously drag the
counter along.)

(iv) If w[i]#w[n +ij] for some /’, then M simulates the deterministic
machine M0 to determine if w belongs to Px.

Clearly, inputs in P1 are accepted byM at the end of stage (iii). Therefore M
runs in time O(n log n) on P1.

We must show that M recognizes Px with error probability less than e.
Because M does not falsely reject strings in Px, it is enough to bound above the
probability of falsely accepting a string w not in Px. Let 2n be the length of w. Since
w is not in Px, more than (1-A)n of the numbers between 1 and n satisfy
w[i] win + i]. It follows easily that the probability that w[ii] w[n +ii] for any
one of the random samples ii is at least (l-A)/2, and so the probability that
w[ii] w[n + ij] is at most (1 +)/2. Since the samples il, i2,’ , im are indepen-
dent, the probability that M accepts w, which is the probability that w[i.}=
w[n + ii] for every , is at most ((1 + h)/2) < e. Therefore the error probability of
Mis less than e.

LEMMA 4.3. Suppose that 0 A 1. For every one-tape deterministic Turing
machine M’ that recognizesP there is a constant c 0 such that the maximum run
time ofM’ on inputs in P of length 2n is at least cn .

Proof. We use a crossing sequence argument [10]. Let/x 1-A and let/ be
any number such that/ u 1. Suppose that M’ is a one-tape deterministic
machine that recognizes P. Fix n. For each k such that ,n k n we examine the
crossing sequences of M’ at boundary k of words in P’.

Suppose that uu and w are strings inP with the same crossing sequence at
boundary k. Write uu and vv as u lU2U lU2 and 131192l)1132, where lUll--1/31[-- k. Since
both uu and vv are in P1 and hence in Px, they are both accepted by M’. By the
fundamental property of crossing sequences, M’ accepts the hybrid string
UlV2VV2, and so UlV2VlV2 is in P. Therefore u and Vl differ in at most
(1- A)n =/xn positions.

For a fixed crossing sequence : and string v2 of length n k, let S (sc, v2) be the
set of strings Vl of length k such that VlV2VVz has crossing sequence : at boundary
k. We shall show that there is a constant p < 1 such that the number N(:, v2) of
elements in S(s, v2) is at most 2. In fact,

(4.1) N((, Vz)<-= (k) < 2’(""/(2))<- 2

684 JOI-IN GILL

where H is the binary entropy function [7, p. 78] defined by

H(x) -x log2 x (1 x) log2 (1 x).

The first inequality in (4.1) follows from a theorem of Kleitman [12] on the
maximum number of binary sequences of length k, no two of which differ in more
than Ix, positions. The second inequality is an application of the Chernoff bound
[2] and can be found in [17, p. 466]. The final inequality holds because H(x) is
strictly increasing for 0<_-x-<_1/2. Let o=H(lx/(2u)). Then 0 < I=H(1/2) because
x/2u < 1/2. Thus inequality (4.1) can be rewritten N(:, v2)<_- 2k.

For a fixed v2 of length n k, at most 2k strings vlV2VlV2 in P" have crossing
sequence : at boundary k. Summing over v2, we see that the number N(:)of
strings in P" with crossing sequence : at boundary k is bounded by 2".8" for some
6 > 0. In fact,

(4.2) N(:)-< 2"-. 2= 2". 2-(1-)_<-2". 2-(1-)",
since k >= un. We can take 6 (1-0)’. There are 2" sequences in P", and so
among all strings in P" at least 28" distinct crossing sequences must occur at
boundary k.

Next we estimate the average, over all words in P", of the crossing sequence
length at boundary k. If s is the number of states of M’, then there are s crossing
sequences of length i. Define by

/+1

(4.3) 2 Si <-28" < Y s .
=0 =0

(Note that for some string in P a crossing of length at least must occur at
boundary k.) From (4.3) we infer that s->s-28", and consequently l=>
(/log. s)n- 2. The average crossing sequence length at boundary k is at least

(4.4) 2-" Y is2-8" >=lsl2-Sn >=l/s2>--(/(S 2 log2 s))n --2Is,
i=0

because at most s2"-8" strings have crossing sequences of length at boundary k.
The computation time of M’ on any input is the sum of the crossing sequence

lengths over all boundaries. Summing the average crossing sequence length over
all boundaries k such that vn <- k <- n, we obtain the following lower bound for the

P1average computation time of M’ on inputs in 2.

(4.5) (n vn)[(6/(s 2 log2 s))n 2/s 2] an 2- bn

2for some constants a, b > 0. Therefore the average computation time is at least cn
for some c > 0, and so the maximum run time of M’ on pn is at least cn 2. [

The significance of Theorem 4.1 is that it gives an example of a problem and a
machine model for which we can prove that probabilistic algorithms are faster
than deterministic algorithms. The chief limitations of this result are that the
amount of the speedup is small and that the machine model is of limited practical
interest.

Vaiser [31] constructed a one-tape probabilistic Turing machine that recog-
nizes the palindromes in linear time but with unbounded error probability.

PROBABILISTIC TURING MACHINES 685

Freivald [6] has improved Theorem 4.1 by showing that P1 can be recognized by a
one-tape probabilistic Turing machine with bounded error probability in time
O(n log2 n).

$. Probabilistie polynomial languages. We now define several classes of
languages computable probabilistically in polynomial time and investigate rela-
tionships between these classes.

A probabilistic or nondeterministic Turing machine is polynomial bounded if
there is a polynomial p (n) such that every possible computation of the machine on
inputs of length n halts in at most p (n) steps. A probabilistic machine recognizes a
language if the machine computes the characteristic function of the language.

DEFINITION 5.1. (i) PP is the class of languages recognized by polynomial
bounded PTMs.

(ii) BPP is the class of languages recognized by polynomial bounded PTMs
with bounded error probability.

(iii) ZPP is the class of languages recognized by PTMs with polynomial
bounded average run time and zero error probability.

PRO’OS3:ION 5.2. (i) ZPP
_
BPP

_
PP

_
PSPACE.

(i) PP, BPP, and ZPP are closed under complementation.
(iii) BPP and ZPP are closed under union and intersection.
Proof. (i) It is clear from the proof of Proposition 3.5 that every polynomial

bounded Turing machine can be simulated in polynomial space, and so PP
PSPACE. By definition, BPP PP. To show that ZPP BPP, suppose that a
language L is recognized by a probabilistic machineMwith zero error probability
and average run time bounded by a polynomial p(n). For any constant c > 2, let
M’ be a PTM that recognizes L by simulatingM for up to cp (n) steps on inputs of
length n. If the simulated computation ofM does not halt within this time, then M’
halts with an arbitrary answer. Since M requires more than cp(n)steps with
probability less than l/c, the error probability of the polynomial bounded
machine M’ is at most 1/c < 1/2.

Part (ii) is obvious from the definitions.
(iii) Suppose that L and L2 are recognized with zero error probability by

and M2 with average run times bounded respectively by p(n) and p2(n). By a
standard construction we obtain from Ma and M2 a machine that recognizes
L L2 with zero error probability and average run time at most n +p (n) + p2(n).
Therefore ZPP is closed under union.

We note that every language in BPP can be recognized by a polynomial
bounded PTM with error probability smaller than any desired positive constant,
since we can increase the reliability of a probabilistic computer by repeating its
computations a sufficiently large number of times and giving as output the
majority result. Suppose that L and L2 belong to BPP. For every e > 0 there exist
polynomial bounded machines M1 and M2 that recognize L1 and L2 with error
probability at most e/2. The standard machine derived from M1 and M2 that
recognizes L UL2 is polynomial bounded and has error probability at most
e/2 + e/2 e. Therefore BPP is closed under union.

The closure of ZPP and BPP under intersection follows from closure under
union and complementation.

686 JoI-I 6m

It is not known whether PP is closed under union and intersection. If PP is not
closed under union, then by Propositions 5.2 and 5.3, NP PP PSPACE.

PRol’osrroN 5.3. P c_ ZPP c_ NP PP.
Proof. Every polynomial bounded deterministic Turing machine computes

with zero error probability. Therefore P c_ ZPP.
Suppose that L is in ZPP and M is a PTM that recognizes L with zero error

probability and polynomial bounded average running time. ThenM considered as
a nondeterministic Turing machine accepts L in polynomial time, because for
every input in L there is at least one accepting computation of M of polynomial
bounded length. Therefore L is in NP, and so ZPP c_. NP.

Finally suppose that L is in NP. Without loss of generality, we may assume
that L is accepted by a polynomial bounded nondeterministic machine M for
which each state of the machine permits at most two possible next actions. If M is
considered to be a probabilistic machine, then L is the set of strings for which
there exists an accepting computation; that is, x is in L iff Pr {M(x) accepts} > 0.
To show that L belongs to PP, we replaceM by a machine M’ such that Pr {M(x)
accepts}>0 iff Pr {M’(x) accepts}>. The machine M’ tosses a coin at the
beginning of its computation and accepts immediately if the result is heads;
otherwise M’ simulates M probabilistically, accepting iff M accepts.

There remains one small detail. If x is not in L then it is possible that
Pr {M’(x) accepts} -1/2. Thus M’ might not compute the characteristic function of
L. We must make a final modification to obtain a machine M" such that Pr {M"(x)
accepts} < 1/2 for x not in L.

Let p (n) be a polynomial bounding the run time of M. Every x in L of length n
is accepted by M with probability at least 2-p(n), since there is at least one
accepting computation and every computation of length p(n) has probability at
least 2-p("). A probabilistic machine M" recognizing L operates as follows. At the
beginning of its computation, M" tosses p (n) + 1 coins and accepts without further
computation with probability 1/2- 2-’’)-1; otherwise M" simulates M, accepting iff
M accepts. It is easily calculated that M" rejects inputs not in L with probability
1/2 + 2-()-1 and accepts inputs in L with probability at least 1/2 + 2-2’(’)-1. Therefore
M" recognizes L probabilistically in polynomial time. We conclude that NP c_
PP. ?1

The most important question about the classes of probabilistic polynomial
languages is whether they properly contain P. We believe that P ZPP, which can
be seen to be equivalent to Conjecture 3 of 3. Furthermore, there is evidence
that P BPP and P

_
PP.

It appears quite likely that P PP, since NP c_ pp. In fact, Simon [25] has
listed a large number of combinatorial problems that are polynomial complete in
PP. These problems seem to be intermediate in complexity between NPocomplete
problems and PSPACE-complete problems, which suggests that NP PP.

PRIMES, the set of prime numbers, is the leading candidate for a language in
BPP-P. Rabin [20] and Solovay and Strassen [26] have devised probabilistic
algorithms that recognize the prime numbers in polynomial time with bounded
error probability, and so PRIMES is in BPP. (Rabin has used his probabilistic
algorithm to discover a 400-bit number that is "very probably" a prime.) If it can
be shown that PRIMES cannot be recognized deterministically in polynomial
time, then PRIMES is in BPP- P.

PROBABILISTIC TURING MACHINES 687

We can suggest no language in ZPP-P. Rabin noted [20] that both Rabin’s
and Solovay-Strassen’s primality testing algorithms always correctly identify
prime numbers. If a probabilistic primality testing algorithm can be found which
always correctly identifies composite numbers (but may make mistakes on prime
numbers), then this algorithm can be combined with Rabin’s algorithm to yield a
procedure that recognizes prime numbers with zero error probability in polyno-
mial bounded average time. This observation leads to the following definition and
proposition.

DEFINITION 5.4. VPP is the class of languages recognized by polynomial
bounded PTMs which have zero error probability for inputs not in the languages.
Equivalently, L is in VPP iff L is recognized by a probabilistic Turing machineM
such that Pr {M(x) accepts} -0 for every x not in L.

The composite numbers are an example of a language in VPP.
PROPOSITION 5.5. (i) L is in VPP iffL is accepted by a PTMwhose average run

time is polynomial bounded on L.
(ii) VPP

_
NP (3 BPP.

(iii) [Rabin] L is in ZPP iff both L and L are in VPP.
We omit the easy proof of Proposition 5.5.
It does not appear that either BPP _NP or NP _BPP. We note that

NP
_
BPP if every language in NP can be accepted by a polynomial bounded

nondeterministic machine such that for inputs in the language accepting computa-
tions are a large fraction of possible computations. The following diagram
summarizes known relations among the classes P, ZPP, VPP, BPP, NP, PP, and
PSPACE.

V
BPP

P
_
ZPP

_
PP NP

PP - PSPACE.None of the inclusions are known to be proper. We also know little about the
relation between PP and the polynomial arithmetic hierarchy of Meyer and
Stockmeyer [13], [27], which is also contained in PSPACE.

The following proposition is analogous to the characterization [3] of NP as
the class of languages L for which there exist a polynomially computable relation
R (x, y) and a polynomial p (n) such that L {x" R (x, y) holds for some string y of
length_<- p (Ix [)}.

PROPOSITION 5.6. A language L belongs to PP iff there exist a polynomially
computable relation R (x, y) and a polynomial p (n) such that L {x R (x, y) holds
for a mafority o] strings y o]’ length p (Ix[)}.

To conclude this section, we describe a simple polynomial complete language
for PP. A language B is polynomial m-reducible to another languageA if there is a
function/e computable in polynomial time such that x is in B iff f(x) is in A. If A
and B are polynomial m-reducible to each other, then A and B are polynomial
m-equivalent. A language A is polynomial m-complete in a class if A belongs to
that class and every language in that class is polynomial m-reducible to A.

An interpretation of a propositional formula F(x 1, , xn) is any assignment
of truth values to the propositional variables Xx,’",x, of F. A satisfying
interpretation of F(x 1, , x,) is an interpretation under which F is true. The set
of formulas for which there is at least one satisfying interpretation is denoted by
SAT. It is well known that SAT is polynomial m-complete for NP [3].

688 JOX-Iy GILL

DEFINITION 5.7. (i) MAJ is the set of propositional formulas satisfied by a
majority of their interpretations; that is, F(x 1, , x,) is in MAJ iff F(x 1, "" x,)
is true for more than 2"-1 assignments of truth values to Xl,. "",

(ii) #SAT is the set of pairs (i, F) such that propositional formula F has more
than satisfying interpretations.

Simon [25] has shown that PP is the class of languages accepted by polyno-
mial bounded threshold machines and that #SAT and a large number of similar
combinatorial problems are polynomial m-complete for threshold machines and
hence for PP.

LEMMA 5.8 [Simon]. # SAT is polynomial m-complete for PP.
LMMA 5.9. MAJ and # SAT are polynomial m-equivalent.
Proof. It is clear that MAJ is polynomial m-reducible to #SAT, because

F(Xl,. , x,) is in MAJ iff (2"-1, F(x 1," , x,)) is in #SAT.
To show that #SAT is polynomial m-reducible to MAJ, suppose that w is an

arbitrary input of the form (i, F(x 1, , x,)). We may assume that < 2", since it is
obvious that w is not in #SAT if i>_-2". Let G(Xl,’" ,x,) be a formula,
computable in polynomial time, that has exactly 2" satisfying interpretations,
and let x0 be a propositional variable not occurring in F(Xl,..., x,). Then the
formula H(xo, x 1," ", x,)= xoF(x 1," , x,)/oG(x 1," ,
satisfying interpretations iff F(xl,.. ", x,) has more than satisfying interpreta-
tions. Therefore (i, F) is in #SAT iff H is in MAJ.

PROPOSITION 5.10. MAJ is polynomial m-complete for PP.
Proof. This follows immediately from Lemmas 5.8 and 5.9. For completeness,

we show that MAJ is in PP by describing a probabilistic polynomial time
algorithm for recognizing MAJ. With input F(x 1, , x,) we select equiprobably
one of the 2" possible interpretations and evaluate F(x 1, , x,) for this interpre-
tation. If F(Xl,’", x,) is false for this interpretation then we reject, while if
F(Xl,"" ,x,) is true then we accept with probability 1-2-"-1. It is easily
calculated that formulas in MAJ are accepted with probability greater than
1/2+2-"-1 and formulas not in MAJ are rejected with probability greater than
1/2+2-"-2" [-1

We have been unable to construct polynomial complete languages for ZPP or
BPP.

6. Tape. The chief purpose of this section is to show that the definition of
probabilistic tape analogous to that of probabilistic time (Definition 3.4) yields a
Blum complexity measure. As a corollary of justifying the definition, we see how
to simulate deterministically a probabilistic machine in at most exponentially
more space. This is the best result now known. At the end of the section we point
out that every language accepted by a nondeterministic Turing machine can be
recognized in the same tape by a PTM with bounded error probability. This is
evidence that probabilistic machines might be more efficient than deterministic
machines in the use of tape.

G(XI,... ,Xn)__XI.. XrlVXl...rl.. xr2V...VXl...rl...rk_l...Xrk where 2"-i
2"-rl + 2,,-,2 +... + 2"-’k and <_- rl < r2 < rk ----< n.

PROBABILISTIC TURING MACHINES 689

DEFINITION 6.1. The Blum tape Si of probabilistic Turing machine M is
defined by

least n such that

Si(x)= Pr {Mi(x) cki(x) in tape n} > 1/2 if cki(x) is defined,

if i(X)is undefined.

The proof that probabilistic tape is a complexity measure is rather involved.
We require a preliminary result bounding the length of the output of a PTM. (The
corresponding result for deterministic machines is trivial.) We need a lemma
about finite state Markov chains.

LEMMA 6.2. Suppose that is a Markov chain with s states. Let fij(n) be the
probability that, when started in state at time 0, first reaches state at time n. If
n >= s and j then f(n) <- 1/2.

Proof. Let I be the finite set of states and (P0) the transition probability matrix
of A/. Fix a state . Without loss of generality, we can assume that/" is a trap state,
since the first entry probabilities fgi(n) for /" do not depend on the transition
probabilities from state .

For any set of states H not including j, define f(n;H) and g(n;H) as
follows:

(i) fi(n; H) is the probability that J//, started in at time 0, first enters j at
time n, without passing through any state of H at times 1, 2,. , n 1;

(ii) gg(n; H) is the probability that J//, started in at time 0, passes through
no state of H at times 1, 2,. , n.

To establish the lemma, we prove something stronger: If] is a trap state and
(a) is not in H and n >= [1-HI or (b)/is in H and n >= [I-HI + 1, then

(6.1) fi (n H) <= 1/2gi (n H),

where II-HI denotes the number of states in I-H. The lemma is the special case
H . The proof of (6.1) is by induction on II-H[.

if II- HI 1 thenH I- {]}. Since] implies that is in H, only case (b) of
(6.1) need be considered. Obviously fii(n H) 0 if n -> 2 [I- HI + 1, and so (6.1)
is true for II-H[1.

Now suppose that II-H] > 1. There are two cases.
Case (a). is not in H and n _-> II-H[. Since f is a trap state,

(6.2) /.(m ;H) -< gi(n ;H).
m=l

If/.(m H)> 1/2g(n;H)for any rn < n, then (6.2) implies that fi(n H)< 1/2g(n; H).
So in what follows we may assume that fi (m H) -< 1/2g (n H) for rn < n. By case (b)
of the induction hypothesis,

(6.3) /(n Ht_J {i})-< 1/2g(n; Ht_J {i}),

since 1I- (H (_J {i})1 < [I- HI and n -> [I- HI [I- (H LI {i})[+ 1. Next we note that

(6.4) gi(n;n)=g(n;n{i})+ Y)]g(m;n)g(n-m;n),
m=l

690 JOHN GILL

and therefore

g(n;H[.J{i})=g(n;H)- f(m;H)g(n-m;H)
(6.5)

m=l

<-_gi(n;H 1- 2]i(m;H
m=l

since gg(n; H) <- gg(n -m; H). Combining (6.3) and (6.5) we obtain

m=l

As in (6.4) we can use (6.6) and the inequalities fj(m H)<-_ 1/2g(n H) for m < n to
bound j:ij(n H):

[ii(n; g)=[i(n; HU{i})+ 2 f,(m; HU{]})[i(n -m; H)

(6.7)

(6.8)

1/2g (n H).

Case (b). is in H and n >-II-H] + 1. Then

fq(n H)= pikfj(n 1;H)
kC:H

<- 2 Pi,1/2g, (n 1;H) by case (a)

1
2 pi,g, (n 1; H) 1/2g (n H). [3

2

A probabilistic Turing machineM with a fixed input x can be thought of as a
discrete time Markov process [23]. The states of this Markov process are the
instantaneous descriptions of M with input x, and the transition probabilities are
determined by the state-transition probabilities of M. An instantaneous descrip-
tion (ID) of M(x) consists of the position of the input tape head, the state of the
finite control, the contents of the worktapes, and the positions of the worktape
heads. (The contents of the output tape are not included.) The number of

kinstaneous descriptions of M(x) within worktape n is bounded by s([x[+ 2)n d
where s is the number of states of the finite control, k is the number of worktapes,
and d is the number of symbols in the tape alphabet. For n => log Ix this bound can
be replaced by c for some constant c that depends on M. Let us denote by
I(i, x, n) the exact number of instantaneous descriptions ofM(x) that use at most
n worktapes squares. For any computation Mg(x) we let BEGIN be the start ID.
Without loss of generality we may assume that there is a unique halt ID, denoted
END. (Any PTM can be replaced by one using the same workspace which cleans
its worktapes and rewinds its input tape before halting.)

PROPOSITION 6.3. IfS is the Blum tape of the probabilistic Turing machine M,
then the length of the output ofMi (x) is no more than the number of instantaneous

PROBABILISTIC TURING MACHINES 691

descriptions of Mi(x) in tape Si(x). In particular, if Si(x)>= log Ix], then there is a
constant c depending on Mi such that I ,(x)l <-c

Proof. An ID of M(x) is called a writing ID if the next action of M(x)
specified by the ID includes writing a symbol on the output tape. We construct a
Markov chain whose states are the writing IDs of M/(x) in worktape Si (x) together
with the halt ID END. For any two writing IDs ! and I’ the one-step transition
probability p (I’[I) is defined to be the probability that Mi (x) starting in instantane-
ous description I reaches I’ in a finite number of steps without passing through
another writing ID, that is, after writing only one output symbol. The transition
probability p(ENDII) is the probability that Mi(x) starting in I halts or loops
without writing. END is defined to be a trap state, that is, p(ENDIEND)= 1.

Suppose that the start ID BEGIN is not a writing ID. Let f(n) be the
probability thatM(x) in tape $i (x) halts with an output of length exactly n. Then

(6.9) [(n)<= Y p (IIBEGIN)[I.ZND(n),
I

where p(IIBEGIN) is the probability that I is the first writing ID reached by
M(x), and frzyD(n) is the probability that the Markov chain defined above,
starting in state L first reaches the trap state END in exactly n steps. By Lemma
6.2 this latter probability is at most -} when n exceeds the number of states of the
process. Therefore if n >= I(i, x, $ (x)) then f(n) <= 1/2 and clearly no string of length n
can be the output of Mi(x) with probability greater than 1/2.

If BEGIN is a writing ID, then f(rt) =f3EGIN.END(n)< 1/2 if n >=I(i,x, S(x)).
Therefore Ib (x)] =< I(i, x, Si (x)). [

THEOREM 6.4. {bi, S} is a Blum complexity measure.
Proof. The first axiom is verified as in the proof of Proposition 3.5. To

establish the second axiom, we sketch a method for deciding S(x)<=n. The
procedure uses space bounded by a polynomial in I(i, x, n).

By Proposition 6.3, if Sg(x)<=n then Ici(x)[<=I(i, x, n). To decide if Sg(x)<=n
it is sufficient to determine if Pr {M/(x)= y in tape n } > 1/2 for each y of length up to
I(i, x, n). To answer the latter questions, we shall in fact calculate Pr {M (x) y in
tape n} for all such y.

Fix y of length at most I(i, x, n). We construct a Markov chain /whose states
are a trap state FAIL together with all pairs (L w where I is an ID ofM(x) in tape
n and w is a prefix of y. The number of states of this Markov chain is no more than
21(i, x, n)2. The transition probabilities of the process are defined so that the
Markov process simulates those computations of M(x) within tape n which
produce output y. The one-step transition probabilities of are determined by
the transition probabilities of M/"

Pr{Mi(x) starting in I enters I’ in
the next step without writing} if w’ w

p((I’, w’)[(I, w))--
Pr{M (x) starting in ! writes a and

enters I’ at the next step} if w’= wa
and

p(FAIL[(I, w))= 1- Y p((I’, w’)l(L w));
(I’,w’)

692 JOHN GILL

p (FAIL[(I, w)) is the probability that M(x) starting in I performs in the next step
any action inconsistent with giving y as output in a computation within worktape
n. Since M is a coin-tossing PTM, all transition probabilities are 0, 1, or 1/2.

The state (BEGIN, A) of the Markov chain correspond.s to the overall state of
M(x) at the beginning of its computation, and the state (END, y corresponds to
the overall state ofM(x) at the end of a computation that has produced output y.
By the definition of the simulating Markov chain, Pr {Mi (x)= y in tape n } equals
Pr{(BEGIN, A)-(END, y)}, the probability that the simulating process starting
in state (BEGIN, A) eventually reaches state (END, y). We show how to calculate
Pr{(BEGIN, A)-(END, y)}.

First we determine the states (/, w) such that Pr{(/, w)END, y)}>0.
These states can be found by computing the transitive closure of the directed
graph of states of. (Finding these states can be accomplished in space bounded
by a polynomial in I(i,x,n).) Let the states satisfying this condition be
s 1, s2, , s,,. Let Pik be the transition probability of moving in one step from si to
Sk and let xj denote Pr{sj-(END, y)}. The probabilities x satisfy the system of
linear equations

(6.10) xj Y pjkXk +P ((END, y)ls’) (/" 1, 2, ’, m),
k

which can be rewritten

(6.11) Y’. 2(pik-6jk)xg =-2p((END, y)lsj) (/" 1, 2,..., m),
k

a system with coefficients 0, +1, +/-2. By eliminating states (I, w) such that
Pr{(I, w)-(END, y)}=0, we have guaranteed that this system has a unique
solution.

The system above can now be solved for Xl, xE,""", X,,, by brute force. By
Cramer’s rule, the solution can be written as NI/D, N2/D, , N,,/D, whereD is
the determinant of the coefficient matrix and each N/ is an integer such that
0 < N. -<_ D. By expanding the coefficient matrix by minors along rows, we see that
D_-<4". Therefore the space required for storing trial solutions is O(m2)
O(I(i, x, n)4), and so the solution of the linear system (6.10) can be found in space
bounded above by a polynomial of I(i, x, n). Once the system is solved, we have
the value of Pr{(BEGIN, A)-(END, y)}.

We summarize the proof. For each possible output string y, we compute
Pr {Mi(x)=y in tape n} by solving a linear system of order O(I(i, x, n)2). Then
Si(x)<-n iff Pr{Mi(x)=y in tape n}>1/2 for some y of length at most I(i,x,n).

COROLLARY 6.5. The probabilistic Turing machine M can be simulated
deterministically in tape O(I(i, x, Si(x))4). In particular, if Si(x)>-log Ixl there is a
constant c depending on Mi such thatM can be simulated deterministically in tape
C Si.

Proof. The output ci(x) is discovered as a by-product of the procedure of
Theorem 6.4 for deciding Si(x)<-n. A deterministic method for simulating
consists of deciding S(x)<-n for n 1, 2,..., until b(x) is found.

LEMMA 6.6. If ei(x) denotes the error probability of Mi(x), then ei(x) <-
1/2(1-16-m’x’S’(x))2). In particular, ifSi(x)>-log Ix lthen there is a constant c depend-
ing on Mi such that el(x)<-2x-(1-

PROBABILISTIC TURING MACHINES 693

Proof. From the proof of Theorem 6.4, we can write Pr {Mi(x)= bi (x)in tape
&(x)} as N/D for some D -<4", where m <= 2I(i, x, &(x))2. Thus D -<_ 16
Since N/D>1/2 and N is an integer, N/D-1/2>-I/(2D). Therefore
Pr {M(x) $i(x) in tape &(x)}-1/2->1/2.16-m’x’s’())2.

PROI’OSITION 6.7. For each probabilistic Turing machineM with run time T
and tape & there is a constant c such that T(x)<-cm’’s’(. In particular, if
Si(x) >= log Ix then there is a constant c such that Ti (x)<= 2

Proof. For brevity, we write I(i, x, &(x)) simply as L It is easily seen that for
every k, the probability that M/(x) halts after more than kI steps is at most
(1-2-)k. If k =>(1 +ln 1612)2t, then (1-2-z)k < (1/2)16-I2. Since Mi(x) halts in
more than kI steps with probability less than (-)16-2, by Lemma 6.6, Pr {M(x)
$i (x) in time kI} > 1/2. Therefore Ti (x) <= kI < c for some c > 2.

Neither of the bounds of Lemma 6.6 or Proposition 6.7 can be improved
significantly. Corollary 6.5 states that deterministic machines require at most
exponentially more tape than probabilistic machines. It is an open question
whether this exponential bound can be improved. It is also unknown if every
probabilistic machine using tape S can be simulated deterministically in tape
bounded by a polynomial of $. The next result provides evidence that probabilistic
machines might be more efficient in the use of tape than deterministic machines.

PROeOSITION 6.8. Every language accepted by a nondeterministic Turing
machine in tape S(x)>-log Ix lcan be recognized by a probabilistic Turing machine
with bounded error probability in tape S (x).

Proof. We consider only the case that S is a constructable tape function 11,
p. 149]. The general case requires a minor modification [8].

Suppose that L is a language accepted by some nondeterministic machineM
in tape S(x)>= log [x[. There is a constant c such that every x in L is accepted by
some computation of length less than c s(. Let d c + 1. A probabilistic machine
M’ that recognizes L operates as follows. With input x"

(i) M’ marks off S(x) worktape squares. This requires only tape $(x)
because $ is constructible.

(ii) M’ simulates up to c s(x steps of a computation of M, choosing the next
action by a coin toss when there is a nondeterministic choice. If the computation
requires more than cs(steps, or attempts to use more than S(x)worktape
squares, or halts in the allotted time without accepting, then M’ goes to (iii).
Otherwise, the simulated computation ofMwas an accepting computation, and so
M’ accepts x.

(iii) M’ tosses ds(x) coins. If all tosses result in heads, then M’ halts and
rejects. Otherwise, M’ clears its worktapes, rewinds its input tape, and goes back
to (ii).

Note that steps (ii) and (iii) can be performed within tape $ (x).
Obviously M’ rejects inputs not in L with probability 1. If x is in L then any

single execution of step (ii)will find an accepting computation with probability at
least 2-csx. Therefore for x in L, we calculate easily that

(6.12) Pr {M’ accepts x} _-> 2-c(=’ Y [(1 2-s(x’)(1 2-d’X’)li >- .
i=0

Therefore M’ accepts L with bounded error probability.

694 JOHN GILL

Acknowledgments. This research was supported by National Science Found-
ation Grant GK-43121 at Stanford University and was completed at the
Forschungsinstitut fiir Mathematik of the Eidgen6ssische Technische
Hochschule, Ziirich. Some of the results appear in the author’s doctoral disserta-
tion, supervised by Manuel Blum and supported by National Science Foundation
Grant GJo708 at the University of California, Berkeley. A preliminary version of
this paper was presented in [9]. The author thanks the referees for their comments
and corrections, and thanks Istvan Simon for helpful discussions.

REFERENCES

[1] M. BLUM, A machine-independent theory of the complexity of recursive functions, J. Assoc.
Comput. Mach., 14 (1967), pp. 322-336.

[2] H. CHERNOFF, A measure of asymptotic efficiency for tests based on the sums of observations,
Ann. Math. Statist., 23 (1952), pp. 493-507.

[3] S. A. COOK, The complexity of theorem-proving procedures, Proc. 3rd ACM Symp. Theory of
Computing, Shaker Heights, OH, 1971, pp. 151-158.

[4] K. DE LEEUW, E. F. MOORE, C. E. SHANNON AND N. SHAPIRO, Computability by probabilistic
machines, Automata Studies, Annals of Mathematics Studies no. 34, Princeton University
Press, Princeton, NJ, 1956, pp. 183-212.

[5] W. FREmERGER AND U. GRENANDER, A Short Course in Computational Probability and
Statistics, Applied Mathematical Sciences vol. 6, Springer-Verlag, Berlin, 1971.

[6] R. V. FREIVALD, Fast computation by probabilistic Turing machines, Theory of Algorithms and
Programs, no. 2, Latvian State University, Riga, 1975, pp. 201-205. (In Russian.)

[7] R. G. GALLAGER, Information Theory and Reliable Communication, John Wiley, New York,
1968.

[8] J. T. GILL III, Probabilistic Turing machines and complexity of computation, Ph.D. dissertation,
Dept. of Mathematics, University of California, Berkeley, 1972.

[9] , Computational complexity of probabilistic Turing machines, Proc. 6th ACM Symp.
Theory of Computing, Seattle, WA, 1974, pp. 91-95.

[10] F. C. HENNIE, One-tape, off-line Turing machine computations, Information and Control, 8
(1965), pp. 553-578.

11] J. E. HOPCROFT AND J. D. ULLMAN, Formal Languages and their Relation to Automata,
Addison-Wesley, Reading, MA, 1969.

12] D.J. KLEITMAN, On a combinatorial conjecture ofErd6s, J. Combinatorial Theory, (1966), pp.
209-214.

[13] A. R. MEYER AND L. J. STOCKMEYER, The equivalence problem for regular expressions with
squaring requires exponential tape, Proc. 13th IEEE Symp. Switching and Automata Theory,
College Park, MD, 1972, pp. 125-129.

[14] (J. E. MLLER, Riemann’s hypothesis and tests/’or primality, Proc. 7th ACM Symp. Theory of
Computing, Albuquerque, NM, 1975, pp. 234-239.

[15] M. MINSKY, Computation: Finite and Infinite Machines, Prentice-Hall, Englewood Cliffs, NJ,
1967.

[16] A. PAZ, Introduction to Probabilistic Automata, Academic Press, New York, 1971.
[17] W. W. PETERSON AND E. J. WELDON, Error-Correcting Codes, second edition, MIT Press,

Cambridge, MA, 1972.
[18] M. O. RABIN, Probabilistic automata, Information and Control, 6 (1963), pp. 230-245; also in

SequentialMachines, E. F. Moore, ed., Addison-Wesley, Reading, MA, 1964, pp. 98-114.
[19] ,Real-time computation, Israel J. Math., (1963), pp. 203-211.
[20] , Probabilistic algorithms, Algorithms and Complexity: New Directions and Recent

Results, J. F. Traub, ed., Academic Press, New York, 1976, pp. 21-39.
[21] H. ROGERS, JR., Gdel numberings ofpartial recursive functions, J. Symbolic Logic, 23 (1958),

pp. 331-341.

PROBABILISTIC TURING MACHINES 695

[22] ., Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York,
1967.

[23] E. S. SANTOS, Probabilistic Turing machines and computability, Proc. Amer. Math. Sot., 22
(1969), pp. 704-710.

[24] ,Computability by probabilistic Turing machines, Trans. Amer. Math. Soc., 159 (1971), pp.
165-184.

[25] J. SIMON, On some central problems in computational complexity, Tech. Rep. TR 75-224, Dept.
of Computer Sci., Cornell University, Ithaca, NY, 1975.

[26] R. SOLOVAY AND V. STRASSEN, A fast Monte-Carlo test for primality, this Journal, 6 (1977),
pp. 84-85.

[27] L. J. STOCKMEYER, The polynomial-time hierarchy, Theoretical Computer Science, 3 (1977),
pp. 1-22.

[28] B. A. TRAKHTENBROT, Complexity of algorithms and computation, Novosibirsk State Univer-

sity, Novosibirsk, 1967. (In Russian.)
[29] ,Notes on computational complexity of probabitistic machines, Theory of Algorithms and

Mathematical Logic, Computing Center of the USSR Academy of Sciences, Moscow, 1974,
pp. 159-176. (In Russian.)

[30] , On problems solvable by successive trials, Proc. Symp. Mathematical Foundations of

Computer Science, Lecture Notes in Computer Science no. 32, J. Becvar, ed., Springer-
Verlag, Berlin, 1975.

[31] A. V. VAISER, Computational complexity and reliable recognition of languages by probabilistic

finite automata, System Management, no. 1, Tomsk, USSR, 1975, pp. 172-181. (In Russian.)

SIAM J. COMPUT.
Vol. 6, No. 4, December 1977

A NOTE ON SPIRA’S ALGORITHM FOR
THE ALL-PAIRS SHORTEST-PATH PROBLEM*

JOHN S. CARSON? AND AVERILL M. LAW?

Abstract. We correct some errors in Spira’s algorithm for the all-pairs shortest-path problem, and
empirically compare his algorithm (with two distinct sorting routines) to Dijkstra’s procedure. The
results show that Spira’s algorithm is only efficient for "large" networks. Furthermore, it is seen that
the asymptotic number of additions and comparisons required by two algorithms may be a very poor
indicator of their relative running times.

Key words, shortest path, algorithm, computational efficiency

1. Introduction. In [5], Spira presented a new algorithm for finding the
shortest path between each pair of nodes in a directed network with nonnegative
arc lengths. Previous algorithms [1], [2], [4], [7] have average running time O(/13),
whereas Spira’s procedure runs in average time O (n 2 log2 n). This note corrects a
few minor errors in Spira’s statement of the algorithm, and compares the running
time of Spira’s algorithm to that for Yen’s implementation 1-7] of Dijkstra’s
procedure [2].

For the classes of networks tested here, we found that when n (the number of
nodes) is less than 100, Dijkstra’s method runs faster, but for "large" networks
(100 nodes or more) Spira’s algorithm is superior, provided it is implemented
efficiently. Thus, if one must solve a large number of small problems, it is
advantageous to use Dijkstra’s algorithm.

In what follows, references to Step 1, Step 2, etc. refer to the steps of the
algorithm in [5], which we assume is familiar to the reader.

2. The algorithm. Spira’s statement of his procedure contains the following
errors:

Step 1. The second sentence should read "Set I (i,]) where dl is the/’th
element in the sorted set of arcs beginning at node for all 1 -< -< n,
1 _-< _-< n 1." (Note that I is an n x (n 1) array.)

Step 4. Replace I(k, COUNT) by I(k, p). Delete "Set p p / 1."
Step 6. It should read "If p n, go to 9." (If p n, then we know that the

shortest distances (from source node i) to the n -2 distinct nodes in
the list I(t, 1), I(t, 2),..., I(t, n- 2) have already been found and
that hence I(t, p- 1) is the last node whose shortest distance is to be
found.)

Step 7. Replace I(i, Pt) by I(t, pt).
Step 8. Replace I(i, p,- 1) by I(t, Pt- 1) throughout.
Step 9. Replace I(i, p,- 1) by I(t, p,- 1) throughout.
Step 10. Replace -< by <.

* Received by the editors March 11, 1976.
? Department of Industrial Engineering, University of Wisconsin--Madison, Madison, Wiscon-

sin 53706.

696

A NOTE ON SPIRA’S ALGORITHM 697

Spira’s procedure is distinguished by the fact that it requires a sorting routine
which must be able to add a new element to a set S (Step 4), and replace the
minimum of S by a new element (Step 7), in such a way that successive minima of S
can be efficiently extracted at Step 5. In considering how best to accomplish these
purposes, we tested two routines: first, the played binary tree as described by Spira
[5], and second, HEAPSORT [6]. We found that HEAPSORT required less
storage space and no use of pointers, was easier to implement, and actually ran
faster. (See the empirical results in the next section.)

It should also be mentioned that the initial sorting (Step 1) was accomplished
by repeated use of either the played binary tree or HEAPSORT. Furthermore, all
counts of operations and running times include this initial sort.

3. Empirical results. We programmed the corrected version of Spira’s
algorithm and Yen’s version [7] of Dijkstra’s algorithm in FoRrRA and com-
pared their performance on the UNIVAC 1110. Twenty test problems for a
40-node network, and ten test problems for 60-, 8.0-, 100-, and 120-node
networks were randomly generated with all arcs present and arc lengths uniformly
distributed on the integers 1, 2,..., 100. Table 1 gives the average number of
operations performed (additions plus comparisons) and the average running times
for these test problems, plus the minimum and maximum running times.
Dijkstra’s algorithm has no variation in number of operations, and essentially
none in running time, whereas Spira’s algorithm has considerable variation in
both. For the 40-, 60-, and 80-node networks, Dijkstra’s algorithm was always
faster. For the 100-node network, Spira’s algorithm (with HEAPSORT) was
faster in five out of ten test problems, and had an average running time which was
slightly less than that for Dijkstra’s algorithm. For the 120-node network, Spira’s
algorithm (with HEAPSORT) was faster in eight out of ten test problems, and
took only about 5% more time in the other two cases. In all cases, HEAPSORT
outperformed the played binary tree.

The last column in Table 1 gives average running time divided by n21og2n.
These calculations indicate that our implementations of Spira’s algorithm actually
run in time O(n 210g2n).

We also ran tests with arc lengths distributed uniform (0, b) for b 10, 100,
1000; normal (50, ff2) for o2=4, 25, 400, 2500 (truncated below 0); and
exponential with mean 50. In additional runs, we allowed 50% and 90% of the
arcs to be missing. In all cases except one, the running times were not significantly
different from those in Table 1. The exceptional case occured with arcs normal
(50, O"2) for O"2 small, in which case Spira’s algorithm was at least three times faster.
This will occur for any distribution concentrated for the most part on the interval
(a, a + c) with a > 0 and c small relative to a, because most of the shortest paths
will contain one (or a small number of) arcs.

Note that the number of operations is a poor indicator of the actual running
time of an algorithm. For example, when n 120 Dijkstra’s procedure required
roughly three times as many additions and comparisons, yet it only took about
10% more running time than Spira’s algorithm with HEAPSORT.

In conclusion, for the networks tested here the method of Dijkstra and Yen is
easier to implement and actually runs faster when the number of nodes is less than

698 JOHN S. CARSON AND AVERILL M. LAW

A NOTE ON SPIRA’S ALGORITHM 699

100. On the other hand, for networks of 100 or more nodes, Spira’s algorithm
coupled with an appropriate sort routine may be worth the extra effort needed to
program it efficiently.

REFERENCES

G. B. DANTZIG, All shortest routes in a graph, Operations Research House, Stanford University,
Tech. Rep. 66-3, Stanford, CA, 1966.

[2] E. W. DIJKSTRA, A note on two problems in connection with graphs, Numer. Math., (1959), pp.
269-271.

[3] S. E. DREYFUS, An appraisal of some shortest path algorithms, Operations Res., 17 (1969), pp.
395-411.

[4] R. W. FLOYD, Algorithm 97: Shortest path, Comm. ACM, 5 (1962), p. 345.
[5] P. M. SPIRA, A new algorithm forfinding all shortestpaths in a graph ofpositive arcs in average time

O(n log n), this Journal, 2 (1973), pp. 28-32.
[6] J. W. J. WILLIAMS, HEAPSORT, Comm. ACM, 7 (1964), p. 347.
[7] J. Y. YEN, Finding the lengths of all shortest paths in N-node nonnegative-distance complete

networks using 1/2N additions and N comparisons, J. Assoc. Comput. Mach., 19 (1972), pp.
423-424.

SIAM J. COMPUT.
Vol. 6, No. 4, December 1977

A UNIFIED TREATMENT OF DISCRETE FAST
UNITARY TRANSFORMS*

BERNARD J. FINO’[AND V. RALPH ALGAZI:I:

Abstract. A set of recursive rules which generate unitary transforms with a fast algorithm (FUT)
are presented. For each rule, simple relations give the number of elementary operations required by
the fast algorithm. The common Fourier, Walsh-Hadamard (W-H), Haar, and Slant transforms are
expressed with these rules. The framework developed allows the introduction of generalized trans-
forms which include all common.transforms in a large class of "identical computation transforms". A
systematic and unified view is provided for unitary transforms which have appeared in the literature.
This approach leads to a number of new transforms of potential interest. Generalization to complex
and multidimensional unitary transforms is considered and some structural relations between trans-
forms are established.

Key words, discrete transforms, fast algorithms, fast Fourier transforms, fast generalized trans-
forms, generalized Kronecker product, Haar transform, identical computation transforms, slant
transform, unitary transforms and matrices, Walsh-Hadamard transform

Introduction. The dissemination of the fast Fourier transform algorithms,
originally introduced by Good [1], and known as Cooley-Tukey [2] and Sande-
Tukey [3] algorithms, has resulted in a large extension in the range of applications
of the well known Fourier transform. Recently the Walsh-Hadamard transform,
also with a fast algorithm [4], has drawn considerable interest [5]. The Haar
transform, although closely related to the Walsh-Hadamard transform [6] and
potentially of interest [7], has received much less attention. These transforms
have been used successfully for signal filtering [8], pattern classification [4], [9],
speech signal encoding [10] and above all for picture encoding [11], [12], [13]. An
overview of transforms can be found in [37] and [38]. Only a few transforms have
been considered in these applications while many other transforms could be of
interest. Some workers have considered the definition of generalized transforms
and we mention the works by Andrews, et al. [14], [15], [16], Rao, et al. [17], [18]
and Harmuth [19, pp. 30-36].

In this paper we present a unified view of discrete unitary transforms with a
fast algorithm. A discrete unitary transform ig characterized by a unitary matrix [T]
such that [TILT*t] [I] where * denotes a conjugate, "t" denotes transpose and
[I] is the identity matrix of same order as I-T], say N. In mathematics a unitary
matrix expresses a rotation of the orthonormal basis and preserves the Euclidean
norm, Ilvll-v. v*’, of any vector v and all inner products of vectors. In signal
representation, this property means energy conservation and an easy expression
of the mean square error when some components of the signal are ignored in the
new base. The computation of the transformed vectorWof V by the transform [T]
such that W [T]V usually requires N2 multiplications and N(N- 1) additions.

* Received by the editors April 19, 1974, and in revised form June 28, 1976. This research was
sponsored in part by the National Aeronautic and Space Administration under Grant NASA-NGL-
05-003-404, and in part by the National Science Foundation under Grant NSF-ENG-75-10063. The
work reported is part of the doctoral research of Dr. Fino at the University of California, Berkeley,
Department of Electrical Engineering and Computer Science.

? Systems Applications, Inc., San Rafael, California.
$ Department of Electrical Engineering, University of California, Davis, California 95616.

700

DISCRETE FAST UNITARY TRANSFORMS 701

For some specific transforms of interest such as the Fourier, Walsh-Hadamard
transforms, a fast algorithm has been found which requires fewer elementary
operations. The analysis of these fast algorithms has been done by factorization of
the matrix [T] into a set of largely sparse matrices, each expressing a stage of
computation. This is the approach followed by Good [1] in his original paper
which leads to the fast Fourier transform [2], [3] the fast Walsh transform [4] and
other known fast transforms.

Such an approach is analytic and determines decomposition matrices for a
given fast unitary transform.

Our approach is synthetic and is based on two observations:
a) A few types of fast unitary matrices of small order generate recursively

fast unitary transforms of a.rbitrary order.
b) The same recursive relations between fast unitary transforms lead to

simple recursive relations for the number of elementary operations needed in
FUT of different order. The first observation has been used by several of the
authors cited; we shall exploit it systematically. The second observation has not
been exploited in the mathematical or technical literature. By using three recur-
sive rules, we shall discuss systematically the generation of FUT and the number
of elementary operations needed for the fast algorithm. Using this framework we
shall define a large family of FUT and derive simply a number of old and new
results about the FFT algorithms, other known transforms and establish structural
properties between transforms.

1. Recursive generative rules. We shall present three basic and elementary
rules which generate a new unitary matrix from some original unitary matrices.
For each rule we relate the number of elementary operations for the new
transform to the number of elementary operations of the same type required by
the original transforms. For Rule 1 there is only one original matrix, for Rule 2
two, and for Rule 3 a set of original matrices. These rules will then be used in a
constructive and systematic fashion to generate FUT’s.

Rule 1. Operations on the columns of a unitary matrix. Given a unitary
matrix [T], two obvious operations on the columns yield another unitary matrix of
some order:

a) Permutation of the columns: This operation does not require any compu-
tation. In the computational process, this operation can be performed by applying
the permutation to the coefficients of the input vector instead of the columns
themselves.

b) Multiplication of a column by a root of unity: This operation requires a
complex multiplication if the root of unity is not +/- 1 or +/-j (j x/-Z-i-). 2

These operations on the columns may be expressed by a matrix product [T]
[D] with [D] such that Dk ei’, if column k is to be replaced by column
multiplied by the root of unity, ei’, and all other entries of [D] are null.

We denote by "rule" a set of operations performed in a prescribed order. We reserve the term
"operation" for the elementary operations such as additions, multiplications, etc., which determine
the computational complexity of a transform.

Multiplications by + and +j may be counted as operations if the hardware realization of the
algorithm is not able to keep track of them. However, in an error analysis of the algorithm these
multiplications, even if they are performed, do not introduce any error.

702 BERNARD J. FINO AND V. RALPH ALGAZI

Rule 2. Rotation of rows by a unitary matrix. Consider a unitary matrix IT]
of order N. The N row vectors form an orthonormal basis for S,, the N
dimensional space they span. m row vectors of [T] form an orthonormal basis for a
subspace S,,. If these m vectors are rotated by a unitary matrix [U] of order m, we
obtain a new orthonormal basis for S,,,. The remaining unchanged N-m rows
of IT] are an orthonormal basis of the subspace SN-,, orthogonal to S,, and form
with a new orthonormal basis for SN. Thus, the matrix IT’] obtained after
rotation o the m rows by the unitary matrix [U] is unitary.

Some particular cases of interest are:
a) multiplication of the whole matrix by a unitary matrix of the same order
b) permutation of the rows (multiplication by a permutation matrix)
c) multiplication of a row by any root of unity.
Operations b) and c) can be represented by the matrix product [D][T] where

[D is, as before, such that Dik e’’, if row of T] is replaced by row k multiplied
by the root of unity, ej’, and all other entries of I-D] are null.

Numberofelementary operations. If transforms T and U require respectively
and u elementary operations of a specific kind, it is obvious that the transform T’

will require at most t’ of these operations with

(1) t’=t+u.
(It may happen that [T’] so generated has a simpler algorithm.)

Equation (1) applies independently to any type of elementary operation:
additions, real and complex multiplications as well as any other specific operation
(e.g. shift, multiplication by x/, etc.)

Rule 3. Generalized Kronecker product. The two previous rules are quite
obvious, but used in combination they result in a powerful tool for the generation
of FUT. The matrix Kronecker product, described for instance in [36], and the
generalized Kronecker product presented here are both simple and useful compo-
site rules.

These Krortecker products take full advantage of the decomposition of
FUT’s into block form matrices, which reduces the computation and inversion of
FUT to processing smaller matrices. In other terminology, Kronecker products
imply separability and computational separability savings.

Given two sets of unitary matrices, set {} of m matrices (A’) (i 0, ...,
m -1),3 all of order n, and set {}of n matrices (B i) (i 0,. , n 1), all of order
m, we define the generalized Kronecker product of the sets {M} and {N }, denoted
{sC}(R){Yd} to be the square matrix [C] of order mn such that

(2) Ci,j Cum+w,u’m+w’---" A B u’
U,IA W,W

with
i=um+w, u,u’=O,. .,n-l,

,i u’m + w’, w, w ’=0, , m- 1.

In the particular case in which the matrices [A i] [A are all identical, and
also the matrices [Bi]=[B], the generalized Kronecker product
reduces to the usual Kronecker product of matrices [14]: [A (R) [B].

The index ranges from 0 to m to ease further notation and also to conform to common usage.

DISCRETE FAST UNITARY TRANSFORMS 703

It is easy to show that [C] is unitary and can be factorized into

(3) [C] [Pt][Diag {ai}][P][Diag

where [Diag {ag}] and [Diag {}] are block diagonal matrices formed with the
matrices of the sets {ag} and {Y3 }"

[Diag {d}]

[A]
[A 1]

[A -’]

and [P] is the perfect shuffle permutation matrix4 of order mn such that
P,I ,’z,’ when k vn + z, v’m + z’ and z, v O,...,m-1;

Input
vector n matrices[B] permutation [P] m matrices[A] permutation[p]tOutpUtvector_

!

B

m

0

n+l

A

(m-I)n
{m-l)n+l

mn-I

2

2m+l

(n-I)m
(n-I)m+l

nm-I

FIG. 1. Generalized Kroneckerproduct: algorithm.

4 The perfect shuffle is defined for example in [21]. [Pz,m] corresponds to the usual "shuffle" of
two packs of m cards (a, b, c,. -, m) and (a’, b’, c’, , m) into (a, a’, b, b’, c, c’,- , m, m’). The
perfect shuffle is illustrated in Fig. and corresponds to the symmetric distribution of n packs of m
cards into m packs of n cards.

704 BERNARD J. FINO AND V. RALPH ALGAZI

z, v’=0,..., n-l, and 6 denotes the Kronecker delta. Equation (3) is a
generalization of the factorization of a simple Kronecker product into Good
matrices 14].

Fast algorithm and number ofelementary operations. With the computational
blocks corresponding to the transforms A o,..., A’-a and B, , B"-a, the
factorization of (3) leads directly to the computational block of the transform C
given in Fig. 1.

From the structure of the algorithm of Fig. 1 it is easy to see that if the
matrices [Ai] (i 0,. , m 1) and [Bj] (/" 0,. , n 1) have algorithms
requiring respectively p and q elementary operations of a specific type, their
generalized Kronecker product [C] will require P,,, of these operations with

(4)
m--1 n--1

P,,n P+, q.
i=O =0

In the particular case of a simple Kronecker product p/ pn andq q, so

(5) P,,,, mp, + nqm.

Note that the use of Rules 1 and 2.only increases the number of elementary
operations while the order of the generated transform does not change. For Rule
3, even if [A i] and [B] do not have fast algorithms and thus require n 2 and m 2

elementary operations, [C] requires a maximum of (m +n)mn =<(mn)2 (for
m, n > 1) elementary operations.

The results of equations (1), (4) and (5) are important: for every transform
generated with the recursive rules presented, they give a simple and systematic
way to estimate the number of elementary operations.

2. Identical computation (IC) family. The generative rules defined above
create a unified framework for the known FUT, introduce new transforms, and
allow an easy evaluation of the number of elementary operations required.
Additional structure can be introduced which still allows for the generation of all
known FUT. One large family of transforms considered now are "identical
computation transforms": This family not only has a greatly reduced number of
generating matrices, but provides also a uniform treatment of the input vector. It
is our belief that most if not all transforms used practically now and probably in the
future belong to this family.

Denote by {} (R) [Bq] the generalized Kronecker product of a set {M} of q
matrices lap] (k =0,..., q- 1),of order p and a set {} of p identical matrices
[Bq of order q. [Bq] will be called a core matrix and [Ap] a parent matrix. The IC
transforms are recursively generated from a unique class, c, of parent matrices of
some order f and an original core matrix [7] of order q. An IC transform of order
(qf") is then obtained from the original core matrix [7] by the recursive formulas:

(6)
[ICqt] [Dqt][{s4} (R) [7]][D],
[ICq. [Dqr-][{,, } @ [ICqt--,]][D-]

where the matrices [D] and [D’] express respectively a reordering followed by
multiplications by roots of unity of the rows and the columns. All parent matrices
of {zgi}" {s4, } belong to

DISCRETE FAST UNITARY TRANSFORMS 705

The common characteristic of all the transforms of the IC family is that their
algorithms only use in any computation intermediate results obtained from the
input vector through identical computations (so the name of the family). This
property provides a uniform treatment of successive components of the input
vector if we consider that any parent matrix treats uniformly its input vector. For
this family, all the normalizations can be delayed to the last stage of computation.

We consider different choices for the original matrix [(7], the class c of parent
matrices, the matrices [D] and [D’] and the sets {.ffk}, and show that the basic
transforms, Fourier, Walsh-Hadamard and Haar, are IC transforms.

3. Basic transforms: Fourier, Waish-Hadamard, Haar, Slant. With the help
of the generative rules, we now examine the well known Fourier, W-H, and Haar
transforms. Our approach allows the derivation of some new results concerning
the number of multiplications required by a FFT of composite order, a concise
presentation of the different definitions of the W-H transform, and simple
definitions of the Haar transform. In addition it makes apparent the common
structure of these transforms. This will lead in the next section to the definition of
families of transforms between the basic transforms.

In the following we emphasize specific orderings for the basic transforms:
frequencies for the Fourier transform, zequencies5 for the W-H transform and
ranks6 for the Haar transform. These orderings have proved to be useful in
applications because they usually concentrate the signal energy into the first
transform coefficients [22].

3.1. Generalized fast Fourier transform of composite order.
a) DECOMPOSITION THEOREM. Given the Fourier matrices [Fp] and [Fq]

of orders p and q respectively, the matrix [Fpq such that

(7) [Fpq] [{[F,]} (R) [Fp]][p]t

is the Fourier matrix of order pq. The set {[Fqk]}, k 0,. , p 1, is such that

(8) [F] [Fq][Dk]

where [Dk] is a diagonal matrix with (Dk)u,.,=exp [-2zrjku’/(pq)]. [P]’ is the
perfect shuffle

Ps, u,zk,w

with s uq + k, wp + z, u, z < p, k, w < q.

This terminology has been introduced by Yuen [20]. The zequency is the number of zero
crossings.

6 We use rank to indicate the usual order of the rows of a Haar matrix; see Fig. 3. This is, of course,
a different notion than the rank of a matrix.

706 BERNARD J. FINO AND V. RALPH ALGAZI

Proof. We denote [{[F]} (R) [Fp]] by [F].
k(F’m).g+k,.,g+k, (Fp).,., (Fq)k,k’

1 -2j(uu’/p+ku’/(pq)+kk’/q)(Fp).,.," e-2=jku’/)’(Fq)k,k,=.e
[Fm [F]" [P]’ :ff (Fm)+k,wp+z (F’m)+k..’q +k’

--2rj(uz/p +kz/(pq)+kw/q--e
e -2rj(uq+k)(wp+z)/(pq) Q.E.D.

[Fp][Fq] and [Fpq] are symmetric, and it is possible to derive, from (3) and (7),
new expressions for [Fpq]"

[Fm]= [P][{[Fqk]} (R) [Fp]],

{[FO]}][P],(9) [Fm] [[Fp] (R) ,k

[Fm [Pt][[Fp (R) {[Fk]}] with IF’2k] [Dk][Fq].

If [Fp and [Fq require respectively ’p and complex additions,p andq
complex multiplications, [Fpq will require by application of (4)"

(1 O) Spo pSq +qSp complex additions,

(11) tpq pal/gq + qal/[p + Cp,q complex multiplications

where Cp,q is the number of complex multiplications introduced by (8)"

pq if all the factors including +1, +] are considered;

(p- 1)(q- 1) if the factors + 1 are discarded;

(p- 1)(q- 1)- 1 if the factors :i:] are
also discarded when pq is a power of 2.

b) Generalized FFTofcomposite order. If the order of the Fourier transform
is composite, i.e. N pl""p,, the previous decomposition theorem yields the
well known FFT algorithms [2] [3] detailed by Glassman [23] in the most general
case. Our approach is similar but more systematic and with more concise notation
than those of Kahaner [24] and Drubin [25]. The recursive use of the formulae
(10) and (11) gives the number of required operations. In the case ofN r" we can
solve these recursive equations: This is the case of FFT of radix r.

(12) Sr" rn sr + r,.-1 or r" nr sr
ef//r-=r"-aj//r+r.r +(r a)(r"-a -a)-t

or

(13) l,t. nr"-+(r-) (n 1)r"-
1) (r -1)

-a ;’- -fl r-1

(a, fl depend on the value of Cp,q).

The radices 2, 4, 8 and 16 have been considered in the literature.

DISCRETE FAST UNITARY TRANSFORMS 707

Column
Input permutations Output

vector vector
Vo Fo
V, F,
V, Fz
V F
V4 F4
V F
V F
V Fr

(a) Algorithm[rom Fig. (decimation in time).

Input
vector

ordering
(b) Cooley-Tukey algorithm (decimation in time-in place).

Input,
vector

v

column
permutations Output. vector

Oo F
F4
Fs

o __] !ao_l
F6
F7

(c) Algorithmfrom Fig. (decimation in[requency).

708 BERNARD J. FINO AND V. RALPH ALGAZI

Input vector Output vector

V5 __- F5

V-r- -a3 -az - bit reversal
ordering

(d) Sande-Tukey algorithm (decimation infrequency-in place).
FIG. 2. FastFourier transform--radix 2, order 8.

For the radix 2, which gives the most popular FFT, the recursive relations
given by the decomposition theorem are

(14) [Fz-] [{[F]} (R) [Fz.-’]][P]’ [P][{[F]} (R) [F2--,]]

and

(15) [F2-] [[Fz--1]@{[F’zk]}][P] [P]’[[Fz"-]@{[Fk]}]

with

[F]=I 11 -ee-"/’] and [F

The algorithm corresponding to the recursive formula (14) and obtained by
recursive use of Fig. 1 is shown in Fig. 2(a); it can be arranged equivalently with all
operations "in place" as shown in Fig. 2(b), which is the classical diagram of the
Cooley-Tukey [2] algorithm with decimation in time.

The algorithm corresponding to the formula (15) is the Sande-Tukey [3]
algorithm with decimation in frequency and is shown in Figs. 2(c) and 2(d).

For these figures the factors are

a0 1, a exp (-27rj/8),

a exp (-4rj/8) -j, a3 exp (- 67rj/8).

DISCRETE FAST UNITARY TRANSFORMS 709

We can compare the FFT with radices 2, 4, 8 and 16 for transforms of order
N 2n= rn/lg2r (n is then a multiple of 12). The formulas (12) and (13) then
give Table 1.

TABLE

dr2,,dr" dr"
Radix S d r (all factors) (no factors 1) (no factors

2 2 0 (n 1)2" n2"-1-2" + n2"-1-3 2"-+2

()2" 2n-3 2" 2"-3
13" 2"-z-4

4 8 0 3n + 3n
3

n2n (3-)2" n2"
2"+1

n2" 57"2"-3-8
8 24 -1 ---- 3 7

21n2" 241 2"-4-16(lln 2"
21n2"

2" +16 64 6 \--- 6----- 64 15

The column 5tr2" has been given by Singleton [26].7 In fact our approach
allows the evaluation of the number of elementary operations for any composite
order, in particular for mixed radix FFT.

The factors + 1 are easy to track in the algorithms and for most realizations
multiplications by +/- 1 are not performed. The factors +/-j appear in various places
in the algorithms and in most realizations multiplications by +/-] are performed;
however, in an error analysis these multiplications do not introduce any rounding
error and the column 5/r3- is then of interest. A refinement of little practical
interest may be trivially introduced in the count of elementary operations by
keeping track of the coefficients (1 +])/x/.

3.2. Walsh-Hadamard transform. Recursive relations for the Walsh-
Hadamard matrices in "natural" ordering have been known for a long time but
the more useful orderings in zequency and Paley’s orderings (see [20] for a
discussion of these orderings) have not been defined recursively. In a separate
note [27] we present recursive relations for the W-H matrices in Paley’s and
zequency orderings which clarify the reordering procedures and also the various
fast W-H algorithms. For completeness, we recall the basic recursive definitions
for the three common orderings.

(16)

(17)

(18)

Natural ordering: (WHz.nat] [WHz] (R) [WHz--,nat],

Paley’s ordering: [WH2-pal] [WH2]@[WHz.-lpal][P]t,
Zequency ordering: [WHz-zeq] [Diag [R]][P][[WH2] (R) WHz--,zeq]]

An earlier publication by G. D. Bergland, A last Fourier trans[orm using base 8 iterations, Math.
Comput., 22 (1968), pp. 275-279, presents somewhat differently these results.

710 BERNARD J. FINO AND V. RALPH ALGAZI

with

1 0 0 0

1 0 0
[R]=

0 0

0 1 10
3.3. Haar transform. The Haar transform is usually defined from the Haar

functions [11]. The Haar matrix of order 8 [H8] ordered by ranks is as follows:

1 1 1 1 1 1 1 1-]
1 1 1 1 -1 -1 -1 -1

,fi - -v2 o o o o
o o o o -v2
2 -2 0 0 0 0 0 0
0 0 2 -2 0 0 0 0
0 0 0 0 2 -2 0 0
0 0 0 0 0 0 2 -2-

Zones
0

3

Here we use the generative rules to define recursively the Haar matrices, and we
have found two definitions:

1) The Haar matrix of order 2" is obtained from the Haar matrix of order

2"-1 by simple Kronecker product with [I2] [10]’ followed by rotation of the

rows 0 and 2"-1 by [I2]. This is the process Y(of [6], in terms of generative rules.
2) The Haar matrices are recursively defined by the relation"

(19) [H2" nat] {[F2], [I2], , [I2]} (R) [H2--’ nat]

The rows are obtained in "natural" order. To reorder them by their ranks, we
need a "zonal bit reversal" ordering. A zone as defined in [6] is a set of coefficients
with indexes between two successive powers of 2. A "zonal bit reversal" ordering
is a bit reversal followed by a reordering in the original order inside each zone. For
8 coefficients the zonal bit reversal ordering gives:

Binary Bit Reordering Final order
Index representation reversal inside zones (see Fig. 3(a))
0 000 000 - 000 0
1 001 /m 100 . 100 4
2 010 ../ 010) ;010 2
3 011"110 ;110 3
4 100 / "....x// "*001] ;001 1
5 101 --//’"\- 10112>011 6
6 110/" x,.." O11 101 5
7 111 r. 111 .-" 111 7

DISCRETE FAST UNITARY TRANSFORMS 711

With both definitions we obtain by recursive application of the diagram of
Fig. 1 the algorithm of Fig. 3(a). This algorithm can be more conveniently
organized as shown in Fig. 3(b) and give the rows directly ordered by their rank.

By application of (4) we obtain the following recursive formula for the
number of additions:

Hence

,--2" 2" ,52 + 2.

a2- 2(2"- 1) with,2 2.

2"- normalizations are also required. A modified Haar transform [18] obtained
from the Haar transform by permutation of its columns is related to the Fourier

Output Output
vector vector

Input natural rank
vector order order
Vo H’0 "Ho
V=

_
H=

V H2
V3 -I H3
V4

_
H4

V5
_

H5 Hs
V6 -I H H
V7 -I . H7

Zonal bit reversal
ordering

(a) Algorithm--natural order.

Output vector
Input vector rank order

Vo Ha
V

_
V2 -I 4’ H2
V: -(- .,/-2=
V4 2; H4
V5

_
2: H5

V6 . 2" H6
Vr

_
H7

(b) Aorithrnkorder,

FIG. . Hartrn$[or (order).

712 BERNARD J. FINO AND V. RALPH ALGAZI

transform (see 4.3): it can be defined recursively by:

(20) [MH,, [Z][{F2], [I2], , [I]} (R) [MHe,,-’]][P]’

Globally the permutations [Z] perform a bit reversal ordering inside each zone.

3.4. Slant transform. The Slant transform has been proposed by Enomoto et
al. [28] for the order 8. Pratt et al. [29] have generalized this transform to any
order 2" and compared its performance with other transforms [30]. In this section
we express the recursive generation of the Slant transform with our generative
rules and compute the number of elementary operations required by its fast
algorithm.

The Slant transforms of order 8, [$8], is as follows (in "natural" order).

-1 1 1 1 1 1 1 1
1 -3 3 -1 1 -3 3 -lxl/x/
7 -1- 9 -17 17 9 1 -7xl/x/5 x 21
1 -1- 1 1 1 -1 -1 1

7 5 3 1 -1 -3 -5 -7xl
1 -3 3 -1 -1 3 -3 lxl/,,/
3 1- 1 -3 -3 -1 1 3xl/,/

_1 -1- 1 1 -1 1 1 -1

Zequencies

0
7
3
4

1
6
2
5

The rows can be reordered by zequencies with the same permutation as the
W-H transform in natural order.

The Slant transform of order 2" in natural order is obtained from the Slant
transform of order 2"-1 in natural order by simple Kronecker product with [/72]
followed by rotation of the rows 2"-2 and 2"- (Rule 2) by the matrix

sin O. cos O.
with sin O. / 22] 0 < 0 <--

LCOS O --sin On 2

This choice of 0, introduces in the Slant matrix [$2-] the Slant vector S with
components linearly decreasing.

But some normalizations can be delayed to the last stage of computation and
the rows 2"-2 and 2"-1 are rotated by the matrix

(22n_2_ 1)13
1 2"-

requiring 2 shifts, 2 additions, 1 multiplication. The corresponding algorithm is
shown in Fig. 4.

Number of elementary operations. By making use of relations (1) and (5), we
determine that the slant transform algorithm requires (n + 1)2"-2 additions,
2"-2 shifts, 2n-2- 1 multiplications and finally 2"-2"-2- 1 normalizations at
the last stage of computation.

DISCRETE FAST UNITARY TRANSFORMS 713

Output vector
Input natural zequency
vector order order
Vo Sb; SoV,_ / S’, S,

V4 4 S $4

V6 S S6

Reordering

FG. 4. Slant transform oforder 8: fastalgorithm.

However, the algorithm at the order 4 can be performed with 8 additions, 2
multiplications as shown in [29] instead of 10 additions and 2 shifts as above. This
order 4 algorithm can be used in the recursive definition to trade 2"-1 additions
and 2’*-1 shifts for 2"-1 multiplication in the results above.

By the use of this structural decomposition the authors have defined new
Slant transforms and in particular the Slant Haar Transform I-31].

4. Additional properties and generalizations oi unitary transiorms. We
discuss briefly the complex extension of a real transform, and the generalization to
multidimensional FUT. We also point out some additional relations between
transforms suggested by the unified framework presented.

4.1. Complex extension ot a real transtorm. From a real unitary matrix [RT]
with rows RTo,’", RT-I, we construct a complex extension noted [CT] with
rows CTo, , CTN by creating two complex rows CTp and CTq from two real
rows RT RT as follows:

(21) CT (RT. -iRT.). CT (RT. +jRT.)

714 BERNARD J. FINO AND V. RALPH ALGAZI

Then the complex transform U +j5 of a complex input vector.V R.+fl
is expressed uniquely from the real transforms of and denoted N and "

1p CTp V= --K_ (RTm -RT,,)(R +]I)

or

1

and similarly

With these relations the properties of complex transforms can be deduced
from those of the real transform. In the literature, besides the real and complex
Fourier transforms, the complex W-H transform [31][32] (also called complex
BIFORE transform), complex Haar transform (also called complex modified
BIFORE transform) [33] have been defined. Note that the complex W-H
transform obtained by relations (21) would have entries (+ 1 +/-j)/’f; commonly
the rows are then rotated by (1 +])// to give a transform with entries +/- 1 and +/-/’.
The rows of the complex W-H transform can be ordered according to a
generalized frequency defined as the number of clockwise rotations around the
origin when following cyclically the entries of a row.

Although this extension may seem trivial, we think it may help to "demys-
tify" some complex transforms so constructed.

4.2. Multidimensional transforms. The techniques presented for the one
dimensional transforms extend to multidimensional separable transforms. Let us
denote an input array of p dimensions by Ai,,,"’, ip and the p dimensional

2separable transform by T,,...,,,,,,...,, T,i,, Tui,"’, TP,,,,. Then the trans-
formed array

can be written

ip

If we express both arrays as one dimensional vectors A and B, for which indexes
are obtained by lexicographic ordering of the indexes (il,’" .,ip) and
(u,..., up), the multidimensional transform can be expressed as a one dimen-
sional transform:

A lIT1] @ IT2] @ [TP]]B, A [T]B.

DISCRETE FAST UNITARY TRANSFORMS 715

The multidimensional transform has been reduced to a one dimensional trans-
form.8 This expression now allows the evaluation of the number of elementary
operations and other generalizations discussed previously.

4.3. Relations between transiorms. Two transforms with similar structures
will often be related by matrix relations or energy invariants between the two sets
of transformed coefficients.

a) Matrix relations between trans]’orms o[same order. In [6], relations
between the W-H and Haar transform were established. Similar relations hold for
other transforms with "overlapping" structures. With the framework developed
here these relations can be obtained immediately by examination of the recursive
definitions of both transforms.

b) Energy invariants. By Parseval’s theorem the total energy of the trans-
form coefficients of a same vector with different transforms is preserved. How-
ever, it may happen that the energy of a subset of coefficients is the same for some
transforms: we say then there is an energy invariant between these transforms.
Energy invariants are most likely when the transforms have an identical structure
with different factors. For example, by direct comparison of the algorithms for the
Fourier, W-H and modified Haar, it is clear that the transformed coefficients
before respective reorderings have identical energies in the "zones" of consecu-
tive coefficients. This leads to the energy invariants for transforms of order 8
shown in Table 2.

TABLE 2

Zone

Fourier W-H Mod. Haar

(frequencies) (zequencies) (rank)

0 0 0 0
4 7

2 2,-2 3,4 2,3
3 1,3,-1,-3 1,2,5, 6 4,5, 6, 7

Conclusions. In this work we have presented a unified treatment of unitary
transforms having a fast algorithm. The use of recursive rules to describe unitary
transforms allows a systematic way to view known transforms, to generate new
transforms and provide a general approach to evaluate the number of elementary
operations required by each transform algorithm. This framework has been used
here to discuss common FUT, but we must add that all FUT known to the authors
fit easily and that many new ones can be generated.

The framework provided can be used in several other studies and applica-
tions of unitary transforms. In particular, a faster computation of transform
domain covariance matrices was found [35] and an error analysis of unitary
transforms has been carried out, which provides new insight and results even for

The use of separability in the generation of the transform T is similar to the general decomposi-
tion of a Kronecker product into block matrices, discussed in 1, with block matrices applying to
subvectors of the input vector.

716 BERNARD J. FINO AND V. RALPH ALGAZI

the well known FFT algorithms. In each potential application of FUT, considera-
tion must be given to the loss of performance of each FUT as compared to an
optimal "slow" transformation and to the computational aspects of each FUT. A
systematic study of applications with algorithm complexity as an explicit parame-
ter reveals significant differences in the ranking of commonly used FUT and which
points out where additional FUT would have definite merit is in preparation.

REFERENCES

1] I.J. GOOD, The interaction algorithm and practical Fourier analysis, J. Roy. Statistical Soc. Ser.
B., 20 (1958), pp. 361-372; Addendum, Ibid., 22 (1960), pp. 372-375.

[2] J. W. COOLEY AND J. W. TUIEY, An algorithm for the machine computation ofcomplex Fourier
series, Math. Cornput., 19 (1965), pp. 297-301.

[3] W. M. GENTLEMAN AND G. SANDE, Fast Fourier transformmforfun and profit, AFIPS, 1966
Fall Joint Com. Conf., pp. 563-578.

[4] J. E. WHETCHEL AND D. F. GUINN, Thefast Fourier-Hadamard transform and its use in signal
representation and classification, Eascon ’68 Rec., IEEE Press, pp. 561-573.

[5] Proceedings, "Application of Walsh Functions", National Technical Information Service, U.S.
Department of Commerce, Springfield, VA, 1970:AD-707 431, 1971:AD-727 000, 1972:
AD-744 650.

[6] B. J. FINO, Relations between Haar and Walsh/Hadamard transforms, Proc. IEEE (Lett.),
60 (1972), pp. 647-648.

[7] J. E. SHORE, On the application of HaRt functions, IEEE Trans. Comm., COM-21 (1973), pp.
209-216.

[8] W. K. PRATI’, Generalized Wiener filtering computation techniques, IEEE Trans. Computers,
C-21 (1972), pp. 636-641.

[9] H.C. ANDREWS, An Introduction to Mathematical Techniques in Pattern Recognition, John
Wiley, New York, 1972.

10] S. J. CAMPANELLA AND G. S. ROBINSON, A comparison of orthogonal transformations for
digital speech processing, IEEE Trans. Comm., COM-19 (1971), pp. 1045-1050.

11 H.C. ANDREWS, Computer Techniques in Image Processing, Academic Press, New York, 1970.
[12] T. S. HUANG, W. F. SCHREmER ArD O. J. TgETInK, Image processing, Proc. IEEE,

59 (1971), pp. 1586-1609.
[13] P. A. WyTZ, Transform picture coding, Proc. IEEE, 60 (1972), pp. 809-820.
14] H. C. ANDREWS AND J. KANE, Kronecker matrices, computer implementation and generalized

spectra, J. Assoc. Comput. Math., 17 (1970), pp. 260-268.
[15] H. C. ANDREWS AND K. L. CASPARI, A generalized technique for spectral analysis, IEEE

Trans. Computers, C- 19 (1970), pp. 16-25.
16] Degrees offreedom and modular structure in matrix multiplication, Ibid., C-20 1971), pp.

133-141.
[17] N. AHMED, K. R. RAO AND R. B. SCHULTZ, A generalized discrete transform, Proc. IEEE,

59 (1971), pp. 1360-1362.
18],A class of discrete orthogonal transforms, to appear.
[19] H. F. HRMUTH, Transmission of Information by Orthogonal Functions, 2nd ed., Springer-

Verlag, New York, 1972.
[20] C-K. YUEr, Remarks on the ordering of Walsh functions, IEEE Trans. Computers (Corresp.),

C-21 (1972), p. 1452.
[21] H. S. STONE, Parallel processing with the perfect shuffle, IEEE Trans. Computers, C-20 (1971),

pp. 153-161.
[22] P. Y. SCHWARTZ, J. PONCIN AND B. FINO, Statistical properties of orthogonal transforms,

Proc. Conf. on Digital Processing of Signals in Communications, vol. 23, pp. 151-174,
London, Apr. 1972.

[23] J. A. GLnSSMAY, A generalization of the fast Fourier transform, IEEE Trans. Computers, C-19
(1970), pp. 105-113.

DISCRETE FAST UNITARY TRANSFORMS 717

[24] D. K. KAHANER, Matrix description of the fast Fourier transform, IEEE Trans. Audio Elec-
troacoust., AU-18 (1970), pp. 442-450.

[25] M. DRUBIN, Kronecker product factorization of the FFT matrix, IEEE Trans. Computers, C-20
(1971), pp. 590-593.

[26] R. SINGLETON, An algorithm for computing the mixed radix fast Fourier transform, IEEE Trans.
Audio Electroacoust., AU-17 (1969), pp. 93-103.

[27] B.J. FINO AND V. R. ALGAZI, A unified matrix approach to Walsh Hadamard transforms, IEEE
Trans. Computers, C-25 (1976), pp. 1142-1145.

[28] H. ENOMOTOAND K. SHIBATA, Orthogonal transform codingsystem for television signals, Proc.
1971 Symp. on Appl. of the Walsh Functions, pp. 11-17. Nat. Tech. Inf. Serv.: AD-
727 000.

[29] W. K. PRATT, L. R. WELCH AND W. H. CHEN, Slant transform for image coding, Proc. 1972
Symp. on Appl. of the Walsh Functions, pp. 229-234. Nat. Tech. Inf. Serv.: AD-744 650.

[30] W. K. PRATT, Walsh functions in image processing and two dimensional filtering. Proc. 1972
Symp. on Appl. of the Walsh Functions, pp. 14-22, Nat. Tech. Inf. Serv.: AD-744 650.

[31 B.J. FINO AND V. R. ALGAZI, SlantHaartransform, Proc. IEEE, 62 (1974), 5, pp. 653-654.
[32] N. AHMED AND K. R. RAO, Complex BIFORE Transform, Electron. Lett., 6 (1970), no. 8, pp.

256-258.
[33] F. R. OHNSORG, Application of Walsh functions to complex signals, Proc. 1970 Syrup. on

Applications of the Walsh Functions, pp. 123-127. Nat. Tech. Inf. Serv.: AD-707 431.
[34] K. R. RAO AND N. AHMED, Modified complex BIFORE Transform, Proc. IEEE, 60 (1972), pp.

1010-1012.
[35] B. J. FINO AND V. R. ALGAZI, Computation of transform domain covariance matrices, Proc.

IEEE, 63 (1975), pp. 1628-1629.
[36] S. W. GOLOMB AND L. D. BAUMERT, The search for Hadamard matrices, Amer. Math.

Monthly, 70 (1973), pp. 12-17.
[37] K. R. RAO AND N. AHMED, Discrete orthogonal transforms and their applications, Engineering

Dept. Univ. of Texas, Austin, 1976.
[38] N. AHMED AND K. R. RAO, Orthogonal Transforms for Digital Signal Processing, Springer-

Verlag, Berlin/New York, 1975.

SIAM J. COMPUT.
Vol. 6, No. 4, December 1977

PROSPECTS AND LIMITATIONS
OF AUTOMATIC ASSERTION GENERATION

FOR LOOP PROGRAMS*

JAYADEV MISRA’

Abstract. The problem of generation of loop invariants from the input, output assertions of a loop
program (while B do S) is considered. The problem is theoretically unsolvable in general. As a special
case we consider assertions of the form x R y, where R denotes a binary relation, x denotes the
variables manipulated by the program and y denotes variables that are not modified by the program.
We derive conditions for R such that if any loop program has x R y as the input and output assertions,
then x R y is a loop invariant. These conditions for R are shown to be necessary and sufficient in that if
some R’ does not meet these conditions, then there are loop programs for which x R’ y holds at
entrance and exit, though not following every iteration. In particular it is shown that if R is an
equivalence relation, then under certain reasonable restrictions on the loop, x R y holds at entrance
and exit of the loop if and only if it holds after every iteration.

Key words, assertion, loop program, verification

1. Introduction. One of the major difficulties in mechanical program proving
is to generate suitable assertions for a given program, given its input, output
specifications. In theory, the problem is unsolvable. The most difficult aspect of
assertion generation (by humans or algorithms) is in locating a "loop invariant"
[4] for every loop. For a loop of the form {while B do S}, a loop invariant is a
proposition P such that P ^ B {S} p.1 It then follows that if Pis true on entrance to
the loop, it can be asserted to be true on exit. In order to show that a proposition
Q2 is true at exit given that a proposition Q1 is true on entry, it is sufficient to locate
a proposition P such that (i) Q1 ::P (ii) P ^ B {S} P (iii) P ^ --1B :ff Q2.

An important problem in mechanical program verification is to obtain a loop
invariant P as above, given Q1, Q2. Several heuristic techniques have been
reported [5], [8], 10]. Recently an interesting scheme called "subgoal induction"
[9] has been introduced which seems to be effective in a large number of cases.

Due to lack of suitable general techniques, it is important to characterize
certain classes of input/output propositions for which the invafiant may be
obtained algorithmically. Such a characterization is interesting if it includes most
of the commonly occurring forms of propositions which arise in actual programs.
The present paper is a step in that direction.

We will consider loops of the form {while B (x) do S(x)}: x denotes the set of
variables on which the loop operates; x has an initial value on entry to the loop.
The value of x is modified by the loop body. Let x R y denote that x is related to y
under R. A loop preserves a relation R if

x R y {while B(x) do S(x)} x R y.

* Received by the editors July 22, 1975, and in final revised form February 2, 1977. A preliminary
version of some of these results appears in [6].

" Department of Computer Sciences, University of Texas at Austin, Austin, Texas 78712. This
work was supported by the National Science Foundation under Grants GJ36424 and DCR75-09842.

Using the rotation introduced by Hoare [4].
718

AUTOMATIC ASSERTION GENERATION 719

y denotes some variables that are not modified by the loop. Verbally, the loop
preserves the relation R if x R y true on entrance to the loop implies it remains
true on exit from the loop with the modified x, assuming termination. For instance,
x > y {while B (x) do x := x + 1} x > y, for any B. A loop uniformly preserves a
relation R if x R y is a loop invariant; i.e., if

x R y ^B(x) {S(x)} x R y.

Clearly, if R is uniformly preserved, then R is preserved by the loop. The converse
however is not true.

In this paper, we characterize the class of relations R having the property that
if R is preserved by any loop, then it is uniformly preserved. Clearly, the
characterization conditions are trivial for any specific loop while B(x) do S(x),
namely x R y ^ B(x) {S(x)} x R y; the definition itself. Our interest in studying
such characterization is to prove/disprove x R y {while B(x) do S(x)} x R y, when
R meets the given characterization, by proving/disproving that x R y is a loop
invariant.

We will use the notion of closure introduced in [1]. We will define a class of
relations called generalized equivalence relations (GE relation) and show that if R
is a GE relation and is preserved by any loop having closure, then it is uniformly
preserved. Conversely, if R is not a GE relation, then there exists a loop that
preserves R, but does not preserve it uniformly. Any equivalence relation is
shown to be a GE relation. Conditions for proving/disproving that a loop
computes a certain function can be derived from this characterization.

This paper generalizes the results in [1]. However, a knowledge of that paper
is not necessary to follow the results presented here. Implications of these results
in automatic program verification are discussed.

2. Some preliminary notions. We will be working with loops of the form
{while B do S}. We need to make explicit mention of variables on which the
program operates. Consider the following schema, which we call W(B, S).

begin

end;

declaration for variables t; {This is optional}
while B do S

We adopt the following conventions about W(B, S).
(i) W(B, S) accepts input in certain global variables. The set of global

variables will usually be denoted by x. Let Xo denote the initial values of x before
entry into the loop.

(ii) The variables t as defined above are called local variables of W(B, S).
Local variables initially have undefined values. A local variable gets a value when
it is assigned one during computation. For the rest of the paper, global and local
refer to global and local variables x, of W(B, S) respectively.

(iii) B is a predicate over some or all global variables. The rationale for such a
requirement is that local variables have undefined values on entry and certain
clauses in B may otherwise be undefined as a result.

(iv) The program W(B,S) does not terminate if it ever accesses
(examines/uses) a variable having an undefined value.

720 JAYADEV MISRA

(v)The output of W(B, S) appears in global variables x. Thus, the effect
of execution of the loop is to modify the values of x.

Local variables t of W(B, S) are indeed in a certain sense global to "while B
do S". However, we believe that the distinction between local and global variables
is important considering (i), (ii), (iv) and (v). Furthermore, local variables of
W(B, S) are different from any local variable that S may have; during iterations
may retain values from iteration to iteration whereas local variables of S have
undefined values at the beginning of every iteration.

Our treatment of variables is general. We are not specifically interested in the
kind of data that a variable may represent: one variable may represent a tree,
another may represent a file segment etc. We require that the variable values be
drawn from a prespecified domain, but there is no restriction on the domain itself.

The next notion is fundamental; it was introduced in 1]. ("Domain" refers to
the set of initial variable values of interest.)

DEFINITION 1. A domain D is closed with respect to W(B, S) if and only if
x e D is a loop invariant, i.e.

x D ^B(x) {S(x)} x 6D.

Observation. If D is closed, then starting with any initial value Xo e D, the
variable values after every iteration must be from D. If the loop terminates, the
final values are from D.

The importance of closure was demonstrated in 1], [7] where it was shown
that a knowledge of closure is essential in locating a suitable loop invariant. We
will assume closure of the input for the rest of the paper.

Example 1.

while v # 0 do
begin

u:=u+l;v:=v-1
end;

Let
D {(u, v)lu, v integer; v _-> 0},

D’= {(u, v)[u, v integer; v => 30},
D"= {(u, v)lu, v integer; u -> 30},

D, D" are closed with respect to the given program. D’ is not closed since with
(u, v) (5, 30) D’, we obtain (6, 29) after one iteration, which is not in D’.

Depending on the context S(x) would either denote that S uses variables x
(as in x R y {S (x)} x R y) or the value computed by S when x denotes the initial
values of its variables (as in S(x) R y).

DEFINITION 2. A set D is range inclusive with respect to a function F if for
every a D, F(a is defined and F(a D.

DEFINITION 3. W(B, S) computes a function F over a domain D if
(i) D is range inclusive with respect to F

and
(ii) for every input Xo D, W(B, S) halts and produces F(xo) as the output (in

the global variables).

AUTOMATIC ASSERTION GENERATION 721

The following theorem is the basis of the results appearing in the next section.
It is from [1], [7].

TIEOREM 1’ (see [1], [7]). Suppose D is closed with respect to W(B, S). LetD
be range inclusive with respect to a given]:unction F. W(B, S) computes FoverD if
and only i/" all of the following conditions hold.

1) W(B, S) terminates/’or every input/’tom D.
2) (x 6D ^ -]B(x))(F(x)=x).3) IF(x) F(y)] is a loop invariant for W(B, S).

Furthermore, conditions 1), 2) and 3) are mutually independent.
Condition 3) is the important invariant condition. It states that if F is the

function computed by W(B, S), then F(x) remains identical during successive
iterations with modified values of x in each iteration. Clearly, F(x) must be
defined for every such x generated during iterations: this is guaranteed by the
requirement of closure on D.

The following are the significant aspects of Theorem 1’:
(i) the conditions in the theorem are necessary and sufficient. Thus

proving/disproving these conditions proves/disproves the claim. This is in con-
trast to many assertion generation systems which provide only sufficient condi-
tions.

(ii) The form of the invariant is independent of B and S.

3. Relations uniformly preserved by a loop. Conditions 1), 2) and 3) in the
statement of Theorem 1’ may be labeled as termination, boundary and iteration
conditions. The boundary condition is easy to derive (and usually simple to prove)
by considering the exit conditions. The iteration condition is the one that leads to
the loop invariant which captures the "dynamics" of the loop. In this paper, we are
primarily interested in the generation of the iteration condition.

The major contribution of this paper is a generalization of Theorem 1’. We
characterize the class of binary relations which are preserved by any loop if and
only if they are uniformly preserved.

The motivation behind this extension is twofold. First, we often want to prove
a certain relationship between input and output of a loop without knowing the
exact functional relationship. For instance, we may want to show that the output
value is larger in magnitude than the input or that the output array is a permuta-
tion of the input array, etc. Secondly, we hope to establish a theoretical limitation
on what kinds of loop invariants can be generated without examining the loop
body.

Clearly, if R is uniformly preserved then it is preserved. However, the
converse is not true, even for transitive relations (such as _-< on integers), as shown
in the following example.

Example 2. Let W(B, S) be the following program.

while v 1 do
if odd(v) then v := v + 1

else v := v/2;

D {vlv -> 1 and v integer}. Let the relation R be defined as follows:

vRuv<-u.

722 JAYADEV MISRA

Clearly,

v R u { W(B, S)} v R u.

However, v R u is not a loop invariant (as can be seen with v 3 and u 3). 13
We first derive the conditions on R, dependent on B and independent of S.

Next, we remove the dependence on B. We are thus given
(i) a binary relation R on a domain D;
(ii) that D is closed with respect to W(B, S) and W(B, S) terminates for

every input from D;
(iii) and that W(B, S) preserves the relation R. We ask for the necessary and

sufficient conditions, independent of S, under which x R y is a loop invariant.
DEFINITION 4. Given a domain D and a binary relation R on D, (a, b

D)a -> b if and only if (V c D)(b R c :ff a R c); a -= b if and only if a _>- b and b -> a.
Note that, if (c D, b R c), (V a D)(a -> b). _-> will be called the derived relation
of R.

Observation. For any R, the derived relation -> is reflexive and transitive and
-= is an equivalence relation.

Notation. --1 (x R y) will denote that x is not related to y under R.
LEMMA 1. Let F denote the function computed by W(B, S) on the closed

domain D. If R is preserved by W(B, S), then F(x) >-x, V x D.
Proof. If R is preserved then x R y =)F(x)R y. Hence the lemma follows

from definition. [3

DEFINITION 5. R is a GE relation (generalized equivalence relation) with
respect to B if and only if

(V a, b eD)[B(a) ^B(b) ^ ::1 c D[c >-_a ^ c >-b]a --b].

Observation. If R is a GE relation with respect to B then

[B(a) ^B(b) ^a >-b][a =-b].

This follows by using the fact that a >_-a.
Example 3. The following are examples of GE relations:
(i) Let D {x Ix integer; x -> 0}. For some fixed k,

B(x):x>k.

Define R to be

xRylx-yl=k, x,yD.

Note that if B (x) is true then there is no z x for which z -> x. Hence (trivially) R
is a GE relation with respect to B.

(ii) D {x Ix is an undirected graph}.

(x, y 6 D) x R y :>x, y are isomorphic.

It can be shown (see next lemma) that R is a GE relation for any B. !-1
LEMMA 2. IfR is an equivalence relation, then it is a GErelation with respect to

every B.

AUTOMATIC ASSERTION GENERATION 723

Proof. We first show that

(i) x R y z:),x ->y:
[x > y]<=[x R y]

Case (i) --]B (S(x))

since R is an equivalence relation. Thus, x R y :ff x _-> y.
(ii) x >-_yxR y:

Iz [yRzxRz].

Since R is an equivalence relation, y R y holds. Hence, x R y.
It thus follows that [x >_-y]<=>[x R y].

i.e., Ix >- y]C:>[x R y]<::>[y R x]Cz>[y =>x],

i.e., [x R y]C:>[x =- y],

i.e., ::1 z D[z >-x ^z __> y]:ff ::1 z eD[z =-x ^z --y][x --y].

Thus R is a GE relation for any B. U
The following theorem is the central result. In the statement of the theorem,

only those W(B, S) are considered for which D is closed and W(B, S) terminates
for all inputs from D.

THEOREM 2. LetR be a binary relation andB apredicate on a given domain D.
IfR is a GE relation with respect to B then R is uniformly preserved by any W(B, S)
if it is preserved. Conversely, suppose R is not a GE relation with respect to B andfor
some S is preserved by W(B, S). Then there exists W(B, S’) for which R is preserved
though not uniformly.

Proof. Let R be a GE relation with respect to B. Let F be the function
computed by any W(B, S) on domain D. By assumption, D is closed with respect
to W(B, S) and W(B, S) terminates for every input from D. First we will show that

x R y ^B(x) {S(x)) x R y

x R y ^B(x)S(x) R y.

B(x)F(x)=S(x)

x R y :ff F(x) R y,

since R is preserved. Hence,

xRy ^B(x)S(x)Ry.

Case (ii). B(S(x)): The proof is by contradiction. Suppose that

x R y ^B(x) ^ -](S(x) R y).

Then

xS(x),

xRy^yRzxRz,

724 JAYADEV MISRA

since x R y and (S (x) R y. Using Lemma 1, F(x) >- x and F(S (x)) >-_ S (x). Using
Theorem 1’, F(x) F(S(x)). We thus have

B(x) ^B(S(x)) ^V(x)>-_x ^F(x)>-S(x) ^xS(x).

Hence, R is not a GE relation with respect to B, contradiction.
Next we show that if R is not a GE relation with respect to some B and, for

some S, R is preserved by W(B, S), then there exists S’ such that
(i) D is closed with respect to W(B, S’) and
(ii) W(B, S’) terminates for every input from D, and
(iii) R is preserved by W(B, S’), and
(iv) R is not uniformly preserved by W(B, S’).

We first state a claim whose proof is similar to that of Lemma 1.
Claim. If R is uniformly preserved by W(B, S) then B (x) S(x) => x.
If R is not a GE relation with respect to B then there exist x , x2, x3 D such

that

B(X) ^ B(x2)/kx3xl/kx3x2/kXl -x2.

Since X x2, either X x2 or x2 Xl. Without loss in generality assume that
X2-Xl

The proof proceeds by constructing S’. Consider the following program.

while B flo
i[x x lhen x :- x

else i[x x then x :- F(x3)
else S;

It can be verified that conditions (i), (ii), (iii) are met by this program. Next we
show that R is not uniformly preserved by this program. With input x, we obtain
x2 and then F(x3). However, x2 x. Hence, according to the previous claim R is
not uniformly preserved. Note that the first "else" clause in S’ ensures that the
program would terminate when input with Xl. [-I

Theorem 2 says that given any W(B, S) and R which is a GE relation with
respect to B, in order to prove that R is preserved, it is necessary and sufficient to
prove that R is uniformly preserved. Conversely if R is not a GE relation with
respect to B, it is sufficient though not necessary to prove that R is uniformly
preserved in order to show that R is preserved.

COROLLARY 1. LetR be an equivalence relation. For any W(B, S) (assuming
termination and closure of domain) R is preserved, if and only if it is uniformly
preserved.

Proof. Use Lemma 2 and Theorem 2.
Example 4. Consider a program W(B, S) for sorting an array x of integers. It

is required to prove at the output that the resulting array is sorted and is a
permutation of the input array. To prove the latter, we need to prove

PERM (x, Xo) {W(B, S)} PERM (x, Xo),

where PERM (x, Xo) stands for "x is a permutation of x0". Clearly PERM is an
equivalence relation. It is then necessary and sufficient to prove thatPERM (x, Xo)

AUTOMATIC ASSERTION GENERATION 725

is a loop invariant,

PERM (x, Xo) ^ B (x PERM (S(x), Xo),

B (x PERM (x, S(x)).

The conditions derived in Theorem 2 clearly apply to the iteration condition
in Theorem 1’. This can be seen easily by defining an equivalence relation R on D
such that x R y :>[F(x) F(y)]. Clearly if W(B, S) computes F, R is preserved.
Using Theorem 2, it follows that it must be uniformly preserved.

We next formulate the conditions on R independent of B.
DEFINITION 6. R is a GE relation on a domain D if and only if it is a GE

relation with respect to every predicate B (binary valued total function on D).
THEOREM 3. R is a GE relation on D ifand only if its derived relation (>-) is an

equivalence relation.
Proof. If _>- is an equivalence relation then

[c >-a ^c >-b][a >-_b ^b >=a][a =-b].

Hence R is a GE relation for any B. Conversely, if ->_ is not an equivalence relation
then there exist a, b such that a => b and a -b. Consider some predicate B for
whichB (a) andB(b) are true. R is not a GE relation with respect to this B since

B(a)^B(b)^a>-a^a>-b^ab. [-I

For any relation R, if we define the successor set of a, T(a) {b a R b}, then
R is a GE relation if and only if no successor set T(a) strictly includes another
successor set T(b), since otherwise a ->_ b and b a.

Observation. If R is a GE relation then either all successor sets are null or
none is.

In program proving, it would be easier to consider general GE relations
rather than GE relations with respect to a specific B. Theorem 3 provides a useful
technique for proving that a certain R is a GE relation. The next theorem
essentially provides the verification conditions that must be proved to ensure that
a GE relation is preserved.

THEOREM 4. LetR be a GErelation. Then (assuming termination and closure)

x R y {W(B, S)} x g y,

if and only if
B(x)[x --S(x)].

Proof. We first show that if R is a GE relation,

x R y {W(B, S)} x R y

if and only if

x =- z { W(B, S)} x --- z.

726 JAYADEV MISRA

Let F be the function computed by W(B, S) (on the domain D). Then if R is
preserved by W(B, S), F(x) >-x or F(x) x, since R is a GE relation. This says
that the input x and output F(x) belong to the same equivalence class under =.

Conversely, let

x =z {W(B, S)} x =z.

Thus, F(x) =- x. Hence F(x) >= x or x R y ::), F(x) R y. Hence, R is preserved
by W(B, S).

Using Corollary 3,

x z {W(B, S)} x z

if and only if is uniformly preserved, i.e.,

x =-z ^B(x)(C)S(x)=-z,

B(x)[x=S(x)].

Example 5. The following program is claimed to compute the greatest
common divisor of m, n using successive subtraction.

begin
integer t;
while m n do
begin

if m < n then begin t := m m := n n := end;

end
end;

Let D {(m, n) m, n integer; m, n > 0}. Let GCD be the function of two argu-
ments that has the value of the greatest common divisor of the arguments. Let H
be a function from domain D to range D, defined as follows:

H(m, n)= (GCD(m, n), GCD(m, n)).

We wish to show that

[H(m, n)= H(mo, no)] { W(B, S)} [H(m, n) H(mo, no)],

where W(B, S) represents the above program and (m, n), (too, no) e D at entrance
to the loop.

The reason for usingH instead of GCD is that the former is a function fromD
to D, as required by Theorem 4, whereas the latter is a function fromD to a subset
of positive integers.

We must first prove closure and termination.
(i) Closure:

m, n integer ^ m > 0 ^ n > 0 ^ m n {S} m, n integer, m > 0, n > 0.

Equivalently, we must show,

[m, n integer, m > 0 ^ n > 0 ^ m < n :b Ira, n m integer ^ n m > 0 ^ m > 0]

AUTOMATIC ASSERTION GENERATION 727

and

[m, n integer ^ m > 0 ^ n > 0 ^ m > n] [n, m n integer ^ m n > 0 ^ n > 0].

(ii) Termination: It is then necessary and sufficient to show that H(m, n)=
H(mo, no) is a loop invariant, i.e.

[H(m, n) H(mo, no)] ^ m n {S} [H(m, n) H(mo, no)],

ioeo

and

and

[m n ^ m < n] [H(m, n) H(n m, m)]

[m n ^ m > n] [H(m, n) H(m n, n)]

[m < n :::) GCD(m, n) GCD(n m, m)]

[m > n =:) GCD(m, n) GCD(m n, n)].

All that remains to be proved is the boundary condition given below, in order
to show that m, n both have the value of GCD(mo, no) at the exit.

{m n ^ [H(m, n) H(mo, no)]} ::) {m GCD(mo, no) ^ n GCD(mo, no)}. [-1

Finally, we show that a certain simple class of relations, as given in Example
3, can be shown to be preserved by extending the given relation to an equivalence
relation and proving that the latter is preserved.

DEFINITION 7. Given any relation R on D, define the reflexive, symmetric,
transitive closure R * ofR as follows.

aR*bCr>(a=b)vaRbvbRav[c(aR*c^cR*b)], a,b,cD.

Thus, R * is an equivalence relation. Under certain conditions, it is both necessary
and sufficient to prove that R * is uniformly preserved, in order to show that R is
preserved.

THEOREM 5. Let R be any relation on D and R* be its reflexive, symmetric
transitive closure. Suppose for some predicate B on D,

x1R*x2A-]B(x.1)x1Rx2, [x1, x2GO.
Then

x g y {W(B, S)} x g y

if and only if R * is uniformly preserved, assuming closure and termination.
Proof. We show that

x R y {W(B, S)} x R y if and only if x R* y {W(B, S)} x R * y.

Since R* is an equivalence relation, the statement in the theorem would follow.
Let F be the function computed by W(B, S). Suppose

x R y {W(B, S)} x R y.

728 JAYADEV MISRA

Then

x R y =F(x) R y =F(x) R* x.

Thus, x and F(x) belong to the same equivalence class under R*, or

x R* y {W(B, S)} x R* y.

Next, suppose, x R* y {W(B, S)} x R* y. Then on termination, --]B (x) ^
x R * y =>x R y, or x R * y {W(B, S)} x R y.

Since x R y => x R * y, it follows that x R y {W(B, S)} x R y. gl

Example 6.

begin
while v # 0 and v # 1 do v := v 2

end;

D={vlv>-O; v integer}, v, u D, vRu(vu) and u, v have identical parity
(both even or odd). v R * u u, v have identical parity.

(v, u D) {v R* u ^Iv =0v v 1]}[v _-<u],

and u, v have identical parity.
Hence, according to Theorem 5, it is necessary and sufficient to prove that

v R* u is a loop invariant, in order to show that R is preserved; i.e.

vR* u ^v #O^v # 1 =>(v-2) R* u.

Termination and closure must be proven separately, f-!

4. Summary and conclusion. We have shown that any equivalence relation is
uniformly preserved if it is preserved by a loop program. Theorem 5 extends the
results somewhat for relations that are essentially equivalence relations except
for certain boundary conditions. A practical outcome of this result is that loop
invariants may be generated algorithmically for certain classes of input/output
relations. There is no need to look through the body of the loop to generate the
invariant, provided closure and termination have been proven separately.

Unfortunately, the results also establish that such conditions cannot be
obtained for any other classes of relations. Thus, even a simple transitive relation
such as "-<" on positive integers is not uniformly preserved even though it is
preserved. We believe that one needs to look at the program body S, for
generating the loop invariant, for all other classes of relations.

One promising direction of research is to consider other classes of relations
and "reasonable" programs. The loop invariant could be generated if the program
meets certain reasonable restrictions; for example, we may assume that a program
operating on stacks may not process any other element, before processing the top
element, (i.e. it should not be allowed to save the top element, process and remove
the second element from top and then restore the top element). Some preliminary
results appear in [3], [7].

Another problem we have not considered in this paper is the problem of
nonclosed domains. Frequently, a loop is preceded by initializations which restrict
the input domain. Most of the time, the domain will not be closed with respect to
the program. It is often required to prove a certain relation (such as a functional

AUTOMATIC ASSERTION GENERATION 729

equality) in the restricted domain. This problem has been considered for the case
of functional equality in [2], [3], [7]. This seems to be the major problem in
synthesis of loop invariants. It seems likely, however, that by suitably restricting
the operations of the program, it may be possible to prove that the program
computes a certain relation over a superset of the given domain (which is closed)
from which the stated conjecture may be proven.

Acknowledgment. The author is indebted to the referees for their construc-
tive comments.

REFERENCES

[1] S. BASU AND J. MISRA, Proving loop programs, IEEE Trans. on Software Engrg., (1975), pp.
76-86.

[2], Deterministic generation o]’ inductive assertions, IEEE Workshop on Automated
Theorem Proving, Argonne National Lab., Argonne, IL, 1975.

[3],Some classes of naturally provable programs, Proc. Second International Symposium on
Reliable Software, San Francisco, 1976.

[4] C. A. R. HOARE, An axiomatic approach to computer programming, Comm. ACM, 12 (1969),
pp. 576-580, 583.

[5] S. KATZ AND Z. MANNA, A heuristic approach to program verification, Proc. 3rd International
Conference on Artificial Intelligence, Stanford Univ., Stanford, CA, 1973.

[6] J. MISRA, Relations uniformly conserved by a loop, Proc. 9th International Symposium on
Proving and Improving Programs, Arc et Senans, France, 1975, pp. 71-80.

[7],Some aspects o] verification o]: loop computation, unpublished manuscript.
[8] M. MORICONt, Semiautomatic synthesis of inductive predicates, ATP- 16, Dept. of Mathematics,

Univ. of Texas at Austin, 1974.
[9] J. H. MORRIS AND B. WEGBREIT, Subgoal Induction, Xerox Palo Alto Research Center, 1975.

[10] B. WEGBRErr, Heuristic methods]’or mechanically deriving inductive assertions, Proc. 3rd
International Conf. on Artificial Intelligence, Stanford Univ., Stanford, CA, 1973.

SlAM J. COMPUT.
Vol. 6, No. 4, December 1977

AN ANALYSIS OF A GOOD ALGORITHM
FOR THE SUBTREE PROBLEM*

STEVEN W. REYNER"

Abstract. A good algorithm is analyzed for deciding if one tree is a subtree of another tree. If both
trees are rooted, the smaller tree has n vertices and the larger has rn vertices; then the total number of
computations is O (nm 15) or better, depending on how good an algorithm one has for a maximal
matching in a bipartite graph.

Key words, algorithm, algorithmic analysis, bipartite graphs, computational complexity, match-
ing, subtree

1. Introduction. We present and analyze a good algorithm for deciding if one
rooted tree S is a subtree of another rooted tree T. This algorithm is equivalent to
the one sketched by Matula [3]. When one deletes the root of a rooted tree, one
obtains subtrees, each of which is now rooted at that vertex adjacent to the
original root. We use these rooted subtrees together with a good algorithm for a
maximal matching in a bipartite graph to determine whether or not S is a subtree
of T.

2. The algorithm.
ALGORITHM. 1) Delete the roots of S and T to obtain rooted subtrees

S1,’’’, Sp and T1,""’, Tq.
2) (Recursively) Decide if S is a rooted subtree of T. and form ap q matrix

A with aq 1 (0) if S is (not) a rooted subtree of T..
3) Apply an algorithm for obtaining a maximal matching in a bipartite graph

to A to decide if all the rooted subtrees of S can be matched with rooted subtrees
of T.

3. Data storage. For computational purposes, we store a rooted tree as a
vector as follows. (See Busacker and Saaty [1].) The vector for an isolated vertex is
1. For more complicated rooted trees, the first entry is the number of vertices of
the tree and the remaining entries are formed by arranging the vectors of the
rooted subtrees (obtained by deleting the original root), these vectors arranged in
increasing (lexicographical) order.

Given a rooted tree, it is trivial to obtain its rooted subtrees. If the vector V
describes the tree and I is the location of a root of a subtree, then the vector
describing the subtree is V(I), V(I + 1),. , V(I + V(I) 1). Since in deciding if a
tree is a rooted subtree of another, one need not alter either for this algorithm, the
computations involved in obtaining the subtrees are insignificant.

If one programs this algorithm using a language which is recursive and in
which arrays are allocated dynamically (such as APL), one could use two
subprograms BIPARTITE and SUBTREE, two global vectors VECTS and
VECTT and several local matrices A. A global variable is one available to all
subprograms. A local variable is one available only in a main program or

Received by the editor March 20, 1976, and in revised form January 15, 1977.

" Department of Mathematics, State University of New York at Oswego, Oswego, New York
13126. This work was performed while author Was on sabbatical at State University of Colorado, Fort
Collins, Colorado.

730

AN ANALYSIS 731

subprogram where it is defined, plus any other routine to which it is specifically
passed. The vectors VECTS and VECTTwould store the two rooted trees S and T
as previously explained. BIPARTITE uses as input a 0-1 matrixA and returns a 1
if a maximal matching of rows to columns using l’s uses all the rows (the number of
independent l’s equals the number of rows) and returns 0 otherwise. SUBTREE
would receive as input two local scalars I and J, the location of the roots (at the
current stage) in VECTS and VECTT. We refer to these rooted subtrees as
subtree I and subtree J. SUBTREE creates a matrix A which is VECTS(I)-1 by
VECTT(J)-I. Set A (K, L) to 1 if the Kth vertex adjacent to any beyond the
vertex corresponding to I is terminal. Set A (K, L) to 0 if this Kth vertex is not
terminal but the Lth vertex adjacent to and beyond the vertex corresponding to J
is terminal. If neither is terminal, then SUBTREE invokes SUBTREE (creating
an additional, independent A) to decide if subtree K is a subtree of subtree L
(A (K, L) is 1 yes, 0 no). WhenA is completed, BIPARTITE is invoked to decide
if subtree I is a subtree of subtree J. SUBTREE returns 1 if subtree I is a subtree
of subtree J, and 0 otherwise.

By being recursive, several different A’s are in use at any one particular
moment which the computer keeps track of. The total significant variable storage
in use at any time is the two vectors VECTS and VECTT plus several A ’s. The
total storage required by the various A’s is obviously bounded both by the order
of S times the maximum degree minus 1 of T and by the order of T times the
maximum degree minus 1 of S.

4. Computational bounds. The key to this being a good algorithm is using a
good algorithm for obtaining a maximal matching in a bipartite graph rather than
putting subtrees together in all possible combinations.

The algorithm for a maximal bipartite matching with best proven bound on
number of computations currently appears to be given by Hopcroft and Karp [2].
In this algorithm, the number of computations is shown to be no worse than
O(rs 1.5) where the bipartite graph matches r to s vertices with r _-< s. Obviously, the
efficiency of the matching algorithm dictates the efficiency of the subtree
algorithm. Let n and rn denote the number of vertices in S and T respectively. We
now prove two theorems relating the efficiency of a matching algorithm to the
efficiency of our subtree algorithm.

THEOREM 1. Given an algorithm for bipartite matching which requires at most
O(rs u) operations where r <= s and u > 1, the subtree algorithm will require at most
0(nm u) operations.

Proof. Choose b large enough so that the matching algorithm requires at most
brs operations for each r and s, and so that the subtree algorithm requires at most
bnm" operations whenever n and rn satisfy (n 1)((m 1)" + rn 1) > nm. Such
a b exists since only finitely many n and m satisfy the above inequality and the
marriage algorithm is O(rs"). Note this gives us a starting point for induction. We
prove that at most bnm operations are required for any n and m, namely when
(n --. 1)((m 1)u + m 1) <- nm ". We now assume n and m satisfy this last inequal-
ity. If the valences of the roots of S and T are d andf respectively, and the number
of vertices in Si and T. are ni and mj respectively, then the number of computa-

732 STEVEN W. REYNER

tions involved in the subtree algorithm is at most

a /, f
bdf + ., Y bnm’/ bdf" + b (n 1) Y m’/

i=lj=l

<=b(n 1) f" + Z m7 <b(n -1)(f" +f- 1 +(m -f)’)
1=1

computations. Since the second derivative of this last term is positive 1-<f =<
m- 1, the maximum occurs at an end point and an upper bom,d is the larger of
b(n- 1)(1 +(m 1)u)<-bnm and b(n 1)((m 1) +m 1)<-_bnm (by assump-
tion); thus at most bnm operations are required.

THEOREM 2. Given an algorithm for bipartite matching which requires at most
brs operations, the subtree algorithm will require at most bmn In (n operations.

Proof. We again proceed inductively. If n 1 this is obvious. Given the tree
and subtree descriptions of the last proof, the number of computations involved is
at most , Y. bnim In (ni + bdf b (m 1) n, In (hi) + bdf

i-----lj----1 i=1

<-b(m l)((n -d) In (n-d)+d).

Since the second derivative is positive l_-<d_-<n-1, an upper bound is
the larger of b(m-1)((n-1)ln(n-1)+l)-<bnmln(n) (for n_->2) and
b (m 1)(0 + m 1) <-_ bnm In (n), as required.

5. Conclusion. If one is interested in solving the corresponding problem for
unrooted trees, one may root S at will and root T in all m possible ways. Thus one
needs at most m times as many computations as indicated in Theorems 1 and 2.

The matching algorithm involves upwards of rs bits of data, thus it seems
unlikely that a matching algorithm could be better than O(rs). Consequently,
Theorems 1 and 2 appear to cover all possible cases, and we have a good algorithm
for deciding the subtree problem.

REFERENCES

R. BUSACKER AND T. SAATY, Finite Graphs and Networks, McGraw-Hill, New York, 1965, pp.
196-199.

[2] J.E. HOPCROFTAND R. M. KARP, An n 5/2 algorithmfor maximum matchings in bipartite graphs,
this Journal, 2 (1973), pp. 225-231.

[3] DAVID W. MATULA, An Algorithm for subtree identification, SIAM Rev., 10 (1968), pp.
273-274 (Abstract).

SIAM J. COMPUT.
Vol. 6, No. 4, December 1977

ON RELATING TIME AND SPACE TO
SIZE AND DEPTH*

ALLAN BORODIN’

Abstract. Turing machine space complexity is related to circuit depth complexity. The relation-
ship complements the known connection between Turing machine time and circuit size, thus enabling
us to expose the related nature of some important open problems concerning Turing machine and
circuit complexity. We are also able to show some connection between Turing machine complexity and
arithmetic complexity.

Key words, space, depth, time, size, computational complexity, parallel arithmetic complexity,
parrallel time

1. Introduction. Fischer and Pippenger [7] have shown that a T(n) time
bounded Turing machine (TM) can be simulated on n bits by a combinational
(Boolean) circuit with O(T(n)log T(n)) gates (see also Schnorr [25]). In this
paper, we observe that nondeterministic S(n) tape bounded Turing machines can
be simulated by circuits of depth O(S(n)2). In doing so, we relate the power of
nondeterminism for space bounded computations to the depth required for the
transitive closure problem. As a consequence of this development we show a
relationship between the TIME-SPACE problem and the SIZE-DEPTH prob-
lem (equivalently the SIZE-FORMULA SIZE problem).

There has always been some ambiguity between the terminology of circuit
complexity and TM complexity. In particular, depth is sometimes referred to as
"time". But here "time" implicitly means parallel time, since several gates in a
combinational circuit can operate in parallel. (In arithmetic complexity, depth is
almost always referred to as parallel time.) In Pratt and Stockmeyer [22], we are
introduced to vector machines, a general parallel machine model; general in the
sense that inputs can be of arbitrary length (see also Hartmanis and Simon [9]). It
is then shown that polynomial time (that is, parallel time) for these vector machine
corresponds to TM polynomial space. Motivated by the simulations of Pratt and
Stockmeyer [22] and Hartmanis and Simon [9], it is not hard to see that the crux of
our space simulation should rely on the transitive closure problem. In the next
section, we define the models more carefully and present the basic simulation. In

3, we discuss relationships between TM and circuit complexity. In 4, we
conclude with some observations concerning arithmetic complexity.

2. Turing machines, circuits and the basic simulation. We assume that the
reader is familiar with Chapters 6 and 10 of Hopcroft and Ullman [11]. Our TM
model is an "off-line" machine with a two-way read only input tape. For time
bounded computations we allow an arbitrary but finite number of work tapes. For
tape bounded computations, it is sufficient to have just one work tape. The benefit
of the read only tape is that it allows us to consider tape bounds less than the length
of the input. Usually we consider Turing machines as acceptors or recognizers but

* Received by the editors March 30, 1976, and in revised form December 6, 1976.
? Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A7.

This research was supported by the National Research Council of Canada.

733

734 ALLAN BORODIN

sometimes we will need to consider transducers, in which case we append a write
only output tape.

For a nondeterministic machine M, say that L
_
* is accepted in time T(n)

(space $(n)) byM if w L iff on input w there is a valid computation leading to an
accepting state which uses <- T(Iwl) steps (respectively, S(Iwl) work tape cells).
Here Iwl denotes the length of the string. Without loss of generality, we can
restrict ourselves to E {0, 1}.

A combinational (Boolean)circuit is a labeled acyclic, directed graph (a
network). Nodes with in-degree=0 are called input nodes, nodes with out-
degree 0 are called output nodes. Interior nodes (i.e. noninput nodes including
output nodes) represent (i.e. are labeled with) logical gates f: {true, false} - {true,
false}. Since we shall only be concerned with asymptotic complexity bounds,
without loss of generality we can use the complete basis AND (denoted ^),
inclusive OR (v) and NOT (7). (See Savage [23, pp. 662, 663].) We can have
arbitrary fan-out and allow the constants {true, false} as inputs. By associating true
with ’1’ and false with ’0’, we think of every Boolean circuit as realizing a function
f: {0, 1} --> {0, 1}. That is, let A {0,1} we say A is realized by circuit C if C
has n nonconstant input nodes (labeled x x) and C accepts (i.e. outputs
1 -true) iff x ix2.., x, is in A". As a notational convenience, if A

_
{0, 1}*, let

A" :A f-I{0,
The size of a circuit C is the number of interior nodes or gates, and the depth

of C is the length of the longest path in C. We will also have need to encode a
circuit C as a string in {0,1}*. This can be done in a straightforward way; i.e.
topologically order the network, give addresses to each of the nodes, and then a
circuit can be given as a sequence of instructions.

If the output of C depends on all n inputs x,..., x,, the size of C must be
->_ n 1; it follows that I1--> d size C. log size C for some constant d > 0. (Note
that the chosen basis implies fan-in =< 2.)

Finally, we let SIZEa (n) (respectively DEPTHa (n)) be the minimum size
(depth) required for a circuit to realize A". Using this notation, we recall the
time-size simulation result.

THEOREM 1 (Fischer and Pippenger [7]). LetA be recognized by a determinis-
tic T(n)>-n time bounded TM. Then there exists d > 0 such that SIZEA (n)<_
d T(n) log T(n).

Analogously, we have the following:
THEOREM 2. Let A be accepted by a nondeterministic S(n)>-_ log2 n space

bounded TM. Then there exists a d > 0 such that DEPTHA (n)<-_ d S(n).
Proof. Let M be a S(n) tape bounded nondeterministic TM with S(n)>-

log2 n. Say M has q states and s symbols on its work tape and that the input
w {0, 1}". Thinking of w as fixed, the computation sequence is "determined" by
the state, the input tape head position, the work tape head position, and the
contents of the work tape. Thus there are at most N=q n S(n). s s(") config-
urations. We can think of the acceptance problem as the transitive closure
problem for a graph with N nodes, whose edges correspond to the allowable
moves determined by M and w.

Let X (xi) where xi 1 iff there is a move from configuration to config-
1 iff there is auration/’, and let X* (x) be the transitive closure. That is, x o

path from configuration to configuration/’. (See Fig. 1.)

ON RELATING TIME AND SPACE TO SIZE AND DEPTH 735

TRUE X1N XNN

Transitive Closure

Circuit
X*

FIG.

Let be the number of a configuration corresponding to the input head being
on square k. Then

wk is directly connected to xij iff there is a move from configuration to only
when the kth input bit is 1.

wk is negated and then connected to x0. iff there is a move from configuration
to f only when the kth input is 0.

w is not connected to x0 iff there is (is not) a move from configuration to j
independent of the value of the kth input bit. In this case x0 is set to the
appropriate constant.

Let 1 be the number of the starting configuration and let ft. (1 <-j <_- r) correspond
to accepting configurations. By using log (N- 1) levels of Boolean matrix multi-
plication, it is well known that an N xN transitive closure circuit requires only
log2 N depth. Also, an N-way ’OR’ can obviously be realized with depth log N.
The theorem follows sinceN q n S(n). s s(n) and therefore log N < d S (n).

Remark. Let A be accepted by M as in Theorem 2. With a little care in the
numbering of the configurations, the mapping 1 Cn (where C, realizes A n) is
computable by a deterministic $(n) space bounded transducer if $(n) is tape
constructible. This follows because of the "uniformly constructive" nature of the
log2 N depth transitive closure circuits (i.e. they can be generated in log N space).
We shall have more to say about "uniformity" in 3.

Open Problem 1. IfM is deterministic S(n) tape bounded, can we improve the
simulation so that DEPTHA (n) <_- d S(n)?

Since each output in theN xN transitive closure problem can be computed in
nondeterministic log N space, it follows that improving the simulation for
nondeterministic machines is equivalent to improving the depth required for the
transitive closure problem. In particular, if the N xN transitive closure problem
can be realized with depth <- c log n (where 1 <- ce <- 2) then DEPTHA (n)-<
d. S(n)’ in Theorem 2.

736 ALLAN BORODIN

Open Problem 2. Let A be recognized by a deterministic S(n) tape, T(n) time
bounded machine. Can we realize A by circuits with SIZEA (n) ciT(n)k’ and
(simultaneously) DEPTHa (n)2T(n)k2 for some constants cl, c2, kl, k2.9

Let -<-log represent log space reducibility (see Jones and Laaser [12]). We
could allow nondeterministic transduction here but we might as well follow the
standard meaning of deterministic log space many-one reducibility. By converting
every log space transducer to one with a separate track keeping count (in binary)
of the number of output bits thus far in the computation, we can generalize
Theorem 2 as follows:

THEOREM 3. Let A <-_ og B. Then

DEPTHA (n)-< d. log2 n + max DEPTHB (m)
cn

[or some constants c, d and k.
Proof. Let m be the log space transducer which reduces A to B. Then on input

w of length n, M can output at most N cn bits sinceM is log n space bounded.
Let yo (respectively, y) be the ’OR’ of those configurations where the ith bit being
output is a ’0’ (respectively, ’1’). If y o and y are both false, then we know that M
outputs less than bits on input w. Knowing m, the exact number of bits output by
M on w, we can "activate" the circuit C,, for B" with inputs y] (1 <=i =<m). (See
Fig. 2.)

Following standard notation, let P be the class of languages recognizable in
deterministic polynomial time. B is called log space complete for P if

(i) B is in P,
(ii) A in P implies A -< log B.

Cook [3], Jones and Laaser [12] and Ladner [29] exhibit a variety of natural sets
which are log space complete for P. We can define an analogous concept for
circuits. Namely, let us say that B is depth completeforpolynomial size circuits if

(i) SIZEB (n)<=p(n) for some polynomial p.
(ii) Let A be such that SIZEA (n)<=p(n) for some polynomial pl. Then

there exist constants c and k, and a polynomial q such that for all n there
is an n-input circuit Tn with the following properties:
(a) depth Tn _-< logk n

Note" of course, we would like k 1.
(b) T, outputs (yl,...,yN)=/((xl, ...,x.)) and (zl,...,zN)=

fz((X,’’’ ,x,)) for some fixed N<-q(n).
(c) there is a unique output z,, with value 1 and for this m we have
x x,, in A" iff y ym in Bin.

Our definition has been chosen so that the construction in Theorem 3 immediately
yields"

COROLLARY 1. IfB is log space complete for P, then B is depth complete for
polynomial size circuits.

We think of depth (log space) complete sets as being "hardest polynomially
computable sets" with respect to depth (space) requirements. Ladner defines the
following "circuit value problem" and shows it to be log space complete for P:

V {x x.]C outputs true on input x Xn}.

ON RELATING TIME AND SPACE TO SIZE AND DEPTH 737

’OR’

Make N-m+l copies
of each y (1 _<- m <= N)

YlY Compute

As in
Theorem 2

ZN

v

OUTPUT

FIG. 2

Corollary i verifies the obvious fact that V is depth complete for polynomial size
circuits.

3. Relating open problems in Turing machine and circuit complexity. As
usual, we let DTIME (T(n)) (respectively, DSPACE (S(n)), NSPACE (S(n))
denote the class of languages accepted in deterministic Time T(n) (respec-
tively, deterministic and nondeterministic space S(n)). Analogously, define
SIZE(T(n)) {BISIZEB(n <- c. T(n) for some constant c} and DEPTH(S(n))

738 ALLAN BORODIN

{BIDEPTHn(n)_-< c. S(n)}. We first want to complete the relationship
between TM space and circuit depth and thus we need a "converse" to Theo-
rem 2.

LEMMA 1. Let V be the circuit value problem. There is a deterministic TM M
which recognizes Vsuch that on inputx x, # C, Monly uses space bounded by
Depth C+ log size C.

Proof. The idea is just to recursively evaluate (say, first the left and then the
right) inputs to a given gate. A straightforward implementation using a pushdown
store would require depth C. log size C storage (i.e. depth C levels in the store,
log size C space for each gate address entry). We use a suggestion by S. Cook to
improve this to the desired bound. In evaluating the output of C, we only need to
store the full address of the gate currently being evaluated while the status (e.g.
left input has value "false" and right input now being evaluated)of each gate on
the pushdown store can be accommodated within constant space. We can recom-
pute the address of any gate on the stack by working up from the bottom of the
stack (i.e. the circuit output gate) via the status entries.

DEFINITION. We say that A is uniformly in DEPTH (S(n)) if there is a
constant c such that for all n, there is a circuit C, of depth -< c $(n) realizing A"
and, moreover, C, can be generated in deterministic space S(n); i.e. the
transformation 1" - C, is deterministic S(n) space computable.

THEOREM 4. SupposeA is uniformly in DEPTH (S(n)), $(n)>= log n. Then A
is in DSPACE (S(n)).

Note. We view this as a "converse" to Theorem 2 for that result can be stated
as" "If A is in NSPACE (S(n)), then A is uniformly in DEPTH (S(n)2)".

Proof. Given an input w x x,, we apply Lemma 1. Now whenever we
need to know the ith bit of C, (as in the lemma), we compute it (in the required
space) by using the uniformity hypothesis.

It is well-known that one can define arbitrarily complex or nonrecursive sets
A such that for all n, A" & or A" Z". Since a trivial circuit realizes A" for each
n, it is clear that A in DEPTH (S(n)) does not imply that A in DSPACE (S’(n))
for any $’(n)>-S(n). In order to relate space and depth, we chose to assert a
uniformity condition on the circuits. There is another choice. Following Schnorr
[25], Meyer and Stockmeyer [17] suggest "making the Turing machines
nonuniform" by giving them oracles. Then they observe that our Theorems 2 and
4 can be modified as follows"

(a) If A is recognized by a nondeterministic $(n) space bounded TMMwith
a {0, 1}* oracle, then A is in DEPTH (S(n)2).

(b) If A is in DEPTH (S(n)), then A is recognized by a deterministic $(n)
space bounded TM M with a {0, 1}* oracle.

In (b), the oracle is used to encode the appropriate efficient circuit. In both (a) and
(b) we count the space needed for the oracle tape questions. This formulation does
have a very nice mathematical appeal. We have, however, chosen to assert the
uniformity of circuits because from a "practical" point of view, experience tells us
that if we can show A is in DEPTH (S(n)), then we usually can show A is
uniformly in DEPTH (S(n)). The same choice also exists for the TIME-SIZE
relationship. Here "uniformly in SIZE (T(n))" means that we can generate the
appropriate circuit description in deterministic time T(n). Then we can relate

ON RELATING TIME AND SPACE TO SIZE AND DEPTH 739

uniform size and time or (see Schnorr [25]) we can instead relate size and time of
Turing machines with oracles. Using Schnorr’s [25] model, nonuniformity takes
form in a {0, 1}* oracle explicitly listed on a separate tape; Meyer [16] shows that
with the more conventional model which uses a separate tape for inputs to an
oracle, nonuniformity for time takes form in a {0}* oracle.

We can use Theorems 2 and 4 to make explicit the role of transitive closure in
Savitch’s [24] construction. Throughout the remainder of this paper we let a
(1 _<-a _-<2) be such that the NN transitive closure problem can be realized
(uniformly) with depth -<_ c log N.

COROLLARY 2. Leta be as above. Then NSPACE (S(n))
_
DSPACE (S(n))

]’or all tape constructible S(n) >- log n.
Proof. Let M be a nondeterministic S(n) space bounded TM accepting A.
For every input w x x, we can generate a circuit C, corresponding to

M, w (as in Theorem 2). By hypothesis, this can be done in deterministic space
S(n), and depth C,, <-c. S(n)’ for some constant c (see the remarks following
Theorem 2).

That is, A is uniformly in DEPTH (S(n)’) and hence A is in DSPACE
(S(n)’). More constructively, by using Theorem 2 and Lemma 1, we can produce
a deterministic S(n)’ tape bounded machine M’ recognizing A. 71

One of the most important problems in computational complexity concerns
efficient space simulations of time bounded computations. In particular, there is a
conjecture that DTIME(T(n))c_.DSPACE(log’T(n)) for some constant k.
(Indeed, k 1 is still possible.) Cook [3], and Cook and Sethi [4] present
important evidence that the conjecture is false, and this represents the concensus
of opinion at this time. On the positive side, Hopcroft, Paul and Valiant [10] have
shown that DTIME (T(n))_c DSPACE T(n)/log T(n)). Independent of this
result (and independent of our observations), Paterson and Valiant [19] proved
that SIZE (T(n))c_ DEPTH (T(n)/log T(n)), noting that their result only had
significance when T(n) n. The known relationships between TIME-SIZE, and
SPACE-DEPTH are not refined enough to show that either of these results
follows from the other, but we can show that the problems are related.

CorOLLAI’ 3. Suppose DTIME (n)
_
NSPACE (S(n)). Then SIZE

(T(n))
_
DEPTH (S’(n)) uniformly for any time constructible T(n) where S’(n)

[S(T(n) log3 T(n))]. Here uniformly means that the required cS’(n) depth circuit
can be constructed in deterministic space S’(n). Recall a <= 2.

Proof. Given a T(n) size circuit C, we encode it as a word C of length =<
c. T(n). log T(n). A straightforward circuit simulation by a TM can be per-
formed in deterministic time rn 2, where rn is tile length of the circuit description.
Recently, Pippenger [21] showed how to recognize the circuit value problem V in
time rn log2 m. By hypothesis, and using a standard translation argument, we
have DTIME (T(n))_ DSPACE (S[T(n)]). Hence there is a deterministic TMM
recognizing V in space S(m log m); in particular, x x, # C will be accepted
or rejected in space S(m log2 m) S(T(n) log3 T(n)). Hence there is a circuit
C’ of depth c S’(n) which realizes x x, # C. Finally we can fix the input gates
for C and the resulting circuit has depth <-c S’(n).

For example, we have "DTIME(n)_NSPACE(logn) implies
SIZE (T(n))_ DEPTH (log T(n)) uniformly".

740 ALLAN BORODIN

COROLLARY 4. Suppose SIZE (n)_c_ DEPTH (S(n)) uniformly. Then
DTIME (T(n))_ DSPACE (S[T(n). log T(n)])for all constructible T(n).

Proof. LetM be T(n) time bounded. We construct an equivalent M’. M’ on
input w Xl... x, constructs a circuit C, of size c T(n)log T(n) according to
the Fischer-Pippenger simulation. (We claim with their oblivious T. log T
machine that this can be done in space log T(n).) Then, by hypothesis, we
construct an equivalent circuit C’, of depth d S[T(n). log T(n)] and finally apply
Lemma 1 or Theorem 4 to produce the desired M’.

Again, for example, "SIZE(n)DEPTH(logkn) uniformly implies
DTIME (T(n))_ DSPACE (logk T(n))". Note that Corollary 4 is "almost good
enough" to derive the Hopcroft, Paul and Valiant 10] result from the Paterson
and Valiant [19] construction. (The latter construction can be realized in space
n/log n). Summarizing, we have shown that the TIME-SPACE problem for
Turing machines is "roughly" equivalent to an "efficiently constructive" version
of the SIZE-DEPTH problem for circuits.

Circuits with a fan-out 1 restriction correspond to formulas. Spira [26] has
shown that a formula of size T(n) >-_ n can be transformed to an equivalent formula
of depth =< c log T(n). (Consider also Brent’s [30] analogous result for arithmetic
expressions). Moreover, it should be clear that formula size -<_ 2depth. Hence, if we
are looking for an example where formula size is exponentially larger than
(arbitrary circuit) size, we might as well look at any of the languages which are log
space complete for P. It should be noted that Spira’s construction is reasonably
uniform; that is, a formula of size n can be transformed within log2 n space to an
equivalent formula of depth c log n. (This transformation should be compared
with the hypothesis of Corollary 4.) We do not see how to construct a depth
c. log n formula in space log n. However, using Lynch’s [15] log n formula
evaluation in conjunction with Theorem 2, we can construct a depth c. logZn
formula in space log n.

4. Some comments on arithmetic circuits. An arithmetic circuit is like a
Boolean circuit except that now the inputs are indeterminates x 1,’’ ", x (and
possibly constants c F, F a field), the internal gates are +, -, , :-, and the
outputs are considered to be elements of F(x 1, , x) (see Borodin and Munro
[1]). For definiteness, let’s take F-Q, the rationals. Strictly speaking, the
size-depth question for arithmetic circuits is not a problem. Kung [14] has shown
that x2 requires k depth (depth is called parallel time in the literature of

2:arithmetic complexity) and x can obviously be realized with size (or sequential
time) k. However, if one restricts attention to functions of small degree, the
size-depth question is meaningful.

Throughout the remainder of this discussion, let us restrict our attention to
the computation of multivariate polynomials or rational functions p(x,. , x)
of degree _-< n. (Also, if we do not allow arbitrary constants in Q as inputs, then we
should also restrict the coefficients occurring in p.)

To argue the case that arithmetic complexity and the more traditional studies
of computational complexity are related, let us consider a current problem
concerning parallel arithmetic computations. Csanky [5] has shown that if
PWR (A) {A 2, A 3,..., A]A an n n matrix} is computable in L (n) depth
(parallel steps) then A 1, det A, coefficients of char (A) would all be computable

ON RELATING TIME AND SPACE TO SIZE AND DEPTH 741

in O(L(n)) depth. Sch6nhage has demonstrated that a converse also holds;
specifically, PWR (A) can be obtained from B-1 where

I A

B= I A

Now we know log n _-< L (n)-< log2 n and the question arises as to whether or not
L(n) O(log n). To dramatize the consequences of Corollary 2, we can make the
following observation.

COROLLARY 5. We now consider only circuits with +, -, x (no +)and
constants in Q.

Suppose there is a deterministic L (n transformation 1 - C, which generates a
depth L(n) arithmetic circuit C, realizing A,, (say L(n)=log n). Then
NSPACE (S(n))

DSPACE (S(n)O log S(n))]:or all constructible S(n) >- log n.

Proof. Let A * (a) be the transitive closure (considered as a set of Boolean
functions). Let A (a0.) be a matrix with {0, 1} integer entries, and assume a 1,
1 =< =< n. Letting (0) A" (with respect to arithmetic matrix multiplication),
we then have a 0* min (0, 1). Starting with a 0-1 matrix A, we know ij <-- n". We
would like to simulate (integer) arithmetic as in Munro [18] and Fischer and
Meyer [6] but "mod n n’’ arithmetic is n. log n bit arithmetic and costs depth
log n. Instead following another suggestion by S. Cook, we can simulate the
arithmetic modpi (1 <-i <= m) where {pi,..., p,,} are the first m primes and
l-f" P >- n n. Since by the prime number theorem the number of primes less than x
is asymptotically equal to x/log x, this can certainly be done with p,, <- cn log2 n.
(In the case of rational constants q r/s, we must make sure that s -1 mod Pi exists;
that is, we choose our {pg} so that no such s is equal to 0 mod p. Since we are only
considering circuits with L (n) <= log2 n, the size of the circuit is <- ng" and so we
need only avoid at most ng" "bad primes".) The depth cost of the modp
arithmetic results in a log log n factor. We do not need to reconstruct any ffj since
di =0 iff d0 modp =0 for all p. Thus a transitive closure circuit of depth
L (n). log log n can be constructed (by a deterministic L (n) tape TM). Corollary 2
completes the proof.

Some discussion on Corollary 5 is appropriate. The restriction that C, be
uniformly generated is certainly necessary (see also Corollary 2). Our viewpoint,
however, is that the discovery of a depth efficient method for A" would be
sufficiently constructive to yield the uniformity hypothesis. The restriction that +
is not allowed in Corollary 5; is both annoying and possibly unnecessary. It is
annoying because division is obviously necessary for A-1 and thus any method for
A" which is derived from A -1 would use division. The problem with / is that
during the computation we might be dividing by a very large y for which y---0
mod (pg) for all small primes pi. For the computation of a polynomial of degree n,
one can use the method of Strassen [27] to eliminate /, but this results in an
O(log n) factor in the depth bound. It is not known whether this factor can be
improved. Yet in spite of all our restrictions, one has "the feeling" that an

742 ALLAN BORODIN

O(log n) depth method for any of the problems det A, A-l, A would lead to a
positive solution to the LBA problem (i.e. NSPACE (n)= DSPACE (n)? See
Hartmanis and Hunt [8]). The present consensus is that this is very unlikely; that is,
NSPACE (S(n)) DSPACE (S(n)) for constructible S(n), and indeed any
improvement to Savitch’s NSPACE (S(n))_ DSPACE (S(n)2) would be a sig-
nificant result for "traditional computational complexity".

Looking at Sch6nhage’s observation on how to use A-1 to compute A", one
sees that a depth efficient circuit for A can be composed of a c log n depth
transformation (yl,’", Ym)=f((xl, X,)) followed by a circuit for A -1. In
other words, we can define a reducibility for arithmetic circuits (as we could for
Boolean circuits but here m should only depend on n) in analogy to the log space
TM reducibility. Motivated by Corollary 1, and Paterson and Valiant [19], we are
led to ask the following questions.

Open Problem 3. Is there a "natural" class of polynomial or rational functions
which are depth complete for polynomial size arithmetic circuits? Can every
rational function computable in size T(n) be computed in depth T(n)/log T(n)?
(Note: we are still only considering rational functions f(xl,’’’ ,x,)of degree-<
n.) Is depth logT(n) possible?

In general, one cannot expect that positive results for Boolean computations
always have arithmetic analogues. For example, Pippenger [20] shows that every
Boolean symmetric function on n variables has formula size _-< n :’6 (and
hence depth -< c. log n) whereas the elementary symmetric function
Y’.<__<...<=,xx...x,/ appears to need O(logZn) depth. Moreover, even
positive results for arithmetic computations may not always have Boolean
analogues. For example, we can simulate a Boolean circuit by an arithmetic
circuit; i.e. x v y is simulated byx +y-x xy, -x by 1-x. But even if,
every size T(n) arithmetic circuit (computing functions of degree _-< n) was
transformable into an equivalent depth log T(n) circuit, a corresponding result
would not necessarily hold for Boolean circuits. Suppose we try the following:
Given Boolean circuit C, first convert to the arithmetic circuit C which "simu-
lates" C, then transform to an equivalent C and finally obtain a depth efficient
Boolean circuit C4 by simulating C3 with mod 2 arithmetic. The problem is that
circuit C2 (which is only "equivalent" to circuit Ca for {0, 1} valued inputs) may
be computing arithmetic functions whose degrees can be exponential in the size
of C2, and hence exponential in n. What is missing is the concept of the degree of
a Boolean function. In any case, we consider it a major open problem to exhibit
a "polynomial size" function, Boolean or arithmetic, which is provably not
computable in O(log n) depth.. Conclusion. The main results of this paper establish a relation between
TM space and circuit depth. This can be interpreted as another piece of evidence
(see Pratt and Stockmeyer [22], Hartmanis and Simon [9] and more recently
Chandra and Stockmeyer [2], Kozen [13], and Tourlakis [28]), that parallel time
and space are roughly equivalent within a polynomial factor. The simplicity of the
circuit model focuses our attention on the importance of the transitive closure
problem. As a result, we have been able to unify a number of open problems in
computational complexity. We also claim that questions in "traditional" compu-
tational complexity have relevance .to arithmetic complexity and conversely.

ON RELATING TIME AND SPACE TO SIZE AND DEPTH 743

Acknowledgments. The author is greatly indebted to S. Cook for a number of
important suggestions, and to A. Meyer, L. Stockmeyer and the referees for their
helpful comments.

REFERENCES

[1] A. BORODIN AND I. MUNRO, The Computational Complexity of Algebraic and Numeric
Problems, American Elsevier, New York, 1975.

[2] A. K. CHANDRA AND L. STOCKMEYER, Alternation, Proc. of Seventeenth Annual Symp. on
Foundations of Computer Science, Houston, Oct. 1976, pp. 98-108.

[3] S. COOK, An observation on time-storage tradeoff, Proc. of the Fifth Annual ACM Symp. on
Theory of Computing, May 1973, pp. 29-33.

[4] S. COOK AND R. SETHI, Storage requirements]:or deterministic polynomial time recognizable
languages, Proc. of Sixth Annual ACM Syrup. on Theory of Computing, May 1974, pp.
33-39.

[5] L. CSANKY, Fast Parallel Matrix Inversion Algorithms, Proc. of Sixteenth Annual Symp. on
Foundations of Computer Science, Oct. 1975, pp. 11-12.

[6] M. J. FISCHER AND A. MEYER, Boolean matrix multiplication and transitive closure, Proc.
Twelfth Annual IEEE Symp. on Switching and Automata Theory, Oct. 1971, pp. 129-131.

[7] M. FISCHER AND N. PIPPENGER, M. J. Fischer Lectures on Network Complexity, Universit/it

Frankfurt, preprint, 1974.
[8] J. HARTMANIS AND H. B. HUNT, The LBA Problem and its Importance in the Theory of

Computing, SIAM-AMS Proc., vol. 7. American Mathematical Society, Providence, RI,
1974.

[9] J. HARTMANIS AND J. SIMON, On the power ofmultiplication in random access machines, Proc.
of Fifteenth Annual Symp. on Switching and Automata Theory, Oct. 1974, pp. 13-23.

10] J. HOPCROFT, W. PAUL AND L. VALIANT, On time versus space and related problems, Proc. of
Sixteenth Annual Symp. on Foundation of Computer Science, Oct. 1975, pp. 57-64.

[11] J. HOPCROFT AND J. ULLMAN, Formal Languages and their Relation to Automata, Addison-
Wesley, Reading, MA, 1969.

[12] N. D. JONES AND W. T. LAASER, Complete problems for deterministic polynomial time, Proc.
Sixth Annual ACM Symp. on Theory of Computing, May 1974, pp. 40-46.

[13] D. KOZEN, On parallelism in Turing machines, Proc. of Seventeenth Annual Symp. on

Foundation of Computer Science, Houston, Oct. 1976, pp. 89-97.
14] H. T. KUNG, Some complexity bounds for parallel computation, Proc. of Sixth Annual ACM

Symp. on Theory of Computing, May 1974, pp. 323-333.
[15] N. LYNCH, Log Space Recognitton and Translation ofParenthesis Languages, preprint.
[16] A. MEYER, Personal communication, 1975.
[17] A. MEYER, AND L. STOCKMEYER, Personal communication, 1975.
[18] I. MUNRO, Efficient determination of the transitive closure of a graph, Information Processing

Lett., (1971), no. 2.
[19] M. S. PATERSON AND L. G. VALIANT, Circuit size is nonlinear in depth, Univ. of Warwick

Theory of Computation Rep., vol. 8, Sept. 1975.
[20] N. PIPPENGER, Short formulae for symmetric functions, IBM Res. Rep. RC-5143, Yorktown

Heights, NY, 1974.
[21] The Complexity of Monotone Boolean Functions, Math Systems Theory, submitted.
[22] V. PRATTAND L. STOCKMEYER, A characterization ofthe power ofvector machines, J. Comput.

System Sci., 12 (1976), pp. 198-221.
[23] J. SAVAGE, Computational work and time on finite machines, J. Assoc. Comput. Mach., 19

(1972), pp. 660-674.
[24] W. SAVITCH, Relationships between nondeterministic and deterministic tape complexities, J.

Comput. System Sci., 4 (1970), pp. 177-192.
[25] C. P. SCHNORR, The network complexity and the Turing machine complexity offinite functions,

Acta Informat., 7 (1976), pp. 95-107.
[26] P. M. SPIRA, On time hardware complexity tradeoffs for Boolean functions, Fourth Hawaii

International Symp. on Systems Science, 1971, pp. 525-527.

744 ALLAN BORODIN

[27] V. STRASSEN, Vermeidung yon Divisionen, J. Reine Angew. Math., 264 (1973), pp, 184-202.
[28] G. TOURLAKIS, A universal parallel machine and the efficient simulation of storage bounded

sequential computations, Dept. of Computer Science and Mathematics Tech. Rep. 1,
Atkinson College, York.University, Toronto, Canada, Dec. 1976.

[29] R. LADNER, The circuit value problem in Logspace complete for P, SIGACT News, 7 (1975), pp.
18-20.

[30] R. P. BRENT, The parallel evaluation ofseveral arithmetic expressions, J. Assoc. Comput. Mach.,
21 (1974), pp. 201-206.

SIAM J. COMPUT.
Vol. 6, No. 4, December 1977

GENERATING BINARY TREES LEXICOGRAPHICALLY*

F. RUSKEY AND T. C. HU"

Abstract. We represent a binary tree by the level numbers of its leaves from left to right. Thus
every binary tree of n. leaves corresponds to a sequence of n numbers. We first give the necessary and
sufficient conditions for a sequence to represent a binary tree; then we give an algorithm for generating
all the feasible sequences lexicographically as a list. Also, algorithms are developed to determine the
position of a given sequence, or to generate the sequence of a given position. Finally, it is shown that
the average time per sequence generated is constant (independent of the length of the sequence).

Key words, binary tree, feasible sequence, ranking algorithm

1. Introduction. Binary trees play an important role in computer science.
The number of binary trees with n leaves is well-known (see for example, Knuth
[2, p. 389]); but no algorithm exists which explicitly lists all the binary trees of n
leaves in some natural order. Here, we represent a binary tree by the level number
of its leaves. Thus a binary tree of three leaves is either (1, 2, 2) or (2, 2, 1). In
general, a binary tree of n leaves is represented by a sequence of n numbers
(a 1, a2," , an). In this paper, we develop an algorithm for generating explicitly
n-number sequences representing binary trees lexicographically as a list. Without
explicitly generating the list, we also give a ranking algorithm for determining the
position of a given sequence on the list, and an unranking algorithm for creating
the sequence occupying a given position. Finally, the efficiency of the generating
algorithm is analyzed.

2. Feasible sequences. Not every sequence of n positive integers represents
the level numbers of a binary tree with n leaves. Those which do are called feasible
sequences. We also call a 1, a2, , aj a feasible initial sequence for n if there exist
integers aj/l,’’’, an such that al, a2,’’’, an is a feasible sequence. Now con-
sider a sequence al, a:,..., ak-2, ak-1, ak, ak+l,’’’, an, with a leftmost pair
ak-1 ak q. The process of replacing the pair ak-1, ak by q 1 to get the new
sequence al, a:, , ak-:Z, q- 1, ak+l, an is called a reduction from the left.
Continuing this process until no further reductions from the left are possible we
get a final sequence called the left-reduced sequence for a l, a2,’’’, an. For
example, the left reduced sequence for 3, 6, 6, 5, 4, 7, 7, 6, 5 is 2, 4. Reductionfrom
the right and right reduced sequence are defined analogously, except that we take
the rightmost equal pair. The following lemmas are well known.

LEMMA 0 [2, p. 404]. A necessary condition]’or a sequence a 1, a2, , an to be
feasible is that

2-a’ 1.
/=1

LEMMA 1 [1]. A sequence a l, a2, , an is feasible i]’ and only i]’ a series o]’
n 1 reductions from the right or left (in any order) reduce the original sequence to
the single integer O.

Received by the editors October 5, 1976, and in revised form February 15, 1977.
f Division of Computer Science, University of California, San Diego, La Jolla, California 92037.

This work was supported by the U.S. Army Research Office under Grant DAAG29-76-C-0031 and
the National Science Foundation under Grant DCR75-06270.

745

746 F. RUSKEY AND T. C. HU

Thus if a sequence is feasible, then a reduction yields another feasible
sequence and if the reduced sequence is feasible then the original sequence was
also feasible. We next state and prove two easy lemmas which lead to a
characterization of feasible initial sequences.

LEMMA 2. Let al, a2, , an be a sequence o[positive integers and suppose
them is a k such that ax < az<" < ak-1 and ak > ak+X >" > a,; then
ax, az,"’, an is a feasible sequence if and only if

(i) ak-x ak n 1 and
(ii) al, a2, ak-1, ak+X., an are all distinct.
Proof. Suppose that (i), (ii) are true. They tell us that {al, a2,"’, an}

regarded as a set is equal to {1, 2, , n 1}. The sequence is obviously feasible if
n 2. For n > 2, we can do a reduction from the left, i.e. replace ak-1, ak by n 2.
This new sequence satisfies the conditions of the lemma.

Suppose that al, a2, an is a feasible sequence. Clearly ak-1 ak. Con-
k-1

sider the binary decimal representation of j= 2-aj" There is a one in the/’th place
to the right of the decimal point if and only if ai] for some 1 <- -<_ k 1. Similar
remarks apply to j=k 2-aJ. Since these two sums must add together to one we see
that there could not be a one (or a zero) in the same position in both binary
decimals before the akth place. In other words, (ii) holds and ak n 1. Q.E.D.

Note that the tree represented by the feasible sequence of the above lemma is
one of maximal height among binary trees of n leaves. In the next lemma we are
replacing the rightmost node of a binary tree by the binary tree with level numbers
1,2,... ,m-l,m,m.

LEMMA 3. If a 1, a, , a, is a feasible sequence then so is a 1, az," an-l,

a, + 1, a, + 2, , a, + m, a, + m for any positive integer m.
Proof. Reduce a 1, a2, , an-I, an + 1, , a, + m, a, + m from the right m

times. Q.E.D.
This last lemma tells us that a feasible initial sequence for n is also a feasible

initial sequence for n + m, m a positive integer. The following theorem tells us
how many nodes we need to complete a binary tree, given the level numbers of the
first/" nodes.

THEOREM 1. A sequence a 1, a2,, , ai (j < n) is a feasible initial sequencefor
n if and only if its left reduced sequence rl, r2,"’, rl satisfies the following
conditions"

(i) l <-rx<r2<. .<rl,
(ii) r <= n -i + l-1.
Proof. (sufficient) Suppose (i) and (ii) hold. Let Si be the sequence r+l-1,

ri+l 2, , ri + 1 where we define r0 0. The sequence is empty if r+x rg 1.
Also let St rt. By (i) the sequence rl, r2," rt, St, Sl-1," ", Sx, So satisfies the
conditions of Lemma 2 and is thus a feasible sequence. Since the sequence
Sl, Sl--1, Sl, So has rt + 1 elements and a l, a2, ai, St, Sl-1, SO is a
feasible sequence, ax, a, , ai is a feasible initial sequence for rt +] + 1. But
by (ii) and Lemma 3 it is also a feasible initial sequence for n.

(necessary) If (i) does not hold then there is a k such that r >r+x and
rk > rk.-1 if k # 1. Now at each step of the reduction process the level numbers only
decrease and thus r could never be reduced and so any sequence rl,’",

ai+x,’’’, a, could notbe left reduced to 0.

GENERATING BINARY TREES LEXICOGRAPHICALLY 747

If (ii) does not hold then r > n -/" + l- 1, but no tree rl, rl, ai+l, an
with n -] + leaves can have a leaf at level greater than n -/" + l- 1. Q.E.D.

COROLLARY. Let a 1, a2, , ai be a feasible initial sequence for n (f < n 1)
with left reduced sequence rl, r2, , rt; then al, a2, , aj, ai+l is a feasible initial
sequence for n if and only if

Case 1. rt I. + 1 <_- ai+l <_- n -] + l- 1,

Case 2. rl > I. rl <- ai+ <-- n f + l- 1.

Proof. If the upper bound is not satisfied then condition (ii) of Theorem 1 is
violated. If the lower bound is not satisfied then condition (i) of Theorem 1 is
violated. If the ai+l lies in the indicated ranges then both conditions of Theorem 1
are satisfied.

If j n- 1 in the above corollary then an rl. Q.E.D.

3. The algorithm. Given a feasible sequence a 1, a2, , an we give a proce-
dure for determining the next feasible sequence in our lexicographic listing. The
first sequence is 1,2,...,n-2, n-l, n-1 and the last is n-l, n-l,
n- 2,..., 2, 1. We can test for the last sequence by noting that it is the only
feasible sequence such that al n- 1.

Suppose that we had a binary tree and wanted to produce the next one in our
lexicographic order. Intuitively, we would wish to leave as much of the left part of
the tree as possible unchanged, increase the level number of some leaf by adding
subtrees to that leaf, and finally to readjust the remaining nodes in the right
part of the tree to make their sequence of level numbers as lexicographically small
as possible while maintaining feasibility. What actually happens is described next.

Let ak-l= ak =q be the rightmost equal pair. Then the leaf with level
number r ak-2 will become the father of two leaves at level r + 1. Let be the
largest integer such that ak-1, ak, ak+l, ak+t q, q, q-- 1, , q-- and
k + < n. Also let p an. Readjustment of the right part of the tree is possible only
if > 0. An example of > 0 is shown in Fig. 1 (a) and the case 0 is shown in Fig.
l(b) and Fig. l(c). We can think of the two nodes with level numbers ak-, ak as
becoming the sons of the node with level number ak-2. The nodes which can be
readjusted are those enclosed by the dotted line in Fig. 1 (a). They always form a
lexicographically maximal tree of height t. They are changed into a lexicographi-
cally minimal tree of height and then attached to the node with level number
p an as shown in Fig. 1 (b).

In terms of sequences, if k=n then the next feasible sequence is
a 1, a2," , an-3, r + 1, r 4-1, q 1 as shown in Fig. 1 (b), (c). Otherwise we have a
sequence

al, a2, ak-3, ak-2, ak-1, ak, ak+l, ak+t, ak+t+l, an-l, an
(1)

al, a2, ak-3, r, q, q, q 1, , q t, ak+t+, , an-l, p.

If 0 then the next feasible sequence is

(2)
ala2, ak-3, r+ 1, r+ 1, q--t--q, ak+t+, ",

a,-1, p+l,p+2," ,p+t,p+t,

748 F. RUSKEY AND T. C. HU

(a) (b)

(c)

FIG.

and if 0 then the next feasible sequence is al, a2, ate-3, r + 1, r + 1, q 1,
a/+l, an-l, p.

Example. What feasible sequence follows 3, 4, 7, 7, 6, 5, 2, 1 ? Here k 4,
2 so according to our algorithm the next sequence is 3, 5, 5, 4, 2, 2, 3, 3. The

sequence following 3, 5, 5, 4, 2, 2, 3, 3 is 3, 5, 5, 4, 2, 3, 3, 2.
We now give a detailed PASCAL-like procedure for going from a feasible

sequence al, a2, , a, to the next feasible sequence in our lexicographic order.
This procedure is easily modified to not only produce the sequences but also the
binary trees in their more conventional form (i.e., as a set-of nodes with right son
and left son pointers). The modified procedure would be subject to the same
analysis as presented later in this paper for the original procedure.

GENERATING BINARY TREES LEXICOGRAPHICALLY 749

procedure NextTree (a l, a2,’’’, an :sequence);
begin
k n; t0;
while ak-1 ak do k k 1;
while k + < n and ak+t ak+t+l -t- 1 do + 1;
ak-1 ak-2 + 1;
ak-2 ak-2 h- 1;
a -a 1;
if 0 then

begin
for j <-- k + 1 to n t- 1 do a <- a+;
forj-n-tton-1 doai-an+j-n+t+l;
an an + t;
end;

end of NextTree;

NextTree can be made slightly more efficient by incorporating the following
observation. Let k, be defined as above for the sequence a l, a2,..., an. If we
now apply NextTree to this sequence we get a new rightmost equal pair
ak,-1 ak’. The observation is that k’= k + 1 if 0 and k’ n if t 0.

THEOREM 2. Given a feasible sequence a 1, a2, , an, the procedure NextTree
will produce the next feasible sequence in our lexicographic ordering.

Proof. The proof consists of two parts: first, showing that (2) is indeed
feasible and second, that there is no feasible sequence lying lexicographically
between (1) and (2). The other cases (k n, 0) are easier and their verification
is omitted.

Let the left reduced sequence for a l, a2,’’’, ak-2 be rl, r2,’’’, ft. After
k-l-2 reductions from the left (1) becomes rl, r2,’",rl, q, q,"’,q-t,
ak+t+l,’", an-l,p. By Lemma 2, re=q-t-1 and q n-k+l+l, and t+ 1
further reductions from the left yield the sequence

(3) rl, r2," rt, q t- 1, ak+t+l, an-l, p.

On the other hand, if we reduce (2) from the left k 1 times and reduce it from
the right times we are left with the same sequence (3). Thus the feasibility of (1)
implies the feasibility of (2).

We now claim that the largest integer] such that al, a2, , aj-1, aj + rn is a
feasible initial sequence for n (where m is some positive integer) is k-2. If
]> k- 1 let al, a2," , ai-1 have left reduced sequence sl, s,. , Sh. Now
sl, s2, , Sh, ai, , an is a feasible sequence and by Lemma 2 Sh ai n --] + h.
Since the reduced sequence for al, az, , ai-1, ai. + m is sl, s2, , Sh, aj + m, by
Theorem 1 the sequence is not a feasible initial sequence for n. If/" k 1 then the
left reduced sequence for al, , a_2, a-l+ m is rl, r2, ", rl, a-i + rn and
again we are led to the conclusion that the sequence is not a feasible initial
sequence for n. Thus/" k- 2. Also, m 1 since (2) is feasible.

Thus the next sequence in our list starts with a 1, a2, , ak-3, r + 1. Accord-
ing to the corollary to Theorem 1 the next level number is r + 1. As noted before
a 1, a2, ’, r + 1, r + 1 left reduces to ra, r2, , re where rl q 1 and so the

750 V. RUSKEY AND T. C. HU

next level number is at least q- l-1. The next level numbers are seen to be
ak+t/l,""’, an-1 for if Sl, s2,’’’, Sh is the reduced sequence for al, a2,’’’, aj
where k + <-/" <- n 2 then by Lemma 2, Sh aj/l. Now the reduced sequence for
a l, a2,’", an-1 is 1, 2,...,p and so the next level numbers are p+l, p+
2, , p + t. The final level number p + is determined by feasibility. O.E.D.

If we implement the algorithm in the straightforward manner then the
running time of each step is bounded by a constant times n- k, the number of
positions from the right until an equal adjacent pair is encountered. In the worst
case this is O(n) but on the average it is on the order of

1
(/’-l)In,,(4) b-

where bn is the number of binary trees with n leaves, and Ini is the number of
binary trees with n leaves whose first] 1 level numbers are strictly increasing and
such that the (f-1)st and fth level numbers are equal. We defer evaluating (4)
until the following section where the necessary counting machinery is set up.
There we find that (4) is less than 3 and thus that the average running time of each
step is constant. Note that we do not count the time needed to print out the
sequences. There is a way of implementing the algorithm such that the worst case
running time for a single step of the algorithm is constant. However, it is more
complicated and the overall running time increases so it will not be presented.

4. The racking inaction. In this section we shall determine the rank of every
feasible sequence; and we shall give an unranking algorithm for generating the
sequence of a given position. Using the unranking algorithm we have a nice way of
producing a random binary tree, drawn from the uniform distribution.

In general a ranking function r for an algorithm generating the elements of
some set S is a bijection r: S --) {0, 1,. , ISI- 1} such that r(s) if and only if the
ith element (counting from 0) generated by the algorithm is s. We then refer to s as
the rank element. If S is a subset of the set of n-tuples of positive integers and the
n-tuples are generated in lexicographic order then one method of determining the
ranking of an element a l, a:,..., an is as follows. Determine for each k
1, 2,..., n the number Ak of elements of S whose first k- 1 components are
al, a2, ak-1 and whose kth component is one of 1, 2, , ak 1. The rank of
al, a2," , an is then A1 +A2+" "+An. This is the strategy employed below.

The above considerations lead us to ask: How many binary trees are there on
n leaves whose first] level numbers are al, a2, , a? Let rl, re, r be the left
reduced sequence for a, a2,’", ai. The number of binary trees on n leaves
whose first/" level numbers are a l, a2,’’’, a is equal to the number of binary
trees on n -/" + leaves whose first level numbers are rl,/’2, rl. This is true
since if a, a:,..., a, a+l,’’ ", an is a feasible sequence then rl, r2,’" ", rl,

a+l, , an is also a feasible sequence. Now consider the path in the tree with
level numbers rl, r2,’’’, rl, ai+l,’’’, an from the root to the leaf with level rl.
There are r internal nodes along this path (see Fig. 2). At each of these internal
nodes one of two cases occurs: (i) the left son is in the path or (ii) the right son is in
the path. In case (i) the right son is the root of some subtree. In case (ii) the left son
is a leaf since otherwise the level numbers could not be strictly increasing.

GENERATING BINARY TREES LEXICOGRAPHICALLY 751

FIG. 2

In the figure each triangle represents a subtree and each square a leaf. The path is
the circular nodes. Since l- 1 of the path nodes have leaves as left sons the number
of subtrees is r- + 1. Among these r- + 1 subtrees we have to distribute the
remaining n-j leaves. Thus the number of binary trees on n leaves whose first j
level numbers are a l, a2, , ai is

(5)
pl+’"+ltrl--l+

where b (2-2)/
represents the number of leaves in the ith subtree. Note that (5) depends only on
rl--I and], and not otherwise on the sequence a a, a2,"’, ai. Introduce the
notation

(6) T(n, k) blb2 bk;
Pl+’"+/)

vi --1

our earlier sum (5) becomes T(n -L r- + 1). Note that in view o (5) T(n, k) is
the number o binary trees on n + 1 leaves whose rst level number is . Using this
interpretation we see immediately the initial conditions"

(7) T(n, n)= 1 and T(n, O)= O.

We also have an elementary recurrence:

(8) T(n, k)= T(n 1, k- 1)+ T(n, k + 1)

752 F. RUSKEY AND T. C. HU

T(n- I,k- I) T(n,k+l)
Case (i) Case (ii)

FIG. 3

which is proved by (see Fig. 3) classifying the right brother of the leaf with level k
as (i) either being a leaf or (ii) as having a left and a right subtree.

There are T(n-1, k-l) trees falling under the first classification and
T(n, k + 1) falling under the second classification. Using (7) and (8) we can easily
construct a table of the T(n, k); see Table 1. Note that this gives us another way of
determining b, since T(n, 1)= b,. We also have a simple expression for the
T(n, k).

THEOREM 3.

T(n, k)=
k (2n-k=(2n-k (2n-k-l)2n-k \ n-k] \ n-k]-2\ n-k-1

and
Proof. The second equality is a simple verification. Since the relations (7)
(8) uniquely define the T(n,k) we need only verify that the

TABLE

2
3
4
5
6
7
8

4

2 2
5 5 3

14 14 9
42 42 28
132 132 90
429 429 297

4
14 5
48 20 6
165 75 27 7

GENERATING BINARY TREES LEXICOGRAPHICALLY 753

2n-k_2(2n-k-1

n- k] \ n- k-1 !
satisfy them also. Equation (7) is immediate and (8)

follows at once from the basic binomial identity:

2n-k-1)_2(2n-k-2
(2n-k-1 (2n-k-2

n-k \ n-k-l!+\ n-k-1)-2\ n-k-2 !

(2n k) (2n k 1)-\n_k]-2\n_k_l!. Q.E.D.

Now let us determine the A. for] 1, 2, , n. Note that An 0 since an is.., 2-’=l,andsouniquely determined from the al, an-1 by the relation i--1
we can assume] < n. Let rn be the minimal integer such that al, a2, , ai-1, m is
a feasible initial sequence for n and suppose rl, r2,"’, rl is the left reduced

,ga--m--1sequence for al, a2,. , ai-1. Then by the corollary to Theorem 1 Ai is z.i=o

(number of binary trees with n leaves whose first] level numbers are
v’-"-I T(n-], rn- + i). Note that even if rl, r,al, a2, ai-1, m + i)= z.i=o

m + left reduces to s,..., s then s- h + 1 is still m + i-I. The following
example illustrates how these calculations should be arranged.

Example. What is the ranking of the binary tree with level numbers 3, 5, 5, 4,
2, 3, 3, 2? We first calculate the left reduced sequences for 3; 3, 5; 3, 5, 5 etc. At
each step we use the reduced sequence from the previous step to calculate the
present reduced sequence. In this way at most n 1 reductions are performed. See
Table 2. Thus the rank is T(7, I)= T(7, 2)+ T(6, 2)+ T(6, 3)+ T(2, 1)=
132+132+42+28+1= 335.

A detailed procedure which returns the rank of a feasible sequence
al, a2, an is given below.

procedure Rank (a l, a2,’’’, an :sequence);
begin
rank <--0; m <-- 1;
0; ro0;

for] 1 to n 1 do
begin
for 0 to a. m 1 do rank rank + T(n -, rn + i);

+ 1; rl
while rl-1 r do

begin
Il-1

end;
rn <-if r then + 1 else re;
end

end of Rank.

We can reverse this process to find the rank binary tree on n leaves for any i.
Example. What is the 300th binary tree with 8 leaves? Since T(7, 1)+

T(7, 2)< 300 <-_ T(7,1)+ T(7, 2)+ T(7, 3) the first level number is 1+2=3,

754 F. RUSKEY AND T. C. HU

TABLE 2

al, .., ai_ rl, ..,

1
2 3 3 3
3 3,5 3,5 5
4 3,5,5 3,4 4 -1
5 3,5,5,4 2 2 -1
6 3,5,5,4,2 2 0
7 3,5,5,4,2,3 1,3 3 -1

where 1 is the minimal possible first level number and-2 is the number of terms
whose sum is less than 300. Now 300-(132 + 132)= 36 and the minimal level
number following 3 is 3. Since 36 < T(6, 2)= 42 the first two level numbers are 3,
3 which left reduces to 2. The minimal level number following 2 is 2 and since
T(5, 1)+ T(5, 2)< 36<= T(5, 1)+ T(5, 2)+ T(5, 3) the next level number is
2 + 2 4. Continuing in this fashion we find the sequence of level numbers 3, 3, 4,
6,6,5,3,1.

We now present the general algorithm. Given the number of leaves n and
rank of a binary tree the procedure Unrank will generate the sequence of n level
numbers having that rank.

procedure Unrank (n, rank: integer);
begin
to,- O; m ,- 1; ,-0;
tot j ,- 1 to n 1 do

begin
,-0; tsum ,-0;

repeat
tsum tsum + T(n -], rn -1 + i);
ii+1;

until rank < tsum
rank rank tsum + T(n -], m + 1);
ajrn+i-1;

+ 1; rl ai;
while r_ rl do

begin
l-I-1;
rl - rl --1;
end;

m -it rl then + 1 else rl;

end;
an r
end of Unrank.

We now present linear algorithms for converting a feasible sequence into a
binary tree and vice versa. Let us label the nodes of the binary tree with the

GENERATING BINARY TREES LEXICOGRAPHICALLY 755

integers 1 through 2n- 1. Nodes 1 through n will be the leaves, n + 1 through
2n 1 the internal nodes, and 2n 1 the root. Left [i] and Right [i] will denote the
left and right sons of node i. Algorithm ComputeDepths below takes a tree in such
a representation and returns the level sequence a l, a2," , an.
ComputeDepths:

begin integer CurrentDepth, Root;
procedure CDFS (" integer);

begin
if j -< n then aj - CurrentDepth
else begin

CurrentDepth - CurrentDepth + 1;
CDFS (Left [j]);
CDFS (Right
CurrentDepth - CurrentDepth- 1;
end;

end of CDFS;
CurrentDepth 0;
Root 2n 1;
CDFS (Root);
end of ComputeDepths.

Algorithm MakeTree below produces a binary tree given the feasible level
sequence al, a2, an.
MakeTree:

begin integer CurrentDepth, Root, j, NextlnternalNode;
procedure MDFS (v: integer);

begin
CurrentDepth - CurrentDepth + 1;
if CurrentDepth aj

then begin
Left Iv] - j;
j-j+l;
end

else begin
1NJextInternalNode - NextInternalNode- 1;
Left [v - NextInternalNode;
MDFS (NextInternalNode);
end;

if CurrentDepth a
then begin

Right [v],-j;
j-j+l;
end

else begin
NextlnternalNode NextlnternalNode- 1;
Right Iv] - NextlnternalNode;

756 F. RUSKEY AND T. C. HU

MDFS (NextlnternalNode);
end;

CurrentDepth CurrentDepth- 1;
end of MDFS;

for/" - n down to 1 do Left [j] - Right [/’] 0;
Root - NextlnternalNode - 2n 1;
CurrentDepth - 0;
MDF$ (Root);
end of MakeTree;

Now, let us prove the remarks at the end of 3. We first prove a lemma.
LEMMA 4. The number ofbinary trees on n leaves whoserst] level numbers are

strictly increasing is T(n, j + 1).
Pro@ The jth level number aj must lie in the range j-< aj <_-n- 1. Once we

know what ai is we can consider the path from the root to ai as in Fig. 2. This time
however we are free to choose which j- 1 of the ai- 1 internal nodes have leaves
as left sons. Thus we wish to evaluate

Recall

Now

2 T(n-j,k-j+l).
k=ij 1

T(n f, k -] + l)=
k-j+ 1 (2n -j- k l

2n-j-k-l\ n-k-1]

=(2n-f-k-1)_2(2n-f-k-2)n-k-1 \ n-k-2

l(_)(2n_f_k_l)= (n-k-2 (n
k=, n-k-i kO]--1) (k-n-k-1)

(n-k-2)(p+k-1)
k>=O n --p k

(pn-f+l)

(n -2)-k (p=kO ((n 2)-- (p-- 2)) +k-l)k

Which is of the form of a Vandermonde convolution (Riordan [3, p. 8, (3b)])
namely:

(n-k)(p+k-1) (n+p)n-m k m

So our sum is

(n-2+p)=(2n-]-lp-2 \n-]-l]"

GENERATING BINARY TREES LEXICOGRAPHICALLY 757

Also

nlk=i (k__]) (2n -f- k 2) (2n -]-2
\ n-k-j- 2 \n-f-2]

Thus

nl (k)T(n-j,k-j=[-1)= (2n-/’- 1) (2n-j-2
k=/. j n--j--1 --2\n_j_2 /

T(n, j + 1). Q.E.D.

COROLLARY. The number of binary trees on n leaves whose first j- 1 level
numbers are strictly increasing and such that the j- 1-st and j-th level numbers are
equal is T(n 1, j- 1).

Proof. By Lemma 4 the required answer is

T(n, j)- T(n, f + 1)= T(n 1, j- 1). Q.E.D.

Thus In/. T(n- 1, j- 1) and to estimate (4) we first evaluate "j=2 (i- 1 fin/..
LEMMA 5.

(j- 1)In T(n + 1, 3).
/’=2

Proof. We first note that

r+n+l)n

(Knuth [2, p. 54, eq. (10)]. Now

n--1

Y (j-1)T(n-l,j-1)= kT(n-l,k)
i=2 k=l

k\ n-k-1 1-2 k\ n-k-2]

k\n_k_l1-2 (k-1)n_k_l)k=2

n-1 /2n -k-2\
)k= n-k-1

(k-n-k-1)

n--2)(n+ k-1)2 (3-n+k
k=o k

2n -2]n+k-l)_(n_3)(n_2]k

=nni2(n
k=O

./2n-2+k-X)_(n_3) n-2)k-1

758 F. RUSKEY AND T. C. HU

(2n-2]_(n ./2n-2\
-n\n_3] -3) n_2)

3 (2n-2’n+l n-21 2

T(n + 1, 3) Q.E.D.

Thus

n+l
1
n

_3
n-1

<3.
n+l

Thus the average amount of time for each step is indeed constant.

Acknowledgment. The authors wish to express their gratitude to both
referees for their constructive comments and suggestions. The algorithms Com-
puteDepths and MakeTree are due to one of the referees. The authors have
learned that Tony Trojanowski has an unpublished paper on ranking binary trees.
His ranking scheme is different from ours, and provides an alternative approach to
the problem.

REFERENCES

[1] T. C. Hu AND A. C. TUCKER, Optimal computer search trees and variable-length alphabetical
codes, SIAM J. Appl. Math., 21 (1971), pp. 514-532.

[2] D. E. KNUTH, Fundamental Algorithms, vol. 1, second ed., Addison-Wesley, Reading, MA,
1973.

[3] J. RIORDAN, Combinatorial Identities, John Wiley, New York, 1968.

	SMJCAT_V06_i1_p0001
	SMJCAT_V06_i1_p0040
	SMJCAT_V06_i1_p0055
	SMJCAT_V06_i1_p0067
	SMJCAT_V06_i1_p0076
	SMJCAT_V06_i1_p0084
	SMJCAT_V06_i1_p0086
	SMJCAT_V06_i1_p0088
	SMJCAT_V06_i1_p0109
	SMJCAT_V06_i1_p0123
	SMJCAT_V06_i1_p0139
	SMJCAT_V06_i1_p0151
	SMJCAT_V06_i1_p0155
	SMJCAT_V06_i1_p0167
	SMJCAT_V06_i1_p0188
	SMJCAT_V06_i2_p0201
	SMJCAT_V06_i2_p0235
	SMJCAT_V06_i2_p0240
	SMJCAT_V06_i2_p0268
	SMJCAT_V06_i2_p0272
	SMJCAT_V06_i2_p0285
	SMJCAT_V06_i2_p0298
	SMJCAT_V06_i2_p0305
	SMJCAT_V06_i2_p0323
	SMJCAT_V06_i2_p0351
	SMJCAT_V06_i2_p0373
	SMJCAT_V06_i2_p0381
	SMJCAT_V06_i3_p0403
	SMJCAT_V06_i3_p0416
	SMJCAT_V06_i3_p0427
	SMJCAT_V06_i3_p0444
	SMJCAT_V06_i3_p0460
	SMJCAT_V06_i3_p0467
	SMJCAT_V06_i3_p0481
	SMJCAT_V06_i3_p0487
	SMJCAT_V06_i3_p0505
	SMJCAT_V06_i3_p0518
	SMJCAT_V06_i3_p0537
	SMJCAT_V06_i3_p0547
	SMJCAT_V06_i3_p0554
	SMJCAT_V06_i3_p0563
	SMJCAT_V06_i3_p0582
	SMJCAT_V06_i3_p0594
	SMJCAT_V06_i4_p0607
	SMJCAT_V06_i4_p0622
	SMJCAT_V06_i4_p0643
	SMJCAT_V06_i4_p0663
	SMJCAT_V06_i4_p0669
	SMJCAT_V06_i4_p0675
	SMJCAT_V06_i4_p0696
	SMJCAT_V06_i4_p0700
	SMJCAT_V06_i4_p0718
	SMJCAT_V06_i4_p0730
	SMJCAT_V06_i4_p0733
	SMJCAT_V06_i4_p0745

